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Abstract

The study of the organization of social networks is important for the understanding of opinion formation, rumor spreading,
and the emergence of trends and fashion. This paper reports empirical analysis of networks extracted from four leading sites
with social functionality (Delicious, Flickr, Twitter and YouTube) and shows that they all display a scale-free leadership
structure. To reproduce this feature, we propose an adaptive network model driven by social recommending. Artificial
agent-based simulations of this model highlight a ‘‘good get richer’’ mechanism where users with broad interests and good
judgments are likely to become popular leaders for the others. Simulations also indicate that the studied social
recommendation mechanism can gradually improve the user experience by adapting to tastes of its users. Finally we outline
implications for real online resource-sharing systems.
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Introduction

Social network analysis has become a joint focus of many

branches of science [1,2]. Various social networks have been

systematically investigated, such as friendship, membership and

co-authorship networks. In this work we focus on the so-called

leadership networks which capture how people copy actions or

receive information from others. Although they play a significant

role in formation and propagation of social opinions, leadership

networks have received considerably less attention than other

social networks–possibly because of the lack of empirical data.

Recently, some researchers reported the emergence of scale-free

leadership structures from initially homogeneous interaction

networks in evolutionary games, such as the minority game [3,4,5],
the ultimatum game [6] and the prisoner’s dilemma game [7,8,9,10],

where agent i is considered to be led by agent j if i has adopted j’s
strategy. Since it is hard to automatically extract who follows whom
from records of economic activities, up to now no empirical

evidence has been reported to either support or challenge these

findings for economic systems. On the other hand, web activity

data give us the possibility to study leadership structures in the

process of information propagation. In this paper, we report both

empirical evidence and a theoretical model for the emergence of

scale-free leadership networks in online societies. Furthermore, we

discuss which user characteristics are important for becoming a

leader.

Beyond providing a mechanism leading to scale-free leadership

structures, this work can contribute to solving the information

overload problem created by the unceasingly growing amount of

easily available information. Recommender systems provide a solution

to this problem by analyzing users’ profiles and past preferences

and using them for automated recommendation of relevant items

to individual users [11]. The majority of current recommender

systems use a centralized approach where all data is stored and

analyzed at one place. Typical algorithms include collaborative

filtering [12,13], matrix decomposition [14,15,16], and spreading

processes [17,18,19]. However, this paradigm is challenged by the

findings that social influence often plays a more important role

than similarity of past activities [20,21] and recommendations

made by a system are preferred less than those coming from our

friends [22,23]. In response, social recommendation has become a

candidate for the next recommendation paradigm [24]. Social
recommender systems can be designed (i) in a passive way where a user

selects other users as information sources and can import URLs or

subscribe blog articles from them (as in delicious.com and blogger.com)
[25] or (ii) in an active way where each user can recommend items

to other users who have accepted him as information source (as in

douban.com and twitter.com) [26]. While very different from the user’s

point of view, these two ways are similar in how information

favored by one user spreads to the user’s followers, followers’

followers, and so on [27,28,29]. This process is similar to the well-

studied epidemic spreading on networks [30,31]. The model

proposed and investigated here mimics information spreading

process in adaptive social networks. We evaluate its efficiency in

filtering out the low-quality and irrelevant information and show

that this distributed social recommender model can enhance the

user experience.

Results

Empirical Results
The studied bookmarking data was obtained by crawling the

publicly-available data from the social bookmarking website

delicious.com [32]. The resulting network consists of 392 251 users
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and 1 686 131 directed links. We say that user i is a follower of

user j (or, equivalently, j is a leader of i) if i has imported some of

j’s bookmarks. In this way, a directed social network of users is

constructed where each link represents a leader-follower relation-

ship. We define the direction of each link as leader?follower and

thus the out-degree of a user (i.e., the number of user’s followers)

can be used to quantify the person’s leadership strength. To obtain

a solid understanding of the leadership structure, we study data

from three other social sites containing this kind of structure:

flickr.com, twitter.com and youtube.com. These data sets were provided

upon request by [36] for flickr.com and youtube.com and by [37] for

twitter.com. In the first two cases, user i follows user j if i has asked

user j for friendship and user j accepted this invitation. In the case

of Twitter data, users can explicitly follow other users, who will in

turn push messages to them.

Table 1 summarizes basic statistics of the studied leadership

networks and results of power-law fits of their out-degree

distributions based on the standard maximum likelihood estima-

tion [33,34]. The out-degree distributions themselves are shown in

Fig. 1 together with their power-law fits in the range ½xmin,?)
(according to [34], the optimal value of xmin is the one yielding the

minimal value of the Kolmogorov-Smirnov statistic).

Model
The modeled system consists of N users, each having M

information sources (i.e., M leaders). Nodes of the corresponding

directed network are hence of identical in-degree M. The out-

degree can be used to quantify the node’s leadership status (see

also more complicated measures based on PageRank [35,38] or

LeaderRank [39] algorithms). At each time step, a randomly

selected user posts an item (this generic term stands for an URL, a

news, a blog article, a picture, a video, or any other shared

content). This item is automatically considered to be approved

(liked) by this user and spreads to all user’s followers who

consequently judge this item. If a follower approves the item, it

spreads farther to the follower’s followers. If the item is

disapproved, it does not spread further from this disapproving

node (though, it may continue to spread from some other nodes

which approve it). Note that, in each time step, one piece of news

is introduced and spreads through the whole system depending on

approvals/disapprovals of users. This ‘‘fast user evaluations’’

mechanism simplifies implementation of the model and, according

to our tests, has little impact on the essential features of the

system’s dynamics.

In the model, leaders are evaluated by their followers on the

basis of how the followers appreciate recommendations coming

from them. In particular, the similarity of evaluations sij is

computed for each leader-follower pair. If user i receives an item

from user j and approves it, the similarity score is updated as

sij/(1{1=nij)sijz1=nij while when this item is disapproved by

user i, sij/(1{1=nij)sij . Here nij denotes the cumulative number

of items that i has received from j. This form ensures that

contribution of one incoming item to the similarity value is

inversely proportional to the total number of items transferred

through the corresponding channel. Each user is initially given M
randomly selected leaders whose similarity values are set to 0:5. It
is easy to prove that the aforementioned formulas lead to

sij~aij=nij where aij denotes the number of items received from

j and approved by i.

To allow for a gradual evolution of the leader-follower network,

each user updates their leaders after every T evaluated items. We

adopt a simple approach in which the worst-performing leader

(the one with the lowest similarity value) of user i is dropped and

replaced by a randomly selected user j (given j is not among the

given user’s leaders yet). Similarity of this new leader is set to

sij~0:5 and the number of transferred items to nij~0,
independently of whether j has been i’s leader sometimes before

or not. Note that this updating is very economic as it requires no

computation and no centralized data storage (compared with the

expensive network optimization techniques studied in [27,28]). Yet

it ensures that the system evolves in a self-organized way and

gradually adapts to the tastes of its users.

To test the described recommendation algorithm, we introduce

a simple agent-based model. The cornerstone of this model is how

to cast evaluations of items by users. We adopt the approach

similar to [27] where users and items are described by D-

dimensional taste and attribute vectors, respectively. While

elements of the user taste vectors ui are randomly set to either 0
or 1 with equal probabilities, elements of the item attribute vectors

va are independently drawn from the uniform distribution

U({1,1). Note that for clarity we use Latin and Greek letters

for user- and item-related indices, respectively. Opinion of user i
about item a is modeled as ria~ui:va=Dzegi where e is a random
variable drawn from the uniform distribution U({1,1) and gi
represents the evaluation noise magnitude of user i (the lower the

gi, the better the judgment, and vice versa). In this way, opinion of

a user about an item is of a high value if this user’s taste vector

highly overlaps with the news’s attribute vector. Values gi are

drawn from the uniform distribution U(0,0:5) and stay fixed

during the simulation. If ria is larger than a certain threshold Rc,

user i approves item a. At every time step, after user i has been
randomly selected to post item a, items with random attributes are

generated until one is approved by this user (i.e., it satisfies the

approval condition riawRc). Spreading of this item then starts by

pushing it to all followers of user i.

This agent-based vector model has a simple intuitive interpre-

tation. Respective item’s attributes, ranging from {1 to z1,
represent item’s quality in various aspects (the higher, the better) as

well as item’s topic (e.g., if it concerns sport or politics or

something else). Respective user’s tastes, ranging from 0 to z1,
represent user’s sensitivity to different item attributes. A user

whose taste vector mostly consists of ones is sensitive to all

attributes and hence can judge items well. By contrast, a user

whose taste vector mostly consists of zeros is ignorant to most

aspects and can be satisfied with items that would be judged badly

by most users.

Scale-Free Leadership Structure
The threshold Rc determines the average spreading range of

items (i.e., their average number of readers SST). Although the

approval thresholds could differ from one user to another, for

Table 1. Basic characteristics and results of statistical analysis
for the studied leadership networks.

Dataset N E xmin a KS

Delicious 392,251 1,686,131 20 2.82 0.010

Flickr 1,441,432 22,613,981 10 1.78 0.021

Twitter 35,689,148 1,468,365,183 50 1.88 0.033

YouTbue 570,774 4,945,382 10 2.13 0.013

N represents the number of users, E represents the number of links, xmin is the
lower bound of the range fit by a power-law distribution, a is the corresponding
power-law exponent obtained by maximum likelihood estimation and KS is the
goodness-of-fit value based on the Kolmogorov-Smirnov statistic [34].
doi:10.1371/journal.pone.0020648.t001

Leadership Structure in Social Recommender Systems
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simplicity we set them all identical. As shown in the lower-left inset

of Fig. 2, SST decreases quickly as Rc grows and approaches its

lower bound when Rc *> 0:35 (each item is evaluated at least by the

user who submitted it and all followers of this user, hence this

lower bound equals Mz1). We set Rc~0:2 to achieve

N&SST&1. The upper-right inset of Fig. 2 shows the initial

out-degree distributions which are naturally simple Poisson

distributions peaked at M. After a certain period of the system’s

evolution (Fig. 2 displays the results after 106 time steps), a scale-

free leadership structure is created with the scaling exponent

a&1:63.
Scale-free networks are observed in very diverse systems [40]

which indicates the existence of distinct mechanisms of their

emergence [41]. While the majority of evolving network models

are directly or implicitly inspired by the ‘‘rich get richer’’

phenomenon [42,43,44], there are plenty of other possible

mechanisms such as the optimal design [45], Hamiltonian

dynamics [46], merging and regeneration [47] and stability

constraints [48]. The mechanism leading to scale-free structures

in our model is different as it is based on a spreading mechanism in

a social network and user heterogeneity. To uncover which factors

make a popular leader, we characterize user i by the quality of

evaluations and the scope of interests. The former is measured by

the noise level gi and the latter by the coverage jvij which we

define as the sum of the taste vector’s elements (which in our case

is equal to the number of ones in vi). In Fig. 3, we report how the

scope of interests and quality of evaluations affect the number of

followers. As explained before, users with high jvj can better reveal

intrinsic quality of items and hence they are likely to approve items

with many positive entries in their attribute vectors–they are good

filters of the content. If a user cannot find enough taste-mates

(users with similar taste vectors), users who filter well can be used

instead. Therefore, in accordance with the dependencies shown in

Figs. 3a and 3c, users with high coverage usually have large

numbers of followers. The role of quality of evaluations is more

complicated. As shown in Fig. 3d, it is clear that popular leaders

have small g. However, an accurate user may have a low

popularity (see Fig. 3b: the average out-degree of accurate users is

only slightly higher than that of inaccurate users) because however

accurate user i is, if his scope is not broad enough, the number of

users with similar taste is limited.

We also studied the case where some users are more active than

the others (they post and evaluate items more frequently). In the

early stage, the active users have good chance to become popular

leaders but in the long term, the popularity difference between

active and normal users vanishes. This suggests that it is indeed the

intrinsic personal profile–scope of interests and quality of

evaluations–what plays the crucial role in determining a user’s

position in the social leadership network. We further investigated

cases where (i) users have identical noise levels, (ii) users have

identical coverage, (iii) users are all alike. In all these cases, the

resulting out-degree distributions are considerably narrower than

those reported in Fig. 2. Together with big standard deviations

observed in Figs. 3a and 3b for large jvj and small g, we can

conclude that each of the qualities alone is not enough: popular

leaders are those who have both broad scope and little randomness

in their evaluations. This is similar to the ‘‘good get richer’’

mechanism proposed in the study of complex networks [49,50].

Numerical Validation of Social Recommending
To verify whether the proposed social recommending mecha-

nism and the network updating process can enhance the user

experience, we study how users’ responses to the recommended

items change over time. In addition to user approval, we introduce

a lower level of user satisfaction by assuming that user i says ok to
item a if riaw0. The ratios of the number of approvals and

Figure 1. Scale-free leadership structure – empirical results. Out-degree distributions of the studied leadership networks and their power-law
fits. Shaded areas in the figures show the range where the data is best described by a power-law distribution (they are delimited by xmin minimizing
the KS statistic).
doi:10.1371/journal.pone.0020648.g001

Leadership Structure in Social Recommender Systems
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‘‘okays’’ to the total number of evaluations are denoted by pa and
po, respectively. When a given user i evaluates item a with random

attributes, the average opinion is SriaT~0 and hence without

recommendation, po~0:5. Values of po exceeding 0:5 represent a

working recommender system. As shown in Fig. 4, both po and pa

increase quickly in the early stage of the system’s evolution and

saturate at values considerably higher than the initial ones.

We next check if the average quality of the evaluated items is

higher than it would be without recommendation. The intrinsic

quality of item a is defined as the sum of all the elements of a’s

Figure 3. Broad interests and good judgments make a leader. Dependencies between the leadership strength and the scope of interests (a,c),
and the quality of evaluations (b,d), respectively. The data points and error bars correspond to mean values and standard deviations. In (c) and (d),
when kw30, there is not enough data to obtain credible error bars, hence they are not shown. The population size is N~1000; other parameter
values are the same as in Fig. 2.
doi:10.1371/journal.pone.0020648.g003

Figure 2. Scale-free leadership structure – simulation results. Out-degree distributions of the resulting leadership networks at time step 106

for M~5, T~100, D~13, Rc~0:2 and different values of N . The upper-right inset displays the initial out-degree distributions. The lower-left inset
shows the average number of readers of an item as a function of Rc for N~1000. The thick dashed line with slope {1:6 is shown as a guide to the
eye. All data points reported here and later are averaged over 10 realizations.
doi:10.1371/journal.pone.0020648.g002

Leadership Structure in Social Recommender Systems
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attribute vector, Qa : ~
PD

s~1 va,s=D; the average quality SQT of

all items is zero. We introduce the effective average quality of

evaluated items, Q�, which is weighted by the number of

evaluations of each item. For example, if an item with quality

{0:2 was evaluated by 5 users and another item with quality 0:3
was evaluated by 20 users, the corresponding value of Q� is

({0:2|5z0:3|20)=25~0:2. A well-performing recommender

system should support spreading of high-quality items and hence

Q� should be high. As shown in Fig. 5, Q� increases in our system

quickly from zero to approximately 0:27. Considering that the

quality value of most items is close to zero (less than 1% of all items

have quality greater than the observed effective value 0:27), this
result signifies a well-performing social filtering systems.

Discussion

Uncovering common patterns of leader-follower networks is

important for our understanding of spreading processes in social

environments. We analyzed empirical data from four large-scale

real social networks where the notion of leadership can be

introduced and found indications of scale-free leadership struc-

tures. We studied the social recommendation model inspired by

informal social recommending mechanisms (‘‘word of mouth’’)

that was studied in [27]. We proposed a simplified version of this

model which was shown via agent-based simulations to reproduce

the observed power-law out-degree distributions. The underlying

mechanism leading to these scale-free leadership structures can be

summarized as ‘‘good get richer’’: users with broad interests and

good judgments are likely to become popular leaders for the

others. In our case, broad interests are helpful to attract attention

from the others while good judgments ensure reliability of the

received recommendations. Although this result was obtained by a

specific recommendation model, its implications go beyond social

recommender systems. For example, the scale-free nature of

citation networks [51,52,53,54,55,56] might be more fundamen-

tally explained by the present mechanism rather than by the

notorious ‘‘rich get richer’’ mechanism [42,43,44]. The reason is

that papers are cited by scientists not only because they have

already been cited many times but mainly because they contain

relevant and credible results [52]. Note that, the ‘‘rich get richer’’

and ‘‘good get richer’’ mechanisms are indeed related, depending

on the criteria on goodness. For example, in evolutionary game,

the criterion of a good player may be her/his cumulative wealth,

and in scientific publications, the criterion of a good paper may be

its cumulative citations. In such cases, the two mechanisms are not

distinguishable. If only the network structure is observable, we can

measure the strength of ‘‘rich get richer’’ mechanism [57], yet in

principle we can say nothing about ‘‘good get richer’’ mechanism.

Additional information about each node’s features, attributes,

fitness and functionalities may drive us to more in-depth

understanding about the existence of ‘‘good get richer’’ mecha-

nism. From this point of view, the ‘‘good get richer’’ mechanism

can be considered as a deeper mechanism possibly underlying the

observed ‘‘rich get richer’’ phenomenon in some systems.

Furthermore, our agent-based simulations reveal that the

proposed model is an effective tool for quality information filtering

and it is also efficient in requiring very little computation. These

noticeable features are of particular relevance for resource-sharing

services which are recently experiencing increasing popularity.

Most of them (take digg.com, reddit.com and wikio.com as examples)

still adopt the traditional organization in which resources are

ranked by popularity and divided into categories created by a top-

down approach. Known recommendation techniques are also

designed in a centralized way where the systems, rather than the

users, decide what to recommend to whom [58]. By contrast,

systems like delicious.com and twitter.com have implemented the

possibility to recommend and to have something recommended by

other users. The fast growth of these online communities [59] as

well as the fact that users prefer recommendations coming from

their social circle [22,23] make social recommendation a

promising way to better organize and deliver online resources

and to enhance online social contacts. While we neglected some

relevant social factors like friendship and reciprocity and could not

Figure 4. User experience is enhanced by the social recommender system. Probabilities of saying ok (a) and approving (b) items versus
time. Values shown at time t correspond to the average po and pa in time steps from t{103 to t. Parameter values are the same as in Fig. 3.
doi:10.1371/journal.pone.0020648.g004

Figure 5. Good news live longer while bad news die out soon.
Time evolution of the effective quality Q� of the evaluated items.
Parameter values are the same as in Fig. 3.
doi:10.1371/journal.pone.0020648.g005
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provide analytical solution of the proposed model, this paper offers

various insights to the dynamics of resource-sharing systems and

provides a starting point for their future studies.

Author Contributions

Conceived and designed the experiments: TZ MM YCZ. Performed the

experiments: TZ GC ZKZ. Analyzed the data: TZ MM GC ZKZ. Wrote

the paper: TZ.

References

1. Watts DJ (2007) A twenty-first century science. Nature 445: 489.

2. Borgatti SP, Mehra A, Brass DJ, Labianca G (2009) Network analysis in the

social sciences. Science 323: 892–895.

3. Anghel M, Toroczkai Z, Bassler KE, Korniss G (2004) Competition-driven

network dynamics: Emergence of a scale-free leadership structure and collective

efficiency. Phys Rev Lett 92: 058701.

4. Lo TS, Chan KP, Hui P-M, Johnson NF (2005) Theory of enhanced

performance emerging in a sparsely connected competitive population. Phys
Rev E 71: 050101.

5. Lee SH, Jeong H (2006) Effects of substrate network topologies on competition

dynamics. Phys Rev E 74: 026118.

6. Savarimuthu BTR, Cranefield S, Purvis M, Purvis M (2008) Role model based

mechanism for norm emergence in artifical agent societies. Lect Notes Comput

Sci 4870: 203–217.

7. Szolnoki A, Perc M, Danku Z (2008) Making new connections towards

cooperation in the prisoner’s dilemma game. EPL 84: 50007.

8. Szolnoki A, Perc M (2009) Resolving social dilemmas on evolving random
networks. EPL 86: 30007.

9. Szolnoki A, Perc M (2009) Emergence of multilevel selection in the prisoner’s
dilemma game on coevolving random networks. New J Phys 11: 093033.
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