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Recently, spatial networks have attracted much attention. The spatial network is con-
structed from a regular lattice by adding long-range edges (shortcuts) with probability
P(r) ∼ r−δ , where r is the geographical distance between the two ends of the edge. Also,
a cost constraint on the total length of the additional edges is introduced (

∑
r = C). It

has been pointed out that such networks have optimal exponents δ for the average short-
est path, traffic dynamics and navigation. However, when δ is large, too many generated
long-range edges will be added to the network. In this scenario, the total cost constraint
cannot be satisfied. In this paper, we propose a distance coarse graining procedure to solve
this problem. We find that the optimal exponents δ for the traffic process, navigation and
synchronization indeed result from the trade-off between the probability density function
of long-range edges and the total cost constraint, but the optimal exponent δ for percola-
tion is actually due to dissatisfying the total cost constraint. On the other hand, because
the distance coarse graining procedure widely exists in the real world, our work is also
meaningful in this aspect.

1. Introduction

The research on complex networks has been one of the most active fields not only in physics but also in other various
disciplines of natural and social sciences [1–4]. In traditional statistical mechanics, interactions mainly exist between
neighboring elements. By introducing the complex topology of the networks, the whole system can emerge with some new
properties such as small-world [2], scale-free degree distribution [3] and community structures [4]. However, the spatial
property is of great significance as well, which makes the interaction between nodes go beyond the neighboring effect
but under the restraint of their underlying geographical site. This property matters much in lots of empirical networks
including neural networks [5], communication networks [6], electric-power grids [7], transportation systems [8–11] and
even social networks [12–16]. Generally, the geography information of the nodes and the distance between nodes in such a
network would determine the characteristics of the network and play an important role in the dynamics happening in the
network [17].

About the networks embedded in the geographical space, there are many works [16,18–23,26–28]. The first category
focuses on the empirical spatial networks. Specifically, networks with strong geographical constraints, such as power
grids or transport networks, are found with fractal scaling [18,19,29]. Besides, some researchers introduce some ways to
model empirical geographical networks including epidemic spreading networks [16], urban street networks [20], facilities
distribution networks [21], transportation networks and the Internet [22]. In the second category, researchers theoretically
discuss the spatial properties on artificial models. For example, when supplementing long-range edges whose Euclidean
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lengths l are distributed according to q(l) ∝ l−α to D-dimensional lattices, Sen, Banerjee and Biswas conjecture that the two
transition points from random networks and regular networks to the networks with small-world effects in any dimension
are α = D and α = D + 1 respectively [23], and related results have been analytically studied recently [24,25]. Also,
Xulvi–Brunet and Sokolov construct a growing network model by

∏
i→j ∝ kil

−α
ij , where lij is the Euclidean distance between

i and j. Numerical simulations have shown that for α < 1, the degree distribution is a power-law distribution, and for
α > 1, it is fitted by a stretched exponential distribution [26]. Additionally, by taking the degree and geographical distance
into account, Xie et al. in Ref. [27] propose a growing network model based on an optimal policy involving both topological
and geographical measures. In another work, Wang, Zhu and Gu model a kind of two-dimensional planes on which nodes
move randomly with a triangular lattice and investigate critical global connectivity of these networks [28].

However, few of these former works in spatial networks are related to the total cost constraint. The total cost is defined
as the total length of the edges in geographical network models. For a specific edge, the longer it is, the more it will cost.
Very recently, some researchers take this aspect into account [15,30,31]. Because these network models are with spatial
properties, the lattice (geographical) distance is used to measure the difference between geometric locations of different
nodes. Specifically, on an n-dimensional lattice, the lattice distance between any pair of nodes i, j should be calculated along
the underlying lattice. For example, on a 1-dimensional lattice (ring), any two neighboring nodes have a lattice distance
1. The distance between any pair of nodes i, j can be expressed by rij = x + 1, where x is the number of nodes between
node i and j in the ring. The lattice lengths r of an edge between i and j equals the Manhattan distance rij. In [30], based
on a 1-dimensional lattice (ring) and subjected to a limited cost C , long-range connections are added under the probability
density function (PDF) P(r) = ar−δ , where r is the lattice length of these additional edges. Note that the addition of long-
range connections to the system stops when their total length (cost),

∑
r , reaches the given value C . Some basic topological

properties of this networkmodelwith different values of δ are studied. It is found that the network has theminimumaverage
shortest path when δ = 2 in 1-dimensional spatial networks. In addition, the authors investigate a classic traffic model on
these networks. It is found that δ = 1.5 is the optimization value for the traffic process on the spatial networks. In Ref. [31],
pairs of sites i, j in 2-dimensional lattices are randomly chosen to receive long-range connections with probability Pij ∼ r−α

ij ,
where rij is the lattice distance between sites i and j. With the total cost constraint, Li et al. find α = 3 corresponds to the
minimum average shortest path. Moreover, they claim that the optimal value for navigation is α = 3 in 2-dimensional
spatial networks and α = 2 in 1-dimensional ones [33]. Very recently, the 1-dimensional scenario has been strictly proved
by Li et al. [32].

In the spatial network, the probability distribution of these long-range connections is chosen as P(r) = ar−δ . When
the controlling parameter δ is small, long-range connections are more likely with large lattice lengths r . When δ is large,
most of the long-range connections are with small lattice lengths r . Due to the total length constraint, the number of long-
range edges can be very large when their lengths r are small. Therefore, the network will have many (several) long-range
connections when δ is large (small). One serious problem is when δ is large, too many long-range connections will be added
to the underlying lattice. In this paper, we use a so-called distance coarse graining procedure to solve this problem. Actually,
the distance coarse graining procedure commonly exists in many empirical researches, where the distances are estimated
approximately [8–11]. For example, when studying the railway network of China, three stations in the city of Wuhan are
merged into one node and four stations in the city of Shanghai are merged into one node [11]. This procedure named
distance coarse graining is introduced to the spatial network models here. In fact, the coarse graining concept has been
introduced to study networks since a long time ago [34–36]. All relatedworks focus on how to reduce the size of the network
and keep other properties such as degree distribution, cluster coefficient, degree correlation [34], random walks [35] and
synchronizability [36] unchanged. Here, we will study how the distance coarse graining procedure affects the topology and
dynamical process on the spatial network model.

2. Generating binary spatial networks with coarse grained distances

In this paper, we also use lattice distance to measure the geometric distance. In the following text, whenever ‘‘distance’’
is mentioned, it refers to the lattice distance rij between two nodes i, j. Likewise, whenever ‘‘length’’ is mentioned (excluding
the shortest path length), it refers to the lattice length r of a long-range edge. An example can be seen in the upper picture
of Fig. 1(b). Note that once defined, the rij of any two nodes will never be changed in the edge addition process.

The spatial network model is embedded in a 1-dimensional lattice. Long-range edges are generated and added to the
underlying ring according to the probability P(r) = ar−δ , where r is the length of these additional edges. A total cost C
is introduced to this network model. Actually, it is used to constrain the total length of the long-range connections, which
means that the

∑
r should equal C after adding all these long-range connections. A typical spatial network model is shown

in Fig. 1(a).
Obviously, there are two significant features of the spatial network: the power-law distribution of the length of these

long-range edges and the restriction on the total cost. It is easy to tell that when the exponent δ is small, long-range edges
are more likely with large lattice lengths r . When δ is large, most of the long-range edges are with small lattice lengths r .
Because

∑
r should equal C , the number of long-range edges can be very large when their lengths r are small. Hence, many

(several) long-range edges will be added to the underlying 1-dimensional lattice when δ is large (small). However, when
δ is too large, there are so many long-range edges with small lengths that the underlying lattice cannot provide enough
room for them. To solve this problem, a so-called distance coarse graining procedure is effective here. As mentioned above,
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Fig. 1. (Color online) (a) A typical binary spatial network. N = 500, C = c × N = 10 × 500 = 5000 and δ = 2. (b) The illustration for the mechanism
of distance coarse graining procedure where the upper example is without distance coarse graining and the lower one is with distance coarse graining
(W = 3). Suppose the node i is chosen, its long-range edges (dashed line) with r = 2, 3, 4 and r = 5, 6, 7 will be regarded as r = 2 and r = 5 respectively,
so that the networks with distance coarse graining can provide more room for these long-range edges with small r .

researchers incline to use the distance coarse graining procedure to handle the geographic data in the real world [12–14,37,
38]. For instance, geographic data are limited to the level of towns and cities in Ref. [14]. That is to say, researchers estimate
the distances approximately by regarding a range of distance as a typical value. Likewise, in our spatial network model,
we divide the value range of the distance into many continuous intervals in which all the distances are considered as one
typical value as shown in the bottom picture of Fig. 1(b). With the distance coarse graining procedure, the spatial network
is constructed as follows:

(1) N nodes are arranged in a 1-dimensional lattice. Every node is connected with its nearest neighbors, which can keep
every node reachable. Additionally, between any pair of nodes, there is a well defined lattice distance rij.

(2) Set the interval length W of the coarse graining procedure. For each node, divide the distance between it and other
nodes into Nmax−1

W
intervals like the lower picture in Fig. 1(b) (Nmax is the largest lattice distance between any nodes in

the underlying lattice). Themth interval includes the distance from (m − 1)W + 2 tomW + 1.
(3) A node i is chosen randomly, and a certain long-range edge with length r(2 ≤ r ≤ Nmax) is generated with probability

P(r) = ar−δ , where a is determined from the normalization condition
∑Nmax

r=2 P(r) = 1.
(4) Find the interval that r belongs to, say themth interval here. Then, one of the nodes in this interval is picked randomly,

called j. Connect nodes i and j if there exists no edge between them yet.
(5) After Step 4, a certain cost rij is generated. Repeat Steps 3 and 4 until the total cost reaches C .

Firstly, we should determine how to choose an appropriate value of the controlling parameterW under different total
costs C . Clearly, whenW = 1, there is no distance coarse graining at all. IfW is too small, the spatial network model still
cannot provide enough room for long-range connections with small lattice lengths. On the contrary, because all the nodes
in one distance coarse graining interval are regarded as the same, ifW is too large, too many nodes are considered in one
distance coarse graining interval so that the power-law distance distribution will be destroyed significantly.

In order to deduce the formula of appropriate values ofW , we consider an extreme condition with δ equal to a very large
positive value. Under this circumstance, all long-range edges are with a short length and a large number of these long-range
edges will be generated. Due to their short lengths r , all of them will be located in the first distance coarse graining interval
of each node. Consequently, the total cost is C = (2 + 3 + 4 + · · · + W )N . For C = cN , 2 + 3 + 4 + · · · + W = c , where

c is the average cost on each node. After simplification,W 2 + W − 2− 2c = 0. So we can getW =
√
9+8c−1
2

. Generally,W

only has to obeyW ≥ [
√
9+8c−1
2

]floor , where [·]floor represents the operation of rounding downward. In this paper, we choose
W = 4 when c = 10,W = 7 when c = 30 andW = 9 when c = 50 as examples.

As mentioned above, the binary (unweighted) spatial network cannot be generated without distance coarse graining. In
Ref. [30], to get the binary spatial network, authors firstly generate weighted spatial networks by allowing reconnection
between any two nodes. Thus, there is infinite room for long-range edges even when the exponent δ equals a large value.
Then they project the weighted spatial network into an unweighted one by imposing all the weights of the existing edges to
1. This will lead to dissatisfying the total cost constraint. On the contrary, through the distance coarse graining procedure,
the network can provide enough room for these long-range edges. Under this circumstance, the binary spatial network can
be generated independent from the weighted one. In Fig. 2, we compare the total cost of these two different binary spatial
networks. Clearly, only the network with coarse grained distances can satisfy the total cost limit as the standard value while
the projected spatial networks cannot.

Then, we will discuss the length distribution of the long-range edges in the spatial networks with coarse grained
distances. Intuitively, the power-law length distributionwill get destroyedwhen the distance is coarse grained. Actually, the
distance coarse graining procedure can preserve the power-law length distribution effectively. The results are reported in
Fig. 3.We can see that though the length distribution in projected binary spatial networks has the same slope as the standard
length power-law distribution, there is still a gap between them. On the contrary, length distribution of the long-range edges
in the networks with coarse grained distances and the standard distance power-law distribution are similar except for the
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Fig. 2. (Color online) Total costs of two different binary spatial networks. The cycle represents the projected binary spatial networks in Ref. [11].
The lozenge stands for the binary spatial network with coarse grained distances with W = 7. The square is the standard total cost which equals
C = N × c = 1000× 30 = 30 000. The results are under 100 independent realizations.
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Fig. 3. (Color online) Distance distribution of two different spatial networks. The lozenge represents the result of the projected binary spatial networks
in Ref. [11]. The square stands for the result of the binary spatial network with coarse grained distances (W = 7). The triangle is the distance distribution
under the higher scale (see the text) of the coarse grained network. The cycle is the standard distance power-law distribution with given N = 10 000,
c = 30 and δ = 3. The results are under 10 independent realizations.

top part. This is reasonable, because the nodes in each coarse grained interval are regarded homogeneous. Consequently, the
distribution plot is also divided into some continuous intervals in which the length distribution does not obey power-law.
This effect appears to bemore serious in the top of the curve(the top of the curve is exaggerated in log scale). However, when
we estimate the length with a higher scale, which means marking all the lengths in one coarse graining interval as a typical
value (lengths from (m − 1)W + 2 to mW + 1 are regarded as (m − 1)W + 2), the length distribution of the long-range
edges becomes exactly the same with the standard power-law. See the line with triangle markers in Fig. 3.

One of the most important results in the former works about spatial networks is that the minimum average shortest
path length happens at δ = 2 regardless of the total cost [30,31]. The shortest path here means the traditional topological
shortest path which is defined as a path between two nodes such that the number of the edges is minimized. The shortest
path length is the number of edges in the shortest path. Here, we investigate how the optimal δ changes as the distance
coarse graining procedure. Fig. 4 shows the result for three different levels of distance coarse graining (with differentW ).
Obviously, the largerW we choose to coarse grain the distance, the more severely the optimal point shifts to a lower value.
However, as the size of the network gets bigger, the shifting effect of the distance coarse graining becomes less significant.
That is to say, notwithstanding the coarse graining in distance, the value of δ for the minimum shortest path length still
equals 2 in large networks.
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Fig. 4. (Color online) Results for how the optimal δ changes through the distance coarse graining procedure. (a) is the average shortest path length for
different δ under different coarse graining parametersW , here N = 1000. (b) is how the value of δ for minimum average shortest path changes when the
network gets larger. The results are under 100 independent realizations.

3. Dynamics on spatial networks and effects of distance coarse graining

Dynamics on spatial networks is always an interesting topic. For example, it can help us design the principle for the
optimal transportation networks [31]. In this section, some main dynamical processes will be studied on spatial networks.
Furthermore, people tend to coarse grain the distance when designing real networks most of the time, especially these
transport networks, so understanding how the distance coarse graining affects the function of the network is not only
interesting but also useful. Previous works [30,31] pointed out that the spatial properties of the network will result in the
optimal value of δ for navigation and traffic processes, respectively. Firstly, how the optimal δ for navigation and traffic
processes shiftswith the distance coarse graining procedurewill be investigated. Secondly,wewill study two extra dynamics
named synchronization and percolation in this so-called binary spatial network with coarse grained distances.

3.1. The effect on the traffic process

In the traffic process [39], all the nodes embedded on the spatial network are treated as both hosts and routers. Every node
can deliver at most D packets within one step toward their destinations. At each time step, there are R packets generated
homogeneously on the nodes in the system. The packets are delivered from their own original nodes to destination nodes by
a special routing strategy. There is a critical value Rc , which can best reflect the maximum capability for a system to handle
its traffic. In particular, for R < Rc , the numbers of created and delivered packets are balanced, which leads to a steady free
traffic flow. For R > Rc , traffic congestion occurs as the number of accumulated packets increases with time, simply because
the capacities of the nodes for delivering packets are limited.

In fact, the whole traffic dynamics can be represented by analyzing the largest betweenness of the network [40]. The
betweenness of a node is the number of shortest paths passing through this node. Note thatwith the increasing of parameter
R (number of packets generated in every step), the system undergoes a continuous phase transition to a congested phase.
Below the critical value Rc , there is no accumulation at any node in the network, and the number of packets that arrive at
node i is Rgi/N(N − 1) on average. Therefore, a particular node will collapse when Rgi/N(N − 1) > Di, where gi is the
betweenness coefficient and Di is the transferring capacity of node i. Therefore, congestion occurs at the node with the
largest betweenness. Thus, Rc can be estimated as Rc = DiN(N − 1)/gmax, where gmax is the largest betweenness coefficient
of the network and Di = 1.

Here, we study the traffic dynamics in the spatial network with coarse grained distances. The results are given in Fig. 5(a)
and (b). In Fig. 5(a), it is quite obvious that there exists an optimal δ for Rc , which means that the transport capacity reaches
its maximum in this spatial network. From Fig. 5(b), we can clearly see that this optimal δ gets closer to 1.5 gradually as
the size of the network becomes larger. Actually, even dissatisfying the total cost, the projected spatial network also has the
optimal δ for traffic process equaling 1.5 in Ref. [30].

3.2. Effects on navigation

Another aspect that we are going to investigate here is navigation. In fact, the navigation process in networks is based on
local information, which is different from the shortest path with global information [25,41]. Hence, the navigation reflects
another ability of the networks. According to Ref. [31], we choose the navigation strategy as the greedy algorithm [42] in
this paper. In previous works, Kleinberg found that α = 2 for Pij ∼ r−α

ij was the optimal value in the navigation with the
greedy algorithm in 2-dimensional spatial networks without total cost limit [42]. When adding the cost restriction, Li et al.
found that the optimal value was α = 3 in 2-dimensional spatial networks and α = 2 in 1-dimensional ones [31].
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Fig. 5. (Color online) Effects of distance coarse graining on the functions of the binary spatial networks. (a) is, the critical value Rc in traffic process for
different δ under different coarse graining parametersW , where N = 1000. (b) shows, how the optimal δ for traffic process changes when the network
gets larger. (c) is the navigation steps for different δ under different coarse graining parameters W , where N = 1000. (d) shows how the optimal δ for
navigation changes when the network gets larger. The results are under 50 independent realizations.

Here, though we choose the probability density function (PDF) of the distance distribution as P(r) = ar−δ , δ equals α in
one-dimensional space [33].What interests usmost is how this optimal value performswhen the distance is coarse grained.
In Fig. 5(c) and (d), the results are reported. The optimal δ shifts to a smaller value as the coarse grained interval lengthW
gets larger. However, when the size of the network is large enough, the optimal δ will come back to 2 even if the distances
are coarse grained, as shown in Fig. 5(d).

3.3. Effects on synchronization

Furthermore, we will study synchronization in this so-called binary spatial network with distance coarse graining.
Synchronization is a universal phenomenon that emerges from a population of dynamically interacting units. It plays an
important role from physics to biology and has attracted much attention for hundreds of years [43,44].

In former works, the analysis of Master Stability Function (MSF) allows us to use the eigenratio λN/λ2 of the Laplacian
matrix to represent the synchronizability of a network, where λN is the largest and λ2 is the smallest nonzero eigenvalue
of the Laplacian matrix [44]. Hence, we can calculate the synchronizability λN/λ2 under different values of δ. In Fig. 6,
synchronizability of the spatial network is enhanced for some special values of δ. Likewise, there is also an optimal δ for
synchronizability, and it is 1.5 approximately when the network is large enough.

3.4. Effects on percolation

As discussed in the former section, there are two different ways to generate binary spatial networks. The first way is to
project the weighted spatial network to a binary one. The second way is to generate the binary spatial networks directly by
the distance coarse graining procedure. We compared the percolation performances between these two kinds of networks.
In percolation, we consider what will happenwith a network if a random fraction 1−p of its edges are removed. In this bond
percolation problem, the giant connected component plays the role of the percolation cluster, which may be destroyed by
decreasing p [45]. Obviously, different δ in spatial networks will result in different critical parameters pc . The smaller the
critical parameter pc is, the better the networks perform in percolation. The percolation performances of these two kinds of
binary spatial networks are shown in Fig. 7.

From Fig. 7, we can see that the projected binary spatial networks have an optimal δ for percolation while coarse grained
binary spatial networks do not have this. Actually, when projecting the weighted spatial networks, the total cost constraint
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Fig. 6. (Color online) The effect of distance coarse graining on the synchronizability of the binary spatial networks. (a) is the synchronizability for different
δ under different coarse graining parameters W , where N = 1000. (b) shows how the optimal δ for synchronizability changes when the network gets
larger. The results are under 50 independent realizations.
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Fig. 7. (Color online) Results for the percolation performance of (a) projected binary spatial networks and (b) coarse grained binary spatial networks. Here,
the network size is N = 500. The results are under 50 independent realizations.

no longer gets satisfied, so in the projected binary spatial network, the number of total edges becomes smaller than the
expected value as δ gets larger [30]. This is why the projected binary spatial networks seem to have an optimal δ for
percolation. Actually, when the binary spatial networks are designed, they are supposed to be constrained by the total cost.
We show that after the total cost constraint is added by the distance coarse graining procedure, the spatial network may
perform entirely differently in some functions such as percolation. It indicates that the distance coarse graining is necessary
when we analyze some dynamics on spatial networks.

4. Conclusion

Complex networks have been a hot topic in science for more than ten years. Works in this field are based on the
topology of the networks. So far, many empirical works claim that the distance distributions of real networks obey a power-
law distribution. In the aspect of theoretical modeling, researchers begin to pay attention to these spatial networks. Very
recently, these spatial networks were constructed with power-law distance distributions and under total cost restrictions.
These kind of spatial networks can reflect the trade-off of real networks between the efficiency (distance power-law
distribution) and the total cost.

In order to satisfy the total cost constraint, we introduce a distance coarse graining procedure to the spatial network
models. In previous works, researchers find that there exist stable optimal power-law exponents δ for minimum shortest
path, traffic process and navigation. In this paper, we study some main dynamics in such binary spatial networks with
coarse grained distances. Specifically, the distance coarse graining procedure will make the optimal exponent δ in power-
law distance distribution shift to smaller values for all of average shortest path, traffic process and navigation. Interestingly,
when the network is large enough, the effect of distance coarse graining can be ignored. Hence, the optimal exponents δ for
the traffic process, navigation and synchronization indeed result from the spatial structure. On the contrary, though there
seems to be an optimal value of δ for percolation in the projected spatial networks, it actually results from dissatisfying the
total cost constraint. Given the total cost constraint by the distance coarse graining procedure, the optimal exponent δ for
percolation disappears. Hence, the distance coarse graining is very important in the study of spatial networks.

Additionally, in most cases of real lives and empirical researches, the distances are estimated approximately. In other
words, people incline to regard a range of distances as a typical distance, so the study of distance coarse graining is also
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meaningful in this aspect. Also, investigation of functions of other spatial related networks with coarse grained distances
can be an interesting extension.
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