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Emergence of heterogeneity in a noncompetitive resource allocation problem
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Tuning one’s shower in some hotels may turn into a challenging coordination game with imperfect information.
The temperature sensitivity increases with the number of agents, making the problem possibly unlearnable.
Because there is in practice a finite number of possible tap positions, identical agents are unlikely to reach even ap-
proximately their favorite water temperature. We show that a population of agents with homogeneous strategies is
evolutionary unstable, which gives insights into the emergence of heterogeneity, the latter being tempting but risky.

I. INTRODUCTION

Taking a shower can turn into a painful tuning and retuning
game when many people take a shower at the same time if
the flux of hot water is insufficient. It is thus in the interest
of everybody not only to reach an agreeable equilibrium
temperature but also to avoid large fluctuations. These two
goals are difficult to achieve because one inevitably not only
has incomplete information about the behavior and personal
preferences of the other bathers, but also about the nonlinear
intricacies of the plumbing system.

The central issue of this paper is to find the conditions under
which the agents are satisfied, which depends on the learning
procedure and on its parameters. The need to depart from
rational representative agents was forcefully voiced among
others by Kirman [1] and Arthur, for instance, in his El
Farol bar problem [2], subsequently simplified as minority
game problem [3,4], from which we shall borrow some ideas
concerning the learning mechanism. In these models, the
agents have incentives to behave maximally differently from
each other, hence the need for heterogeneous agents.

The shower temperature problem is different in that the
perfect equilibrium is obtained when all the agents behave
exactly in the same optimal, unique way. A priori, it is a perfect
example of a case where the representative agent approach
applies fully. As we shall see, however, because in practice
there is a maximum number of tap tuning settings, it may
pay off to be heterogeneous with respect to the strategy sets.
Therefore, the problem we propose in this paper is another
example of a situation where heterogeneity is tempting because
it is potentially beneficial. The intrinsic and strong nonlinearity
of the temperature response function prevents the use of
the mathematical machinery for heterogeneous systems that
successfully solved the minority game problem [4,5], the El
Farol bar problem [6], and the clubbing problem [7].

II. THE SHOWER TEMPERATURE PROBLEM

One of the problems of poor plumbing systems is the
interaction between the water temperatures of all the people
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taking a shower simultaneously. If a single person changes her
shower setting, she influences the temperature of all the other
bathers. Cascading shower tuning and retuning may follow.
A key issue is how people can learn from past temperature
fluctuations how to tune their own shower so as to obtain
an average agreeable temperature T̂ and also to avoid large
temperature fluctuations.

Some rudimentary shower systems allow only for one
degree of freedom, the desired fraction of hot water in one’s
shower water, denoted by φ ∈ [0,1]. Assuming that H and C

denote the maximal fluxes of hot and cold water available to
a shower, and that the total flux at this shower is constant, the
obtained temperature is equal to

T = φHTH + CTC(1 − φ)

φH + C(1 − φ)
, (1)

where TH and TC denote the constant temperatures of hot and
cold water.

In the following, we shall consider the special case were
H = C, TC = 0, and TH = 1, which amounts to expressing T

in TH units (i.e., to rescaling T by TH ), which leads to T = φ.
The situation may become more complex, however, if many

people take a shower at the same time. Indeed, it sometimes
happens that altogether the N bathers ask for a larger hot water
flux than the plumbing system can provide. Assume that the
total available hot water flux for all bathers together is H while
the cold water flux available at each single shower is C = H .
We denote by � = ∑N

i=1 φi the total fraction of asked hot
water. If � > 1, each agent will only receive φi/� instead of
φi and the total flux of hot water she obtains is smaller than
expected.1 Finally, agent i obtains

Ti = φi

φi + �(1 − φi)
, (2)

where � = max(1,�). Clearly, Ti(φi = 0) = 0 and Ti(φi =
1) = 1. When � � 1, this equation reduces to the no-
interaction case Ti = φi . Therefore, provided that � > 1, the
agents interact through the temperature they each obtain, that
is, via �. Assuming no inter-agent communication, the global

1The fraction of cold water in this case is still 1 − φi , according to
the agent’s choice, since cold water is assumed to be unrestricted.
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quantity � is the only means of interaction. Therefore, this
model is of mean-field nature. Henceforth, we consider the
more involved case of interaction (i.e., � > 1).

III. TUNING ONE’S SHOWER

A. Equilibrium and sensitivity: the homogeneous case

Before setting up the full adaptive agent model, we shall
discuss the homogeneous case where φi = φ.

Assuming that all the agents have the same favorite
temperature (T̂i = T̂ � 1), they do not interact if N � 1/T̂ ,
in which case φ = T̂ . If N > 1/T̂ the equilibrium is reached
when

φ = φeq = 1 − 1

N

(
1

T̂
− 1

)
. (3)

Hence, there is always a φ that satisfies everybody (for
instance, setting T̂ = 1/2 leads to φeq = 1 − 1/N). In equi-
librium each agent actually gets φeqH/(N · φeq) = C/N hot
water instead of φeqH and thus a total water flux of C/N +
(1 − φeq)C = C/(NT̂ ). Hence, indeed the desired temperature
T̂ is reached for every agent, but the total water flux per agent
is quite small for large N .

The sensitivity of T to φ, defined as χ = dT
dφ

= N
[1+N(1−φ)]2

is an increasing function of φ and maximal at φ = 1 [a
similar result also holds for Ti = φi

φi+�(1−φi )
]. The problem

is that χ (φeq) = NT̂ 2 ∝ N ; therefore, as N increases, tuning
φ around φeq becomes harder and harder, suggesting already
that the agents might experience difficulties to learn how to
tune their shower. Figure 1 illustrates this phenomenon: As
N increases, the region in which most of the variation of T

occurs shrinks substantially.
This problem is made worse by the fact that, in practice,

there is only a finite number Smax of φs that can be effectively
used by the agents, mostly because of internal tap static

0 0.2 0.4 0.6 0.8 1
φ

0

0.2

0.4

0.6

0.8

1

T

N=5
N=10
N=25
N=100

FIG. 1. (Color online) Individual temperature as a function of φ

in the homogeneous case for increasing N (from top to bottom).

friction—the larger the friction, the smaller the number of
different achievable φs. Assuming that the resolution in φ is
δφ, or equivalently that S = 1/(δφ) values of φ are usable,
it becomes impossible to tune one’s shower if |T (φeq ±
δφ) − T̂ | � χ (φeq)δφ is larger than some acceptable value.
As χ ∝ N around φeq, S ∝ N is needed; as a consequence,
the ideal temperature is not learnable beyond a number of
agents, which is for a large part predetermined by the plumbing
system.

B. Learning

The question is how to reach φeq. In this model, it is
hoped that the agents have a common interest to avoid large
fluctuations of Ti around their favorite temperature T̂i : the
shower temperature problem is a repeated coordination game
(cf. [8] and [9]) with many agents and limited information.

The dynamics of the agents are fully determined by their
possible tap settings, thereafter called strategies, and by the
trust they have in them. Each agent i has S possible strategies
φi,s with s = 1,...,S chosen in [0,1] before the game begins
and kept constant afterward (how to choose the φs is discussed
in the next section). The typical resolution in φ is 1/S; for the
same reason, the typical maximal φi over all the agents is
of order 1 − 1/S. This paper follows the road of inductive
behavior advocated by Arthur: To each possible choice φi,s

agent i attributes a score Ui,s(t) (where t denotes the time step
of the game), which describes its cumulated payoff at time t .
The agents choose probabilistically their φi,s according to a
Logit model P (φi(t) = φi,s) = exp(�Ui,s(t))/Z, where Z is a
normalization factor and � is the rate of reaction to a relative
change of Ui,s .

If one were to follow blindly the El Farol bar problem and
minority game problem literature, one would write

Ui,s(t + 1) = Ui,s(t) + φi,s[T̂i − Ti(t)].

When S > 2, such payoffs are not suitable any more, as
the agents switch between their highest and smallest φi,s ,
the intermediate ones being sometimes used only because of
fluctuations induced by the stochastic strategy choice. A payoff
allowing for a gradual increase of φi,s is necessary. Absolute
value-based payoffs are fit for this purpose2: mathematically,

Ui,s(t + 1) = Ui,s(t) − |T̂i − Ti(t)|.
This payoff, however, does not depend on φi,s . As a conse-
quence, all the strategies have the same payoff. Therefore,
one has to give more information to the agents. An agent
that has perfect information about the plumbing system, the
temperatures and fluxes of hot and cold water—for instance,
the plumber that built the whole installation—may know
precisely which temperature she would have obtained, had she
played φi,s ′ instead of her chosen action φi,si (t). Such people
are probably not very frequent amongst the general population,
however. This is why we consider an in-between case, where
the agents’ estimation of Ti,s(t) is a linear interpolation
between the temperature of the strategy currently in use [i.e.,

2Quadratic payoffs, albeit mathematically sound, are more prob-
lematic for performing numerical simulations.
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Ti(t) = Ti,si (t)] and its correct virtual value. The payoff is,
therefore,

Ui,s(t + 1) = Ui,s(t)(1 − λ)

− λ|T̂i − (1 − η)Ti(t) − ηTi,s(t)|, (4)

where η ∈ [0,1] encodes the ability of the agents to infer
the influence of φi,s on the real temperature and 0 � λ < 1
introduces an exponential decay of cumulated payoffs, with
typical score memory length ∝ 1/λ. The parameter η is related
to the difference between naive and sophisticated agents as
defined by Rustichini [10]. The first kind of agents believe
that they are faced with an external process (i.e., that they do
not contribute to �), whereas sophisticated agents are able
to compute �−i = � − φi . In this model, fully sophisticated
agents have η = 1.

IV. RESULTS

It is natural to measure two collective quantities, the
average temperature T obtained by the agents and its average
distance from ideal temperature averaged over all the agents,
denoted by 
T = T − T̂ ; this characterizes the average
temperature obtained by the agents, or how far the agents are
collectively from their goal. The individual dissatisfaction is
the distance from the ideal temperature for a given agent. One
therefore measures it with |δT | = 1

N

∑N
i=1 |Ti − T̂i |; it is a

measure of the average risk.
All the quantities reported here are measured in the

stationary state over 10 000 time steps for T̂ = 0.5, η = 1,
λ = 0.001, and, if not stated differently, N = 20, after an
equilibration time of 30/(λ�). The stationary state depends
only very weakly on λ ∈ [0.001,0.1] for all cases considered
here. On the other hand, the performance of the population is
of course improved as η increases and saturates for η > 0.5.
The role of � is discussed below.

A. Homogeneous population

Since the equilibrium is reached when all the agents tune
their shower in exactly the same way, trying first homogenous
agents (or equivalently a representative agent) makes sense a
priori. We therefore set φi,s = φs = s

S+1 , s = 1,...,S so that
the agents avoid using only hot or cold water.

Agents with homogeneous strategies have a peculiar way of
converging to their ideal temperature as S increases. Figure 2
displays the oscillations of the reached temperature with de-
creasing amplitude as a function of S. The asymmetric upward
and downward slopes are due to the asymmetry of T around
φeq, as seen in Fig. 1. Theoretically, this can easily be explained
by assuming that all the agents select the same s that gives T

as close as possible to T̂ . If s was a real number, ŝ = [1 −
1/N(1/T̂ − 1)](S + 1). The choice of the agents therefore is
limited to [ŝ] and [ŝ] + 1 where [x] is the integer part of x (one
may need to enforce [ŝ] < S when S < N). T ([ŝ]) and T ([ŝ] +
1) are alternatively closest to T̂ , therefore this actual optimal
temperature Tth (whichever T ([ŝ]) or T ([ŝ] + 1)) oscillates
around T̂ , as seen in Fig. 2. The period of the oscillations is N ,
and their amplitude decreases as 1/S. As expected, a very large
value of � replicates closely the dented nature of the value of
Tth, in which case all the agents take the same choice even close
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FIG. 2. (Color online) Temperature T reached by homogeneous
agents as a function of S for various �. (Inset) T versus (S + 1)/N ,
showing the scaling property of T , with N = 10,20,40 (asterisks,
triangles, crosses).

to the peak of Tth. Generally, smaller �s (at least to a certain
degree) lead to better average temperatures as this allows one
to play mixed strategies, and thus combine two temperatures
so as to achieve a collective average result closest to T̂ . From
that point of view, � = 50 is a better choice than � = 1000.
Hence, there exists an optimal global value of �, leading to a
mixed-strategy equilibrium. This is because taking stochastic
decisions is a way to overcome the rigid structure imposed
on the strategy space, whose inadequacy is reinforced by the
strong nonlinearity of T (φ). Too small a � is detrimental as it
allows for using φ further away from φeq; because of the shape
of T (φ), those with smaller φ are more likely to be selected.

The individual dissatisfaction |δT | unsurprisingly mirrors
|
T | since all the players are identical. Both quantities are the
same for large � as everybody plays the same fixed strategy.
|δT | also decreases as 1/S (see Fig. 5). However, the larger
�, the smaller |δT |, as each agent manages to get closer to the
optimal choice.

It is easy to obtain analytical insights by solving the
stationary state equations for Ui,s (4). For the sake of simplicity,
assuming that η = 1 and that only the two φs surrounding φeq

(i.e., [ŝ] and [ŝ] + 1), denoted by − and +, respectively, are
used, one obtains the set of equations (independent from λ

and i),

Ui,± = U± = −|T± − T̂ |, (5)

where

Ti,± = T± = 1

1 + N+φ++N−φ−
φ±

(1 − φ±)
, (6)

with N± = N · P (s = ±), where P (s = +) =
exp(�Ui,+)

exp(�Ui,+)+exp(�Ui,−) and P (s = −) = 1 − P (s = +) is a
Logit model for the two-strategy case S = 2. Figure 3 shows
the good agreement between numerical simulations and this
simple theory, especially in the convex part of the oscillations,
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FIG. 3. (Color online) Temperature T reached by homogeneous
agents as a function of S for � = 100. Continuous line, theory; circles,
numerical simulations. (Inset) Average deviation I from T̂ versus �

(same parameters); the dotted lines are for eye guidance only.

as long as � is large enough to prevent the use of more than
two strategies.

Being faced with oscillations (as a function of S or N )
of the expected value of T is problematic for homogeneous
agents since they do not know N a priori and because N may
vary with time, leading to dramatic shifts of T . In addition,
since all the agents select the same φ for large �, not a single
agent is ever likely to reach a temperature close to T̂ . The
agents do not know whether on average they will overheat
or chill. A way to measure this uncertainty is to measure the
average |
T | over S in numerical simulations, for instance,
with I = ∑5N

S=N |
T |/(4N ).3 The inset of Fig. 3 reports that
the minimum of I is at � � 42 for the chosen parameters,
which shows the existence of an optimal learning rate. Since
the individual satisfaction is maximal in the limit � → ∞ (see
above), there is no minimum of a similar measure for |δT |.

B. Heterogeneous populations

There are many ways for agents to be heterogeneous. One
could imagine to vary S, �, η, λ, or T̂ amongst the agents.
Here we focus on strategy heterogeneity (i.e., the agents
face showers with different tap settings): The strategy space
of agent i is no longer 1

S+1 , . . . , S
S+1 , but now each agent

has an individual strategy space where each strategy φi,s ,
s = 1, . . . ,S, is assigned a random number from the uniform
distribution on [0,1] before the simulation.

Intuitively, the effect of heterogeneity is to break the
structural rigidity of the strategy set of the representative agent.

3Simulations show that the average temperature is in fact a function
of (S + 1)/N (cf. Fig. 2) (instead of a function of S and N ), that is,
Fig. 3 would look the same if S was fixed and N varied. Hence we
may take the average over S instead of over N .

001011
S

0.001

0.01

0.1

1

|Δ
T

|

x
-1

FIG. 4. (Color online) Absolute temperature deviation |
T |
reached by homogeneous (squares) and heterogeneous (circles)
agents as a function of S for � = 100. Average over 500 samples
for heterogeneous agents.

Figure 4 reports that |
T | does not oscillate, but converges
(from below) faster than S−1 to zero. Homogeneous agents
might achieve a better average temperature depending on N

and S, but on the whole clearly perform collectively worse.
This is simply because most likely homogeneous agents have
a φ whose difference with φeq is smaller than 1/(S + 1)
(I � 0.043 versus 0.019). In addition, heterogeneous agents
can expect to have a smaller than ideal temperature, but on
average predictably smaller, with no strong dependence on S.
Thus, the expectation over the temperature of the agents is
much improved by heterogeneity.

However, looking at the average absolute individual de-
viation from T̂ reveals that the uncertainty brought by
heterogeneity is considerably worse on average. Plotting |δT |
for both types of agents shows that |δT | is always smaller
for homogeneous agents (Fig. 5). This means that being
heterogeneous is more risky. Which agent (or equivalently,
shower) performs better depends not only on N , but also on
the tuning settings of all the agents.

Whereas there are known methods to tackle heterogeneous
agents-based models [4,5], the nonlinearity of the temperature
in the payoff structure is problematic: Taking averages over the
heterogeneity of agents’ strategies in generating functionals is
possible but yields what seemed to us untractable expressions
in the case of uniform distribution and is simply not possible
for other families of distributions.

C. Homegeneous versus heterogeneous

Heterogeneity may be tempting as it suppresses the
systematic abrupt oscillations experienced by homogeneous
populations when N changes and is collectively better on
average. However, heterogeneous showers are potentially
more risky. In other words, the agents must consider the trade-
off between the temptation of an expected better temperature
and a potentially larger deviation.
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FIG. 5. (Color online) Individual dissatisfaction |δT | reached
by homogeneous (open squares) and heterogeneous agents (+) as
a function of S for � = 1000. Average over 500 samples for
heterogeneous agents. Dashed line, theoretical predictions.

The situation discussed above is only global. Does it pay
to be heterogeneous for a single agent? An answer comes
from a system consisting of N − 1 homogeneous agents as
defined above and a single random one with random φi,ss.
The fraction f of the runs at fixed S that give a better δTi to
the homogeneous showers is reported in Fig. 6; this quantity
indicates that the majority of heterogeneous agents are not
worse off for about a quarter of the values of S. This finding
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FIG. 6. (Color online) Fraction of the runs for which a single
heterogeneous agent is worse off than the other N − 1 homogeneous
agents; � = 1000 (crosses) and � = 30 (circles). Average over 2000
samples.
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FIG. 7. (Color online) Fraction of the agents using one of their

homogeneous strategies as a function of η; � = 100. Average over
2000 samples.

is not in contradiction with the fact that the average personal
dissatisfaction of heterogeneous agents is always larger than
that of homogeneous agents: |δT | is much influenced by large
deviations contributed by a minority of agents because of large
temperature sensitivity to small deviations in φ. Finally, the
advantage of the homogeneous population increases with �,
as a large learning rate helps only using one’s best strategy.

Let us finally give to all agents the possibility of using either
strategies from the homogeneous set, or strategies drawn at
random. A simple way to achieve this is to give the agents 2S

strategies, S of them defined homogeneously, and S of them
drawn at random before the game begins. We shall then be
interested in fh, the average fraction of players using strategies
from the homogeneous set. It turns out that when η = 1, this
fraction fluctuates as a function of S, for instance, but remains
roughly constant. A more interesting behavior comes from
varying η (see Fig. 7). When η = 0, the population is not
expected to show any preference since all the score updates
are the same for a given agent. Then, as η is increased, the dis-
crimination power of the agents improves. Quite peculiarly, a
peak of advantageous homogeneity arises around η � 0.3. The
saturation of fh � 0.42 for η > 0.5 shows that in that case most
agents stick to a heteregeneous strategy. Still, homogeneity and
heterogeneity coexist. This comes from the statistical proper-
ties of distributions of random strategies around φeq together
with the very strong nonlinearity of T̂ as a function of φ.

V. DISCUSSION AND CONCLUSIONS

As a final note, minimizing |
T | is equivalent to solving
a number partitioning problem [11] in which one splits a set
of N numbers ai > 0 into two subsets, so that the sums of
the numbers in the subsets are as close as possible, which
amounts to minimizing C = |∑i siai | where si = ±1; it is an
NP-complete problem. In other words, the only way to find the

ht
tp

://
do

c.
re

ro
.c

h



( )

absolute minimum of C is to sample all the 2N configurations.
Let us consider an even simpler version of the shower
temperature problem that makes more explicit its NP-complete
nature. Each agent i is given ai and plays φeq + siai , si = ±1.
Neglecting the self-impact on the resulting temperature and
the nonlinearity of the temperature response, the analogy
between the shower temperature problem and the number
partitioning problem is straightforward. Methods borrowed
from statistical mechanics show that the average optimal C

scales as 2−N , which requires one to enumerate the 2N possible
configurations [12]. This is much better than what the agents
achieve; the reason for this discrepancy is that the agents do
not reach a stationary state in O(exp N ) time steps, hence,
they cannot sample all the possible configurations. Another
reason is that the optimal solution may require some agents to

use a strategy that would yield a worse temperature than their
optimal choice.

The shower temperature problem puts forward a new kind
of situation where heterogeneity is bound to emerge because of
real-world constraints. It shows the subtle trade-offs between
a homogeneous population with equally spaced actions and
a fully random one. The reason why heterogeneity emerges
is because some agents favored by randomness will choose
random strategies and stick to them.

This simple model has broader implications than shower
systems. It shows indeed how collective dynamical control of
some global quantity by simple learning devices made up of
random, possibly partly defective, components can be robust
to single failures. How generic this result is will be investigated
in a separate work.
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