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Structures of compounds used 

Chart S1. Chemical structures of the complexes studied. The Os-trip complex is 

functionalized for the attachment to metal surfaces with three legs terminated with 

thioacetate groups. For control compounds Os-ph and Os-bpy were used. 

 
 

           Os-trip              Os-ph Os-bpy 
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 Synthesis of the citrate stabilized platinum nano-particles  

 

K2PtCl4 (47% Nominal content, 99.9% purity) was purchased from H. Drijfhout & Zoon’s 

Edelmetaalbedrijven B.V. The rest of the chemicals were purchased from commercial sources 

and used without purification.  

The platinum source is a platinum salt (K2PtCl4) in an aged aqueous solution. Aging of the 

solutions has proven to favor the reduction process because of the exchange of the Cl- ligands 

for H2O ligands. Platinum (II) partially coordinated to water is more easily transformed to 

platinum (0).1 As reducing and capping agent sodium citrate was chosen. The obtained 

colloids are in an aqueous phase and show a narrow size distribution.2  

The reduction process took place by mixing the two reaction components (aged platinum salt 

and citrate) and heating the obtained aqueous solution to a gentle reflux while stirring. The 

solution’s color changed from orange to dark brown as soon as reflux was reached but the 

beginning of colloid formation can be observed already around 70ºC. The reaction was 

allowed to take place for 3h to assure the complete reduction of platinum ions present in the 

solution. Longer refluxing periods did not show an influence on the stability of the colloids, 

no precipitation of platinum black could be observed.  

After the reaction, the nano-particles were centrifuged in order to obtain a separation from the 

aqueous medium. To induce precipitation and favor the separation different organic solvents 

were added (MeCN, EtOH, MeOH, propanol or THF). Centrifugation up to 15000 rpm did 

not induce the desired precipitation indicating a very small particle size and high stability. 

Addition of MeCN gave partial precipitation of the particles but only in ratios of 

MeCN:particle solution 7:1 in volume. At this concentration of acetonitrile sodium citrate 

showed no apparent solubility making a purification process with this solvent mixture useless. 

The purification of the colloid to eliminate excess stabilizing molecule present was thus not 

further pursued. However, any remains of citrate, if any, should be “transparent” to 

spectroscopy and should not influence possible measurements. 

Procedure 

To an aged (7 d) aqueous solution of K2PtCl4 a sodium citrate solution in water was added to 

a final concentration of platinum salt of 4 mM and citrate 1.7 mM. Under efficient stirring the 

reaction mixture was heated to reflux. The reaction color changed from red-orange to brown 

once the oil bath reached 70oC indicating the start of the formation of platinum colloid. The 

reaction was allowed to continue for 3 h during which the mixture turned dark brown and 

then allowed to cool down overnight while stirring under nitrogen. The nano-particles were 

characterized with IR and HR-TEM and used without further purification. The particles could 

be isolated in solid state by removal of the solvent in vacuo and re-suspended without 

apparent decomposition. 
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Formation of the tripod-nano-particle assemblies 

 

To 20 ml of a solution of the osmium tripodal complex in acetonitrile  

(concentration ~ 5 × 10-3 M) another 5 ml of aqueous solution of nano-particles stabilized 

with citrate was added (approximated concentration 1 mg/ml). The mixture was ultra-

sonicated for 1 h and then allowed to stir for 24 h during which a brown precipitate formed.3 

The precipitate was collected by centrifugation. The precipitate was washed until no osmium 

tripod could be observed in UV- Vis spectrum of the washings (2x5ml). The solid was then 

dried under high vacuum overnight. The obtained sample was powdered and re-suspended in 

dioxane or ethylene glycol treating the mixtures first in an ultrasound bath and then stirring 

for 24 h under inert gas atmosphere. 
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UV-Vis and luminescence spectra 

 

Figure S1. UV-Vis absorption spectra of the compounds Os-trip and Os-bpy used in this 
study. The solvents was water:acetonitrile mixtures 10:1. See table S1 below. 
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Figure S2. Normalized steady state luminescence spectra of the complex used in this study. 

Excitation was at 480 nm in water:acetonitrile mixtures 10:1. See table S1 below. 
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Figure S3. Normalized low temperature emission spectra of complexes Osph, Osbpy and 

Ostrip in rigid butyronitrile matrix at 77K. Excitation at 500 nm. 
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Compound εε  (l,nm)/  M-1 
cm-1 

Emission 
λλmax 

Luminescence 
quantum yield 

(air) 

Luminescence 
quantum yield 

(Ar) 

Os-trip 
290 (77000) 
495 (12500) 
630 (4100) 

770 0.004 0.006 

Os-ph 
290 (89000) 
490 (17500) 
630 (6500) 

740 0.003 0.004 

Os-bpy 

244 (26000) 
290 (86500) 
 480 (12600) 
 600 (3400) 

740 0.00354 0.0054 

Table S1. The quantum yields were measured following the procedure of the optically 

dilute method with excitation at 480 nm. The quantum yields are in the region of the well 

known corresponding reference compound Os-bpy, the quantum yield values for this 

compound are known from the literature. 
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IR spectroscopy of MNP attachment 
 

Figure S4. Infrared spectra of the tripodal osmium complex Os-trip, the platinum 

nanoparticles stabilized with citrate and the nano-composite in which the complex is 

attached to the surface of the nano-particles and the citrate has been displaced. 
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The assignment of the bands was done according to general infrared spectroscopy tables.5 The 

Os-trip complex was anchored in acetonitrile solution by mixing with citrate stabilized 

nanoparticle solution and stirred overnight. After purification the osmium coated particles 

were isolated as a brown solid and analyzed. Our tripodal complex, Os-trip, presents as 

attaching anchors thioacetate groups. The carbonyl bond of the thioacetate group has a 

characteristic absorption between 1675 and 1720 cm-1. In the case of the osmium tripod the 

band corresponding to this bond appears at 1690 cm-1 with medium intensity. In the 

assembled nano-composite system this band is not visible since the structure of the 

vibrational band changes from two adjacent peaks to only one broad vibration (arrow in 

figure S4). This could also indicate that during the attachment of the thioacetate to the rigid 

metal surface a hydrolyzed species is formed resulting in a platinum-sulfur bond. Another 

striking difference is the band at 850 cm-1 for Os-trip. This band can be assigned to vibrations 

of the hydrogens in para-substituted benzene rings. After attachment to the particles this band 

becomes weak showing that in the assembled system distortions are introduced into the tripod 

structure. A similar very strong band is also observed in the IR spectrum of 

diphenylacetylene.6 
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Emission spectroscopy of MNP attachment 

Figure S5. Steady state luminescence quenching of the Ostrip complex by attachment to 

platinum MNP. The luminescence was monitored over a period of 2.5 hours. [Ostrip] = 

5x10-5M; excitation at 495 nm, A(495) = 0.56. Argon saturated (degassed) conditions. The 

spectra are uncorrected for the detector response in the infrared. 
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The luminescence of the Os-trip complex was measured in acetonitrile solution. Addition of 

the platinum particles induced an immediate reduction of the luminescent signal. The 

luminescence was compared to an iso-absorptive solution in the exact same concentration of 

the complex without particles as comparative standard. The luminescence of the Os-trip was 

followed over a period of 2.5 hours with a total decrease of the original luminescence of 52% 

at the end of the experiment (figure S5 indicated by arrow). In a control experiment a solution 

of Os-bpy with the same absorbance at excitation as in the previous experiment was prepared 

and platinum MNP were added in the exact same amount as before. Only a minor reduction 

(5 %) of the emission intensity was observed. 
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Nanosecond transient absorption 

 

Figure S6 shows the nanosecond transient absorption spectrum of the tripod compound, Os-

bpy and the compound Os-ph after excitation at 500 nm. The compound with the 

phenanthroline like ligand presents a longer lived transient signal than the reference 

compound confirming that the tripod base is influencing to some extent the excited state of 

the molecule.  
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Figure S6. Nanosecond transient absorption spectrum of Os-bpy (upper spectrum and 

trace) and Os-ph (middle spectrum and trace) and Os-trip (lower spectrum) in 

acetonitrile:water mixture 8:1 solution after 500 nm laser excitation. The increment per 

frame is 15 ns. A kinetic trace is also shown (right) showing the repopulation of the 

bleached ground state within the given time-window. Lifetimes shown in nanoseconds. 

 

The lifetime for the excited state observed, is in good agreement with the time resolved 

luminescence measurements (not shown here), indicating that the state responsible for the 

emission of the excited complex is the same state responsible for the absorption spectrum 
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shown here. The shape of the transient signal also shows some differences for the two 

complexes when compared to the parent compound.  

More detailed information about the electronic nature of the lowest excited state can be 

obtained from a more elaborate interpretation of the time-resolved transient absorption 

spectroscopy. Upon excitation of the osmium tris-bipyridine complexes, the lowest excited 

state can be described as MLCT. A negative charge is formally localized on the ligand with 

the lowest reduction potential and the metal center is formally oxidized.  

In a transient spectrum this can be visualized by the appearance of the strong bleaching 

between 400 and 550 nm corresponding to the 1MLCT absorption band in the UV-Vis 

spectrum. In this case also the transient signal corresponding to the 3MLCT absorption can be 

seen at 630 nm, a characteristic feature for this type of osmium compounds because of the 

strong spin-orbit coupling due to the presence of the heavy osmium atom. The formally 

reduced ligand, for example the bipyridine radical anion or bpy.- of the Os-bpy complex, has 

positive absorption bands that appear below 400 nm and above 700 nm. The absorption of 

this radical is rather low in intensity when compared to analogous ruthenium complexes. This 

difference can be explained by the presence of the 3MLCT bleach in the same region. 

In general the negative charge of the MLCT state will localize on the ligand with the lowest 

reduction potential because it can more easily take up the electron. If in fact the excited state 

of the tripod molecules studied here is on the more substituted ligand it is expected to result in 

different spectra for these complexes when compared to the parent complex Os-bpy. 

The differences could be due to the fact that in the Os-bpy the metal ion is coordinated to 3 

identical ligands while for the other complexes we are in the presence of slightly different 

chelating units. Therefore we expect for the reference complex only one possible MLCT 

dOs πbpy transition while for the heteroleptic complexes 2 possible MLCT transitions are 

possible at slightly different energies: dOs πbpy or dOs πphen. In particular the transition to the 

bpy in the tripod complex should occur at lower energy due to the more electron rich 

character of the osmium coordinated to the more donating substituted phenanthroline. 
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Femto second transient absorption spectroscopy 

 

In order to have more insight into the localization of the excited state in these molecules we 

decided to measure sub-picosecond transient absorption spectra. In this faster time-scale the 

information gathered supports what we observed in the nanosecond transient. The spectra can 

be seen in S7. It is clear that the differences are not significant enough to indicate that parent 

compound and derived complexes have the excited MLCT state localized in a different 

ligand. 

In our case the similarities indicate that the excited state of these molecules comes from the 

formal transfer of one electron from the osmium center to one of the bipyridines. 
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Figure S7. Sub-picosecond transient absorption spectra of the complexes Os-bpy (upper 

spectrum), Os-ph (lower left) and Os-trip (lower right) after FWHM 130 fs laser pulse 

excitation at 480 nm. The laser pulse can also be seen in the spectra. The solvent used was 

water:acetonitrile 1:1. 
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Trapping of solvated electron with MV  

 
In attempts to trap the solvated electron from the solution with an electron scavenger, we 

employed a viologen. In the presence of such an electron trap we expected the solvated 

electron to preferably reduce this compound instead of remaining in the solution. Viologens 

are known to be good electron acceptors, forming a very stable positively charged radical. 

This radical has a characteristic absorption spectrum in the UV-Vis that can be detected with 

transient techniques.  

Excitation of a solution containing Os-trip and methyl viologen lead to the formation of a 

luminescent charge transfer complex between the two components, introducing a 

complication in the study of these type of systems. The formation of this luminescent state 

however, sets without a doubt a very interesting starting point for further research in this 

direction. 
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Estimation of the quantum yield 

 

The quantum yield (number of electrons produced/number of photons absorbed) is estimated 

by using the maximum ΔA value of the transient in ethylene glycol (ΔA = 0.08 at 570 nm), 

the molar absorption coefficient of the solvated electron in ethylene glycol (ε(570 nm) = 9000 M-

1cm-1, see reference 7) as well as the laser power used (5 mJ per pulse, 500 nm photons). 

 

ΔA = ε × c × l  l = 1 cm, so: 

c = ΔA/ε = 0.08/9000 =  8.89 × 10-6 mol/L  1 L = 1 ×  106 mm3 

So the number of electrons produced in the excited volume (5 × 1 × 10 mm3 = 50 mm3 ) is: 

c × NA × V = 8.89 × 10-6 × 6.022 × 1023 × 50 × 10-6 = 2.67 × 1014 electrons  

 

The number of photons in the 5 mJ per pulse 500 nm (500 nm = 3.97296 × 10-19 J) 
photons is: 

5 × 10-3/3.97296 × 10-19 = 1.258 × 1016 photons 
of which 50 % are estimated to be absorbed. 
 
this gives for the quantum yield: 
 
Φ = (number of electrons produced)/(number of photons absorbed) 
2.67 × 1014 /(0.5 × 1.258 × 1016) = 0.0425 

which correlates to ~ 4 % 
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Experimental Setups 

 

Steady State Absorption and Emission Measurements 

 

Electronic absorption spectra were recorded in a quartz cuvette (1 cm or 0.2 cm, Hellma) on 

Hewlett-Packard 8543 diode array spectrometer (range 190 nm-1100 nm). Steady state 

fluorescence spectra were recorded using a Spex 1681 fluorimeter, equipped with a Xe arc 

light source, a Hamamatsu R928 photomultiplier tube detector and double excitation and 

emission monochromator. Emission spectra were corrected for source intensity and detector 

response by standard correction curves, unless otherwise noted. Emission quantum yields8 are 

measured in optically dilute solutions, using the indicated reference solution, according to the 

following: 

 

Φu= [(Ar Iu nu
2) / (Au Ir nr

2)]Φr 

 

where u and r are the unknown and the reference respectively, Φ is the luminescence quantum 

yield, A is the optical absorbance at the excitation wavelength (≈ 0.1), I is the integrated 

emission intensity and n is the refractive index of the solvents. 

 

Nanosecond transient absorption spectroscopy 

 

Nanosecond transient absorption spectra were obtained by irradiating the samples with 2 ns 

pulses (fwhm) of a continuously tunable (420-710 nm) Coherent Infinity XPO laser. The 

output power of the laser was typically less than 5 mJ/pulse at a repetition rate of 10 Hz. 

Samples in a 1 cm quartz cuvette with ca. 0.8 optical density at the excitation wavelength. 

The probe light from a low-pressure, high-power EG&G FX-504 Xe lamp passed through the 

sample cell and was dispersed by an Acton Spectra-Pro-150 spectrograph, equipped with 150 

g/mm or 600 g/mm grating and a tunable slit (1-500 μm) resulting in 6 or 1.2 nm maximum 

resolution, respectively. The data collection system consisted of a gated intensified CDD 

detector (Princeton Instruments ICCD-576EMG/RB), a programmable pulse generator (PG-

200), and an EG&G Princeton Applied Research Model 9650 digital delay generator. With 

OMA-4 setup I and I0 values are measured simultaneously, using a double kernel 200 μm 

optical fiber. 
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Sub-picosecond time scale transient absorption spectroscopy 

 

The laser system is based on a Spectra Physics Hurricane Ti-sapphire regenerative amplifier 

system. The optical bench assembly of the Hurricane includes a seeding pump laser (Mai 

Tai), a pulse stretcher, a Ti-sapphire regenerative amplifier, a Q-switched pump laser 

(Evolution) and a pulse compressor. The output power of the laser is typically 1 mJ/pulse 

(130 fs fwhm) at a repetition rate of 1 kHz. The pump probe setup employed a full spectrum 

setup based on two optical parametric amplifiers (Spectra-Physics OPA 800) as a pump 

(depending on the excitation wavelength) and a residual fundamental light (150 μJ/pulse) 

from the pump OPA was used for the generation of white light, which was detected with 

CCD spectrograph. The OPA was used to generate excitation pulses from 280 – 600 nm 

(fourth harmonic signal of the OPA or idler). The white light generation was accomplished by 

focusing the fundamental (800 nm) into a stirred water cell equipped with barium bisfluoride 

or sapphire windows. The pump light was passed over a delay line (Physik Instrumente, M-

531DD) that provided an experimental time window of 1.8 or 3.6 ns with the maxima 

resolution of 0.6 fs/step. The energy of the probe pulses was ca. 5 x 10-3 mJ/pulse. The angle 

between the pump and the probe beam was typically 7 - 10°. Samples were prepared in quartz 

cuvette (l = 0.2 cm) to have an optical density of ca. 0.8 at the excitation wavelength. For the 

white light/CCD setup, the probe beam was coupled into a 400 μm optical fiber after passing 

through the sample, and detected by a CDD spectrometer (Ocean Optics, PC2000). The 

chopper (Roffin Ltd., f = 10 – 20 Hz), place in the excited state spectra were obtained by DA 

= log (I / I0). Typically, 2000 excitation pulses were averaged to obtain the transient at a 

particular time. Due to the lenses, a chirp of ca. 1 ps is observed between 460 – 650 nm. 

 

High Resolution Transmission Electron Microscopy (HR-TEM)(TU Delft) 

 

HR-TEM, Cross sectional TEM electron micrographs have been taken with a Philips CM30T, 

and a CM300UT-FEG, both operating at 300 kV. The sample was prepared by dissolving an 

amount of nanoparticles in water (typically 1 mg/ml) and ultra-sonicating the suspension for 

20 min. The brown solution was then drop-cast on a copper grid covered with carbon foil and 

allowed to air dry before measurement. In some cases a co-solvent was used to improve 

solubility such as methanol or acetonitrile.  

 

Infrared spectroscopy 

 

IR spectra were recorded on a Bruker Vertex 70 FTIR spectrometer. Samples were prepared 

in KBr pellets. 
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