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A superparamagnetic nanocomposite obtained by dispersing superparamagnetic magnetite nanopar-

ticles in the epoxy SU-8 is used to fabricate microstructures by photolithography. The dispersion of

the nanoparticles and the level of agglomerations are analyzed by optical microscopy, TEM (transmis-

sion electron microscope), SAXS (small-angle X-ray scattering), XDC (X-ray disc centrifuge) and XRD

(X-ray diffraction). Two different phosphate-based dispersing agents are compared. In order to obtain

a high-quality nanocomposite, the influence of particle concentration 1–10vol.% (4–32wt.%) on com-

posite fabrication steps such as spin coating and UV exposure are systematically analyzed. Features with

narrowwidths (downto1.3�m)areobtained for compositeswith5vol.%particle concentration.Mechan-

ical, magnetic and wetting properties of the nanocomposites are characterized. These nanocomposites

exhibit superparamagnetic properties with a saturation magnetization up to 27.9 kAm−1 for10vol.%. All
nanocomposites show no differences in surface polarity with respect to pure SU-8, and exhibit a mod-

erate hydrophobic behavior (advancing dynamic contact angles approximately 81◦). Microcantilevers

with particle concentrations of 0–5vol.% were successfully fabricated and were used to determine the

dynamic Young’s modulus of the composite. A slight increase of the Young’s modulus with increased

particle concentration from 4.1GPa (pure SU-8) up to 5.1GPa (for 5 vol.%) was observed.

1. Introduction

Advances inmaterial integrationandmicroandnano fabrication
technologies have enabled newdirections of research and develop-
ment for BioMEMS and BioNEMS devices [1]. The performance of a
device interacting with biological systems requires a proper selec-
tion of materials in terms of their physiochemical properties. For
example, chemical stability, biocompatibility, and ease of biofunc-
tionalization of the constituent materials are of importance.

Polymer composite materials have been highly successful in
achieving different physical and chemical properties [2], as the
combination of inorganic particles and polymer matrices can
expand desirable material properties for new sensors, actuators
and other devices [3,4]. The dispersion of superparamagnetic
magnetite nanoparticles in the epoxy SU-8 creates the possibil-
ity of manufacturing photopatternable magnetic nanocomposites
(Fig. 1). Magnetic microstructures for remote actuation can be
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fabricated by conventional spin coating and photolithography
techniques. These microstructures are potential candidates for
interfacing biological systems.

Photosensitive polymers have been modified and improved
by adding an inorganic material like silica nanoparticles [5,6] to
change the refractive index of the material or silver nanoparti-
cles to increase conductivity [7]. Using a photosensitive polymer
in combination with magnetic particles has been reported for the
fabricationofmicrostructureswith featurewidths larger than5�m
by conventional photolithography using ferromagnetic particles
[8,9]. However, when further device miniaturization is desired
the processing of composite materials that contain particles dis-
persed in a matrix becomes a challenge. Distribution of particles
must be homogeneous within the matrix and agglomerates must
be avoided in order to maintain homogenous material proper-
ties (e.g., magnetic, electrical, mechanical properties) across the
microdevice and within the process batch. Characterization of
particle dispersion in a composite used for microstructures is
crucial. Several factors influence the agglomeration of particles:
interatomic and intermolecular attractive forces favor the forma-
tion of agglomerates, and this tendency is even more prominent
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Fig. 1. Superparamagnetic magnetite nanoparticles containing a dispersing agent with a phosphate end group are mixed with the UV-sensitive epoxy SU-8 to obtain a

magnetic composite. With this magnetic photocurable composite, microstructures have been fabricated using conventional microfabrication processes such as spincoating

and photolithography.

when the particles exhibit magnetic properties. Magnetic particles
that possess remanent magnetization strongly agglomerate due to
attractive magnetic forces. This factor can be minimized by using
superparamagnetic nanoparticles. Superparamagnetism is a well-
knownphenomenon exhibited by ferrimagnetic and ferromagnetic
single-domain nanoparticles in which no hysteresis and magnetic
remanence exists. However, due to their higher surface area to
volume ratio, smaller particles tend to form more agglomerates
than larger ones [10]. In order to minimize particle agglomeration,
different approaches have been proposed, such as functionalizing
the particles’ surface with emulsifiers or particles’ encapsulation
with polymeric or ceramic coatings [11,12]. Superparamagnetic
maghemite nanoparticles have been incorporated in SU-8 with
minimal aggregation using oleic acid as a surfactant [13]. How-
ever, their particle concentration is low (0.01–1wt.%), and for the
actuation of magnetic composite microstructures a high particle
concentration in the polymer is crucial to obtain sufficient forces.
In our work, a dispersing agent consisting of a copolymer with a
phosphate group is used to reduce agglomerations.

The polymer matrix SU-8 is an epoxy-based negative pho-
toresist capable of being fabricated into high aspect ratio
microstructures [14]. SU-8 exhibits excellent chemical stability
and excellent mechanical properties [14]. SU-8 is not considered
fully biocompatible according to ISO 10993, however, investiga-
tions show that toxicity derived from its degradation products is
very low [15]. Furthermore, surface treatments exist that enhance
cell proliferation on SU-8 [16]. Hence, this polymer is considered
suitable for a large number of BioMEMS applications, such as cell
culturing and biosensors [17,18].

SU-8 has other favorable properties such as a high thermal sta-
bility Tg > 200 ◦C [19]. The eight binding sites of the SU-8 monomer
result in a highly cross-linked polymer for the fabrication of stable
particle-containing microstructures. The Young’s Modulus of SU-8
(4.02GPa) [19] is forty times smaller than that of silicon (∼166GPa)
[20], resulting in a higher deflection of microstructures actuated
by the same applied force, though, filler material in photocurable
polymers can strongly influence fabrication parameters.

In this work, an exhaustive characterization of the composite
material and its processability is carried out providing relevant
information for the further development of this kind of material.
Since agglomeration is one of the most significant issues to be
addressed in the fabrication of nanocomposites, a focus on parti-
cle agglomeration as a function of particle concentration from 1 to

10vol.% (4–32wt.%) is investigated. Moreover, the influence of two
different dispersing agents on the nanoparticles agglomerations is
also shown. Despite the existence of some works dealing with the
fabrication of composites of photopatternable matrices containing
nanoparticles [21], there is scarce literature regarding the disper-
sion of nanoparticles inside such matrices [22]. Relevant physical
properties of the composite such as magnetism and mechanical
stiffness are also characterized as a function of particle concentra-
tion since such properties play an important role for the use of the
material in its actuation. Additionally, the composites’ feature res-
olution and its surface polarity is analyzed since the wettability of
the surface will determine the further material functionalization.
While the details of the microstructure fabrication process and the
remote magnetic actuation of the composite cantilevers have been
previously investigated [23], here, we investigate further the influ-
ence of particle concentration on the fabrication process. Due to
UV-absorption of the particles in the composite, the exposure dose
of the composite must be adjusted for each particle concentration.
Furthermore, ahigherparticle concentration increases theviscosity
of the initial non-cross-linked composite and must be considered
for the spin-coating process.

2. Experimental

2.1. Nanoparticle dispersion (magnetic suspension)

The nanoparticle dispersion is developed in cooperation with
Chemicell GmbH (Berlin, Germany). Awet-chemical synthesis from
iron-II/III-salt dissolution is used to fabricate the magnetite parti-
cles. The particles arewashedwithH2O, coatedwith the dispersion
agent and transferred into theorganic solvent�-butyrolacton (GBL)
to form a stable dispersion. GBL is used, because it is a solvent
for SU-8. A stable dispersion (even after 10months) of up to
280mgml−1 is obtained. Such a high concentration in the dis-
persion is crucial for the fabrication of composites with particle
concentrations up to 10vol.%.

2.2. Composite and microstructure fabrication

After 10min sonication in a conventional ultrasonic-bath, the
nanoparticle dispersion is mixed (ratio 2:3) with the dissolved
SU-8 (with a low solvent content, 48% GBL) fromMicroChem Corp.
(Newton, USA). Additionally, the composite is mixed for 10min in
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a planetary mixer (dual asymmetric centrifugal mixer, DAC 150
FVZ, Hausschild) with an initial 2min speed ramp (0–3000 rpm).
The composite is treated by ultrasonic sound (Vibracell VCX 600
Sonics &Materials Inc.) for 20min and then spin-coated onto a sup-
port glass wafer. The microfabrication process has been previously
detailed [23].

2.3. TEM images

The particle diameter and the agglomerate diameter are deter-
mined from several TEM images (Philips CM12 with a tungsten
filament at 100kV) using the software ImageJ 1.42q. Grinding and
dimple-grinding (Gatan 656) are used to prepare thin film slices
of the composite. With the precision ion polishing system (PIPS)
Gatan 691 a hole is etched in the sample by two focused argon ion
beams. At the edge of the hole the probe is thin enough for TEM
observation.

2.4. SAXS measurements

The SAXS equipment consists of a S-MAX3000 instrument from
Rigaku Innovative Technologies (Auburn Hills, MI, USA). The radia-
tion is produced by a high-intensity micro-focus sealed tube X-ray
generator (Rigaku MicroMax-002+) with a copper anode (wave-
length 0.154nm). A pair of multilayer reflectors is used to produce
amonochromatic beamwhich is collimated by a three pinhole sys-
tem. In the fully evacuated camera the sample is placedat adistance
of 1525mm from the detector. The diameter of the incident X-ray
beam at the sample position is approximately 0.8mm. The sample
absorption is measured by a photodiode which is mounted on the
beam-stop. The scattered intensity is detected by a fully integrated
two-dimensional multi-wire proportional counter (Rigaku Triton)
which makes highly sensitive measurements from isotropic and
anisotropic materials possible. The diameter of the sensitive area
of thedetector is 200mm. The range of accessible scattering vectors
q which is defined as

q =
(
4�

�

)
sin

(
�

2

)
(1)

with� being theX-raywavelength and � being the scattering angle,
is 0.07<q<4.5nm−1. For themodelfitting approach to calculate the
bi-lognormal distribution of homogeneous spheres program SASfit
(by Joachim Kohlbrecher and Ingo Bressler, Paul Scherrer Institute,
CH) was used.

2.4.1. XRD measurements
XRD measurements are taken from particles, which were dried

from the initial particle dispersion in a vacuum oven under N2

(100 ◦C at 20mbar) to avoid changes in the structure of the par-
ticles. XRD patterns are recorded from three probes with a Bruker
D8 Advance diffractometer (40kV, 40mA, CuK�) at 2� =10–80◦. By
the fundamental parameter approachwith the Rietveld refinement
[24], crystallite sizes of Fe3O4 (ICSD 028664) are obtained using
TOPAS 3.0 (Bruker).

2.5. XDC measurements

The hydrodynamic diameter of the initial particle dispersion
is measured with a Brookhaven Instrument X-ray disc centrifuge
(3000 rpm,300min, 22 ◦C). 1.2mlparticledispersion isdilutedwith
23.8ml GBL and sonicated in a conventional ultrasonic-bath for
10min. To ensure solvent compatibility a polycarbonathomolite
H-911 disc is used for the XDC measurements.

2.6. Magnetic measurements

The magnetic characteristics of the nanoparticles and compos-
ite structures are obtained by measuring their M–H loops. The
magnetic characterization of the nanoparticles was done using a
vibrating samplemagnetometer (VSM) (Micromag 3900, Princeton
Measurement Corporation). The nanoparticles are weighed using a
microbalance prior to the measurement. The composite structures
are measured using an alternating gradient magnetometer (AGM)
(Micromag 2900, Princeton Measurement Corporation) due to its
higher sensitivity. Films of composite are prepared with known
dimensions for the magnetic measurements.

2.6.1. Viscosity and layer thickness measurements
Aprototypeof a rod-type sensor for viscositymeasurementAST-

100 from Brookfield (Middleboro, MA, USA), developed at Institute
of Mechanical Systems, ETH Zurich is used. Due to the low sample
volume the accuracy of the measurements are ± 20%. The layer
thicknesses of the different spin-coated and patterned composites
are determined from 4 to 7 measurements, using a profilometer
Tencor P10 from KLA-Tencor Corporation (San Jose, USA).

2.7. UV-transmittance measurement and surface investigation

The spectra of the transmittance of composite layers with dif-
ferent particle concentrations (1, 2, 3, 5 and 10vol.%) have been
measured. The measured thicknesses of the samples are shown in
Table 2. To analyze the light transmittance with a UV/VIS spec-
trometer (Cary 500, Varian) exposed composite areas have been
released from the substrate and placed on fused silica glass sup-
ports. Fused silica has a transmittance of 90% above 200nm and,
therefore, well suitable as a substrate for transmittance measure-
ments. The wavelength dependant absorption of the fused silica
substrate was eliminated by a background measurement. The top
and bottom surfaces of microcantilevers with 5 and 10vol.% are
observed by secondary electronmicroscope (SEM) (FEI Quanta 200
FEG).

2.8. Pattern transfer in the composite

The widths of the fabricated structures and mask patterns have
been measured on three different probes using a Leica DM4000
optical microscope calibrated with a 70�m circular standard sam-
ple.

2.9. Contact angle measurements

Dynamic contact angle measurements were performed on
a Krüss DSA100 (Krüss, Germany). For dynamic contact angle
(advancing (�a) and receding (�r)) measurements the drop vol-
ume was increased and decreased with a speed of 15�Lmin−1.
This leads to low-rate contact angle measurements with advanc-
ing contact-line speeds below 0.012mms−1. Receding contact-line
speeds are slightly higher on strongly pinning surfaces at around
0.03mms−1. For the advancing drop, one movie with 100 frames
and, for the receding drop, one movie with 250 frames was
recorded.

2.9.1. Dynamic Young’s modulus
The cantilevers are actuated by thermal noise under vacuum

pressure (4.6−22×10−3 Pa). The vibrations are measured by a
Laser-Doppler-Vibrometer (Polytec GmbH, MSA-500). The signal
is transformed into the frequency domain by the means of Fast
Fourier Transformation. In order to minimize noise, the frequency
spectra are averaged over 300 measurements. White noise and 1/f
noise are eliminated and the square amplitude frequency spectra
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Fig. 2. Light microscope images in transmission mode of a polymerized composite containing 2vol.% (8wt.%) Fe3O4 particles with a film thickness of 1.75±0.15�m. (a)

Magnetite particles are coated by diphosphate and form agglomerates (mean diameter >5�m) in the polymer. (b) If themagnetic particles are coatedwith a dispersant agent

containing a copolymer with a phosphate group, agglomerates are no long visible under light microscopy.

arefittedbyaLorentzian curve shape. The length Lof the cantilevers
is measured with an optical light microscope Leica DM4000. The
thickness h is determined by a profilometer Tencore P10. The den-
sity of the composite is assumed to be a perfect dispersion of the
incorporated nanoparticles in the SU-8:

� = ��Fe3O4 + (1− �)�SU-8, (2)

where �Fe3O4 is the density of Fe3O4 nanoparticles (5180kgm
−3),

�SU-8 the density of SU-8 (1190kgm
−3), and � is the volume frac-

tion of the nanoparticles in the composite.

3. Results and discussion

3.1. Dispersion

To achieve homogenous mechanical and magnetic properties
in the composite microstructures, the nanoparticles must be well
dispersed within the host matrix. Hence, the use of a proper dis-
persing agent is critical. Despite the high number of possibilities
(surfactants, polymers, complexing agents), the proper dispersant
must fulfill important requirements such as a strong attachment
to the nanoparticle surface and an optimal chemical affinity of
the surfactant with the surrounding matrix. The importance of
the particle functionalization is illustrated in Fig. 2. In this work,
two different phosphate-containing dispersing agents are used.
Phosphate groups are known to adsorb strongly onto magnetite
surfaces [25]. However, the presence of such functional groups
does not guarantee dispersion stability. Using diphosphate as a
dispersant, relatively large magnetite agglomerates greater than
5�m in size can be observed under an optical microscope after
mixing (Fig. 2(a)). Such a composite would result in microstruc-
tures with rough surfaces and non-uniformmechanical properties.
When magnetite nanoparticles are functionalized with a disper-
sant consisting of a linear copolymer containing a phosphate
group, agglomerates are no longer observed (Fig. 2(b)) by optical
microscopy.

Further investigation of the composite dispersion with TEM
images was performed. Fig. 3 shows a TEM image of the cross-
section of a composite layer containing 3vol.% (12wt.%) and 5vol.%
(18wt.%) magnetite particles. In Fig. 4, a close up view of the com-

posite is depicted. A clear dispersion of Fe3O4 particles in the SU-8
matrix with a low level of agglomeration can be observed. The
agglomerate diameter distribution of a composite with 5vol.% par-
ticle concentration is measured from TEM images (366 counts) and
shown in Fig. 5(a). The agglomerate’s average count diameter is
43.5±20.4nm.

The particle diameter distribution measured from TEM images
is depicted in Fig. 5(b). The particles’ average count diameter is
11.4±3.4nm (800 particles measured). From a two-dimensional
TEM image, it is difficult to estimate the agglomerate sizes because
the particles and agglomerates can overlap within the ∼100nm
thick slice.

In order to quantitatively determine the size distribution of
particles and agglomerates, small angle X-ray scattering (SAXS)
measurements were performed. Composite films with a typical
thickness between 1.54�m and 2.23�m were measured using a
transmission geometry with a measurement time of 1h. The scat-
tered intensities were azimuthally averaged and corrected for the
sample absorption (the raw intensities were divided by the sample
transmission). Small differences in sample geometry were taken
into account by dividing the scattering curve with the thickness of
the sample at the position of the X-ray beam. Background scatter-
ing corresponding to the polymer matrix was taken into account
by subtracting the scattering of a sample that did not contain
particles. Finally, the scattering curves were normalized by the
Fe3O4 concentration, since particle count density must be consid-
ered. Fig. 6 shows characteristic curves that provide information
on the agglomeration state of the particles for different particle
concentrations in the composite. The SAXS curves show two dis-
tinct slopes indicating the presence of two particle/agglomerates
sizes. The SAXS curves for samples, containing 1–10vol.% of Fe3O4,
overlap, indicating that the agglomeration states of particles in the
composite are independent of the particle concentration. Because
of the higher scattered intensity, the noise of the SAXS curve is
lower for increasing particle concentration. At the same time the
scattering of the X-ray at very small angles is significantly sup-
pressed at Fe3O4 concentrations of 5 and 10wt.%. This is due to
particle interactions which cannot be neglected at these concen-
trations. Small angle X-ray scattering does not provide information
on the nature of the interaction but can distinguish between repul-

4

ht
tp
://
do
c.
re
ro
.c
h



Fig. 3. TEM imageof a cross-sectionof thepolymer composite filmwith (a) 3 vol.% (12wt.%) and (b) 5 vol.% (18wt.%) Fe3O4 particle concentration (sample thickness≈100nm).

sive and attractive interaction potentials. In general, the scattering
intensity at very small angles increases if the particles attract each
other, while it is suppressed if they repel each other. The simplest
type of interaction, which is often a good approximation for stable
particle dispersions, is the so-called hard sphere potential. Here
particles are not allowed to overlap but do not interact when they
are separated. For such a system the scattering at very small angles
is suppressed by 32% at a volume fraction of particles of 5% and
by 54% at a volume fraction of 10% [26]. Thus, one has to expect
that particle interactions have a significant effect on the scattering
curve at high particle concentration. It must be noted that particle
agglomeration would have the opposite effect, which would mean
an increase of the scattered intensity at small scattering angles.
The SAXS data clearly shows that the particles interact via an effec-
tively repulsive interaction potential. Even at the highest particle
fill considered here, the nanoparticles are still well dispersed.

For a further analysis of the SAXS data, effects of particle
interactions must be excluded. Therefore, the sample containing
3vol.% (12wt.%) of Fe3O4 was chosen as a compromise between
enhanced data statistics and small particle interactions. Two differ-
ent approaches to calculate the size distribution of the scattering
objects (i.e. single particles or agglomerates) were used. First, an
Indirect Fourier Transformation (IFT) [27,28] was applied to cal-
culate the size distribution by assuming homogeneous spherical
particles. Second, a model fitting approach was used to calcu-
late the bi-lognormal distribution of homogeneous spheres that
gives the best fit to the experimental data. In Fig. 7, both volume
weighted distributions are shown. Within the experimental error
of themethod, both results overlap. Themain fraction of particles is
between 10 and 20nm in diameter. However, there is a significant
content of particles or agglomerates which are larger. The distribu-
tion of diameters extends up to 80nm. The overlap of the scattering

Fig. 4. TEM image of the particles/agglomerates in the compositewith 5vol.% Fe3O4

nanoparticles.

curvesmeasuredwithdifferentparticlefillings shows that the same
size distribution is present at all Fe3O4 concentrations being inves-
tigated. The distribution originates either from the size distribution
of individual particles or from agglomerates that cannot be broken
up by the homogenization procedure and which are present at all
particle fillings. Compared with the size distribution of the parti-
cles measured by TEM, the first peak fits very well to the individual
particles size distribution, whereas the second hump at 40–50nm
corresponds to existing agglomerates.
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Fig. 5. (a) Agglomerate diameter distribution from TEM images (366 counts) of a composite with 5vol.% particle concentration. The average diameter is 43.5±20.4nm.

(b) Particle diameter distribution measured from TEM images (count distribution). The particles have a mean count diameter of 11.4±3.4nm (800 counts).

Fig. 6. SAXSmeasurements: 0 vol.% probe is subtracted, the thickness of the sample

was considered and the data are normalized with respect to particle concentration.

The overlap of the curves confirms the expected particle concentrations. The similar

shapeof the curves shows that the agglomeration states of particles in the composite

are independent of the concentration.

Fig. 7. Differential volume distribution of particles and agglomerates in composite

modeled from SAXS measurements. Measurement range: 1–100nm.

These agglomerates can also be present in the initial nanopar-
ticle dispersion (magnetite particles dispersed in the solvent
�-butyrolacton (GBL). The measurement of hydrodynamic parti-

Fig. 8. Differential volume distribution of particles and agglomerates in initial par-

ticle dispersion (solvent: GBL) measured with XDC (surfactant layer contributes to

the sizes). Measurement range: >10nm.

cle/agglomerate sizes fromtheX-raydisc centrifuge (XDC)depicted
in Fig. 8 shows the diameter distribution of the particles in the ini-
tial nanoparticle dispersion before mixing with the photosensitive
polymer SU-8. XDCmeasures hydrodynamic diameters of agglom-
erates including the surfactant layer and the fluid boundary layer.
Therefore, the sizes are expected to be larger compared to TEM and
SAXS. The measurement shows two peaks: one at 19nm, which
corresponds to the single particle diameter or agglomerates with
low primary particle number, and a second peak around 38nm
(30–45nm), which matches with the agglomerate size measured
from SAXS. This indicates that in the initial magnetic suspension
agglomerates are present, which cannot be further broken by the
used mixing methods.

Nanoparticles have been analyzed by XRD measurements as
shown in Fig. 9. The XRD-spectra fits to magnetite Fe3O4 (ICSD
028664). The main diffraction peaks are indicated in the graph.
The spectra ofmagnetite andmaghemite�-Fe2O3 (ICSD 87119) are
very similar. Despite the lack of the additional peaks of maghemite
(210) at 23.7◦ and (211) at 26.1◦ the presence of maghemite
cannot be completely excluded. Other iron oxide phases such as
wustite FeO (ICSD 82233) and hematite (ICSD 066756) can be
excluded. The average crystallite size of Fe3O4 (ICSD 028664) mea-
sured from the main peak (311) (34.6–36.6◦) is 13.1±0.5nm.
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Fig. 9. XRD pattern of the magnetite (Fe3O4) nanoparticles. The magnetite peak

positions (ICSD 028664) are indicated.

Table 1

Comparison of particle and agglomerate diametersmeasured by differentmeasure-

ment methods.

Measurement method Particle

diameter [nm]

Agglomerate

diameter [nm]

XRDcrystal size 13.1 –

TEMvolume average 12.4a 52b

SAXSc 13 40–50

XDChydrodynamic diameter
d 19 30–45

a Taken from 800 measurements.
b Taken from 366 measurements.
c Main peaks from Fig. 7.
d Main peaks from Fig. 8.

Particle and agglomerate size measurements by SAXS, XRD and
XDC provide information on the diameter in terms of a volume
ormass distribution, whereas TEMmeasurements result in a count
size distribution. For comparison the count average diameter of the
TEMmeasured particles (11.4±3.4nm)must be calculated into the
volume average diameter resulting in 12.4nm. The volume average
diameter of the agglomerates is 52nm. A comparison of measured
diameters from SAXS, XRD and TEM methods has been previously
described indetail [29]. Thedifferentparticle andagglomerate sizes
are summarized in Table 1. The crystal size measured by XRD is in
good agreement with the particle diameter measured in the com-
posite by TEM and SAXS. Considering the hydrodynamic layer, as
lightly larger diameter from the XDC measurements is expected
andcorrespondsaswell to theparticlediametersdeterminedby the
othermethods. Thevolumeaverageagglomerate sizesmeasuredby
TEM fit to the main agglomerate sizes of the SAXS measurements.
The comparison between SAXS measurements of the composite
and the XDC measurements from the initial particle dispersion
shows that some agglomerates are already present in the initial
dispersion. The main agglomerate size during composite mixing
does not increase significantly.

3.2. Magnetic properties

Fig. 10 shows the M–H curve for Fe3O4 nanoparticles. The
particles show negligible hysteresis, as expected, indicating super-
paramagnetic behavior at room temperature. At the maximum
applied field (800kAm−1) the nanoparticles reach saturation and
magnetization was measured as 277kAm−1 (53.5 emug−1) and
is similar to previously reported value of the same probe [23].
Saturationmagnetizationof Fe3O4 nanoparticleswithdifferent fab-
rication process are in the same range (60.1 emug−1 for 11.5nm

Fig. 10. Magnetization of Fe3O4 nanoparticles measured by vibrating sample mag-

netometer at room temperature. The particles show superparamagnetic behavior.

Fig. 11. Magnetization measurements of the composite with different Fe3O4 par-

ticles concentration at room temperature. All composites have no remanent

magnetization and are superparamagnetic.

magnetite particles) [30]. The saturation magnetization of the par-
ticles depends on the particle size and the spin surface disorders.
A presence of maghemite can lower magnetization. Maghemite
nanoparticles produced with flame aerosol technology with sim-
ilar diameters (14±0.8nm) show a magnetization of 34emug−1

[31]. In Fig. 11, the M–H curves for the composite films with dif-
ferent nanoparticle concentrations are shown. All of them show
superparamagnetic behavior at room temperature.When themag-
netization values of the different composites are scaled to 100%, the
average saturation magnetization is found as 291kAm−1 and is in
agreement with the value of saturationmagnetization of the initial
particles.

3.3. Influence of particle concentration on microstructure
fabrication

The SU-8 based nanocomposite is spin-coated and structured
by conventional photolithography (exposure through a mask with
a UV lamp). However, there are limitations of the particle con-
centration in the composite caused by UV-light absorption of
the magnetite particles. The dependence of the transmittance on
the composites’ thickness is presented elsewhere [23]. Here, the
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Fig. 12. UV-transmittance measurements of composite with increasing Fe3O4 par-

ticle concentration. The sinusoidal distortion of the signal is based on a Fabry–Perot

effect which occurs when the thickness of the film is a multiple of the half wave-

length. The thickness and the exposure dose of the samples are listed in Table 2.

UV/VIS-transmittance of the compositewith different particle con-
centration was investigated (Fig. 12). The thickness of the samples
considered was 1.65±0.15�m, except for the 10vol.% case which
was 2.2�m (Table 2). Higher nanoparticle content leads to a higher
absorption in theUV region. For the composite exposure, amercury
lamp is used with two main spectral lines: i-line 365nm and h-
line 405nm. Magnetite particles in the composite absorb in this

Table 2

Fabrication parameters of composite with different particle concentrations. The

viscosity ismeasured at 5kHz. Due to the increase of viscositywith the particle con-

centration the spin speed has to be increased to keep layer thicknesses in a similar

range.

Concentration

[vol.%]

Dynamic

viscosity at

22.5 ◦C [Pa s]
±20%

Spin speed

[rpm]

Exposure dose

[mJ cm−2]
Fabricated

layer thickness

[�m]

0 0.062 4000 200 1.54 ± 0.01

1 0.065 4200 2000 1.64 ± 0.01

2 0.065 4400 2000 1.57 ± 0.02

3 0.078 4600 5000 1.61 ± 0.01

5 0.106 5000 10,000 1.79c ± 0.02

10 n.a.a 5000 10,000b 2.20c ± 0.03

a Data not available.
b Not fully polymerized.
c Bigger thickness because of spin speed limitation.

area and can hinder polymerization, creating a limit in particle
concentration. For a given layer thickness exposure doses for full
polymerizationmust be increasedwith increasing particle concen-
tration (Table 2).

Fig. 13 shows secondary electron microscope (SEM) images of
the tip of fabricated magnetic composite cantilevers. Fig. 13(a)
shows the top and Fig. 13(b) the bottom side of a fabricated can-
tilever tip containing 5vol.% magnetite particles, an exposure dose
D of 10 J cm−2, and a thickness of 1.8�m[23]. TheUV transmittance
of the composite layer is 8% at 365nm and 21% at 405nm (Fig. 12).
Changing the particle concentration of the composite to 10vol.%
leads to a smooth top layer but to a rough and porous bottom layer
(Fig. 13(c) and (d)). The rough bottom layer is caused by insuffi-
cient exposure dose because of UV absorption by the filler particles
(transmittance of the composite layer is 0.3% at 365nm and 2.4% at
405nm). A partially exposed bottom layer results in peeling of the

Fig. 13. SEM images of a composite microcantilever tip exposed with a dose of 10 J cm−2. Image (a) shows the top surface and (b) the bottom surface of a tip with 5vol.%

Fe3O4 particle content. Both surfaces are smooth and fully exposed. A cantilever tip with a concentration of 10vol.% Fe3O4 is shown in (c) presenting the top surface and in

(d) the bottom surface. Due to the high absorption of the Fe3O4 particles the lower part of the composite cantilever is partially exposed and results in a rough bottom surface.
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Fig. 14. The upper picture shows an optical microscope image of the resolution test

pattern on the mask with different slit openings. On the lower picture a SEM view

of the fabricated composite (5 vol.%) pattern is shown. To see the side wall of the

composite structures the fabricated composite sample is tiltedby45◦ . Thenarrowest
pattern on the mask is 0.8�m and is successful transferred to the composite with

an increased width of 1.3�m (due to dispersion effects during exposure).

structure during the baking process. An exposure dose of 10 J cm−2

corresponds to an approximately 20min exposure time. Also, with
increasing the exposure dose to 20 J cm−2 it was not possible to
ensure a full polymerization of the cantilevers.

Additionally, the particle concentration influences the viscosity
of the mixed composite. Viscosity is a crucial parameter for spin-
coating which determines the final layer thickness. Higher particle
concentrations increase the viscosity as seen in Table 2. The spin
speed must be adjusted to fabricate composite layers with sim-
ilar layer thicknesses. For particle concentrations of 5 vol.% and
10vol.%, the maximum spin speed of 5000 rpm of the spin coater
was reached and the target thickness of 1.6�m could no longer be
adjusted.

3.4. Pattern transfer in composite microstructures

To determine the resolution of the composite, test structures
with different patterns on the mask have been designed. Fig. 14
shows the mask pattern and the resulting composite structures
(5 vol.%, thickness: 1.8�m, spinspeed: 5000 rpm, exposure dose:
10 J cm−2). The smallest structure size on the mask, having a width
of 0.8±0.1�m, is successfully transferred into the composite with
a width of 1.3±0.2�m. This shows that the resolution limit of the
composite was not reached. The fabricated composite structures
are in general 0.6±0.2�m wider, most likely resulting from the
lightdispersion in thecompositeby the incorporatednanoparticles.
The slight v-shape of the composite structures can result from the
absorption of UV light in the upper part of the composite layer by
the nanoparticles. It is known that bare SU-8 structures can exhibit
a negative slope as well because of the absorption of deep UV light
in the upper layer. Using aUV-filter to remove the sub-365nm light
could help reduce the effect of the negative slope [32,33].

3.5. Surface properties

With dynamic water contact angle measurements on samples
with 0, 1, 2, 3, 5, 10 vol.%, no influence of the particle concentra-
tion on surface chemistry and surface roughness on the surface of
the composite could be detected [34]. The advancing contact angle
which indicates the hydrophobicity of the sample is 81.1±1.6◦

for all samples and does not differ significantly from the unfilled
samples 81.8±1.3◦. If the particle concentration would increase
surface roughness, then the contact angle hysteresis (advancing
minus receding contact angle) would also increase. However, the
hysteresis was for all samples between 29◦ and 40◦, and no distinct
dependence on the particle concentration could be detected.

Fig. 15. SEM image of fabricated cantilever arraywithmagnetic polymer composite

filled with 5vol.% of magnetite nanoparticles.

3.6. Young’s modulus

Microcantilever arrays with different particle concentration
have been successful fabricated (Fig. 15). The dynamic Young’s
modulus E of the composites with different particle concentra-
tion can be determined by measuring the resonant frequency of
the fabricated composite cantilevers and the Euler Bernoulli beam
equation

E = 12�

(
2�L2f1

�2
1h

)2

, (3)

where L is the length of the cantilever, f1 the first resonant
frequency, h the thickness of the cantilever, and �1 = 1.875 the
eigenvalue of the first resonant frequency. The cantilevers were
actuated by thermal noise in vacuum to avoid damping by the
environment and the resonance frequency is measured by a laser-
Doppler interferometer. The measured Young’s moduli of different
particle concentration are plotted in Fig. 16. The cantilevers with
nanoparticle concentrations varying from 0 to 3vol.% show the
same characteristics and have a mean Young’s modulus of 4.4GPa.
The cantilevers with a fill of 5 vol.% show a slightly higher mean

Fig. 16. Dynamic Young’s Modulus measurements of composite cantilevers with

different particle concentration 0, 1, 2, 3, 5 vol.% dependent on the frequency

(lengths) of the cantilevers. The Young’s modulus is extracted from resonant fre-

quency measurement of the cantilevers by a laser-Doppler vibrometer and using

Euler Bernoulli beam theory. For each fill grade 9–25 cantilevers with the same

length from the same device and batch, respectively, aremeasured (see also Fig. 15).

All cantilevers have frequencies between 23 and 47kHz (lengths: 100–160�m). The

standarddeviations of themeasurements are indicatedwith the small error bars and

the calculated “measurement error” with the large error bars.
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Young’s modulus of 5.1GPa. The standard deviations of cantilevers
with the same length and same nanoparticle fill are between 0.1
and 0.4GPa, and the corresponding calculatedmeasurement errors
are smaller than 0.4GPa. The measured dynamic Young’s mod-
ulus of bare SU-8 is in good agreement with the measurements
of the dynamic Young’s modulus (4.5GPa at 25kHz) using can-
tilevers actuated by the Kelvin polarization force [35]. Comparison
of themeasured Young’s modulus of filled polymer with the litera-
ture is difficult as it is known that particle morphology, surfactant
and different baking time and temperature for photocurable poly-
mer affect mechanical reinforcing. It is reported that adding silica
nanoparticles in photocurable epoxy slightly increases the static
Young’s modulus (measured by nanoindentation) [6], while there
is a significant increase inYoung’smoduluswith silica inPDMS [36].

4. Conclusion

A photopatternable superparamagnetic nanocomposite for the
fabrication of microstructures has been developed and character-
ized. A high magnetic particle concentration in the composite is
important to obtain high magnetic forces on the microstructures.
The influence of the magnetite nanoparticle concentration on the
dispersion as well as on the fabrication steps were investigated
and optimized for homogeneity and structural integrity. With the
use of a phosphate-based polymeric dispersing agent, nanocom-
posite filmswith particle concentration up to 10vol.% (32wt.%) and
a low amount of agglomerates withmean sizes around 50nmwere
obtained. SAXS measurements show that agglomerates are inde-
pendent of the amount of embedded particles. XDCmeasurements
indicate that the agglomerates were already present in the initial
magnetic suspension and do not agglomerate significantly during
the mixing of the composite. The UV exposure dose was optimized
to fabricate cantilevers by conventional photolithographywith dif-
ferent particle concentrations. Microstructures with up to 5vol.%
of magnetite compromise the magnetic properties with the full
polymerization of themicrostructures. A saturationmagnetization
of 13.8 kAm−1 was measured for the composite film with 5vol.%
particles. Microstructures with widths down to 1.3�m (thickness
of 1.8�m) could be fabricated with 5vol.% Fe3O4nanoparticles
without reaching the resolution limit of the composite. With the
succesfull fabricated cantilever arrays the composite’s dynamic
Young’s modulus was determined. A slight increase in the Young’s
modulus (5.1GPa) was observed for composites containing 5vol.%
particles.

Using a remote magnetic actuation and an optical read out
to detect a resonance frequency shift, such microcantilevers can
be used as mass sensors or micro balances. With an appropri-
ate functionalization of the cantilever polymer surface with target
receptors, these cantilevers are predestined to study biomolecules
for example to investigate antibody–antigen interactions.
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