
Department of Informatics

University of Fribourg (Switzerland)

uMove:

A wholistic framework to design and implement

ubiquitous computing systems supporting user’s

activity and situation

THESIS

Submitted to the Faculty of Science, University of Fribourg (Switzerland)

to obtain the degree of Doctor Scientiarum Informaticarum

Pascal Bruegger

from

Graben BE (Switzerland)

Thesis N◦ 1711

UniPrint, Fribourg

2011

Accepted by the Faculty of Science of the University of Fribourg

following the proposal of:

- Prof. Ulrich Ulthes-Nitsche, University of Fribourg (Jury President)

- Prof. Béat Hirsbrunner, University of Fribourg, Switzerland (Thesis Director)

- Dr. Denis Lalanne, University of Fribourg, Switzerland (Expert)

- Prof. Alan Dix, Lancaster university, UK (External expert)

- Prof. Peter Kropf, University of Neuchâtel, Switzerland (External expert)

Fribourg, 6 June 2011

Thesis Director Faculty Dean

Prof. Béat Hirsbrunner Prof. Rolf Ingold

2011 by Pascal Bruegger

©All Rights Reserved

Acknowledgments

A PhD thesis is long term process full of particular moments which are sometimes emotionally

intense, sometimes desperately frustrating but also very motivating to continue. At the end,

the result is an extraordinary experience from a personal and a scientific point of view. This

type of challenge would not have been possible without the support of valuable people who

guided and advised me during this research. My deepest gratitude goes to my supervisor, Prof.

Béat Hirsbrunner, who gave me the opportunity to study in the Department of Informatics

of the University of Fribourg and trusted me for this thesis. I would also like to thank my

PhD committee for their expertise and the Swiss National Science Foundation (SFNS) for

the financial support during the last four years.

I would like to sincerely thank my two colleagues, Dr. Agnes Lisowska Masson and Dr.

Apostolos Malatras for their constructive comments and advise during the writing of the

thesis.

I take this opportunity to also thank also all my colleagues in the department, Elisa-

beth Brügger, Silviane Pilloud, Bruno Dumas, Denis Lalanne, Maurizio Rigamonti, Florian

Evéquoz, Amos Brocco, Fulvio Frapolli, Muriel Bowie, Oliver Schmid, Momouh Khadraoui

and Nicolas Juillerat for all enjoyable moments we spent together on different occasions.

I wish to also thank Benjamin Hadorn, Samuel Vonlanthen, Adriana Wilde and Säıd

Mechkour for their precious collaboration on this research and their contribution in different

projects.

Of course, nothing would have been possible without my beloved family, my wife Prisca,

my son Samuel and my mother Yolande. They were always supporting me, especially in

stressful moments and I’m deeply grateful and proud to be loved so much.

A chapter ends, a new one starts.

i

ii

Abstract

This thesis presents a framework that offers tools for the design and the implementation of

Ubiquitous computing systems supporting user motions, activities and situations. With the

rapid development of context-aware mobile computing and sensor-based interaction, many

new challenges come up, three of which are particularly addressed in this thesis. The first

is the need for wholistic tools to develop Ubiquitous computing infrastructures. The second

concerns smart applications allowing users to benefit from the distributed computing power

in their environment, and the third is the integration of enriched human-computer interaction

using motions, activity and situation provided by the increasing sensing capabilities of the

user environment or mobile devices. We propose the uMove framework, a comprehensive

solution which allows to design and develop Ubicomp systems representing different kinds

of physical or virtual environments based on a systemic approach. uMove proposes both

theoretical foundations and implementation tools and is divided into three specific facets.

The first facet is the conceptual model describing a Ubiquitous computing system made of

entities and observers within their physical or logical environment. The second facet is a

system architecture which offers designers and developers the tools to theoretically define a

logical system, including the types of contexts taken into consideration. The third facet is

development tools that allow programmers to implement their systems, sensors, applications

and services. The uMove framework is evaluated and validated in an interactive manner

through four projects.

Keywords: Ubiquitous computing, pervasive computing, context-aware computing, mo-

bile computing, HCI, middleware.

iii

iv

Résumé

Cette thèse présente un ensemble d’outils (un framework) qui permettent la définition, la

création et la réalisation de systèmes informatiques ubiquitaires pouvant intégrer la prise

en charge des activités des utilisateurs ainsi que de la détection de leur situation. Avec

le rapide développement de l’informatique intégrant les contextes des utilisateurs ainsi que

l’informatique mobile, de nouveaux défis sont apparus et parmi ceux-ci, trois d’entre eux

sont adressés dans cette thèse. Le premier est le besoin d’un ensemble d’outils permettant le

développement de systèmes ubiquitaires partant de leur définition théorique jusqu’à leur réal-

isation. Le deuxième défi consiste à développer des applications intelligentes qui intégrantent

les nouvelles technologies telles que les senseurs et l’accès à des systèmes informatiques répar-

tis. Le troisième défi est l’intégration d’interactions homme-machine enrichies par la prise en

compte des mouvements, des activités et situations des utilisateurs ceci par le biais de senseurs

de plus en plus présents dans nos environnements et sur les dispositifs informatiques mobiles.

Dans cette thèse, nous décrivons uMove, un ensemble d’outils permettant la définition et

le développement de système ubiquitaire représentant différentes sortes d’environnements

physiques ou logiques. uMove comporte trois facettes qui décrivent les concepts fondamen-

taux ainsi que les outils logiciels nécessaires à leur développement. La première facette est

consacrée à la définition du modèle conceptuel décrivant des systèmes ubiquitaires composés

d’entités et d’observateurs et ceci en utilisant une approche systémique. La deuxième facette

présente une architecture qui permet aux concepteurs et développeurs de formaliser leurs

systèmes. La troisième facette décrit les outils logiciels qui permettront d’implémenter les

projets définis de manière systémique et en respectant l’architecture uMove. Finalement,

uMove est évalué et son modèle validé à travers quatre projets qui ont été implémentés avec

l’ensemble de ces outils.

Mots-clés: Informatique ubiquitaire, informatique pervasive, informatique contextuelle,

informatique mobile, interaction homme-machine, plateforme de développement.

v

vi

Acronyms

ABC : Activity-based computing

ACD : Activity-centered Design

AI : Artificial Intelligence

API : Application Programming Interface

AT : Activity Theory

GIS : Geographic Information Systems

GPS : Global Positioning System

GST : General System Theory

GUI : Graphical User Interface

HCI : Human-Computer Interaction

IDE : Integrated Development Environment

iHCI : implicit Human-Computer Interaction

JSON : JavaScript Object Notation

KUI : Kinetic User Interface

LCD : Liquid Crystal Display

MVC : Model-View-Controler

OWL : Web Ontology Language

PDA : Personal Digital Assistant

SQL : Structured Query Language

SUI : Surface User Interface

TUI : Tangible User Interface

Ubicomp : Ubiquitous Computing

UCD : User Centered Design

UML : Unified Modelling Language

URL : Uniform Resource Locator

UUI : Ubicomp User Interface

WIMP : Windows, Icon, Menu, Pointer

XML : Extensible Markup Language

vii

viii

Contents

Acknowledgments i

Abstract iii

Résumé v

Acronyms vii

1 Introduction 1

1.1 Research challenges . 2

1.1.1 Tools for developing and deploying Ubicomp systems 3

1.1.2 Smart and adaptive applications and services 3

1.1.3 User interaction . 4

1.2 Goals . 4

1.3 Focus of the thesis . 5

1.4 Contribution . 6

1.4.1 System modelling . 6

1.4.2 System architecture . 6

1.4.3 Implementation tools . 6

1.4.4 Validation scenario and applications 7

1.5 Outline of the thesis . 7

2 Background and related work 9

2.1 Ubiquitous and pervasive computing . 9

2.2 Ubiquitous computing: definition of the paradigm 10

2.2.1 Ubiquitous computing is not nomadic computing 11

2.2.2 From Weiser’s vision to now: where do we stand? 11

2.3 Context-aware computing . 13

2.3.1 Context: concept and definitions . 13

2.3.2 Context-aware architectures and middlewares 16

2.3.3 Context-aware applications . 18

2.3.4 Sensing contexts . 20

ix

2.3.5 Ambient intelligence and smart environments 21

2.3.6 Discussion . 22

2.4 Human-computer interaction in ubiquitous computing 23

2.4.1 Post-desktop paradigm of interaction 23

2.4.2 From GUI to UUI: a new opportunity for human-ubicomp system in-

teraction . 24

2.5 Activity-based computing . 26

2.5.1 Activity Theory: concepts and applications 27

2.5.2 Models and tools . 27

2.6 Reasoning on situation: an evolution of activity-based computing 30

2.6.1 Definition of situation . 30

2.6.2 Situation theory . 31

2.6.3 Application of situation theory . 31

2.7 Summary . 32

3 Conceptual model 35

3.1 System modelling . 36

3.2 General System Theory . 38

3.3 System . 38

3.4 uMove system . 39

3.4.1 Environment and entities . 40

3.4.2 Observation . 48

3.5 Kinetic dimension . 51

3.5.1 Separation between activity and situation 52

3.5.2 Motion . 53

3.5.3 Activities . 54

3.5.4 Contexts . 54

3.5.5 Situations . 55

3.6 Summary . 57

4 System Architecture, Design and Evaluation 59

4.1 uMove middleware: a multilayer architecture 60

4.1.1 Sensor layer . 61

4.1.2 Entity layer . 63

4.1.3 Observation layer . 64

4.1.4 Message processors . 66

4.1.5 Activity and situation manager . 67

4.2 Mobile uMove system . 68

4.3 Coordination and communication in uMove 68

4.4 Applications and services . 69

x

4.5 IWaT: methods and tools to test the uMove system 70

4.5.1 Using IWaT with uMove . 71

4.5.2 How it works . 72

4.5.3 Advantages and drawbacks of using IWaT 73

4.6 Summary . 74

5 Implementation tools 77

5.1 uMove API . 78

5.1.1 UMoveSystem . 78

5.1.2 Message processor . 81

5.1.3 Activity and situation managers . 82

5.1.4 Relation manager . 82

5.2 Coordination and communication . 82

5.2.1 Coordination manager . 83

5.2.2 Communication . 84

5.2.3 Services: definition and monitoring . 85

5.3 Mobile monitoring . 86

5.3.1 Monitoring mobile devices . 87

5.3.2 Services list update . 87

5.3.3 System service . 87

5.3.4 Public services . 87

5.4 Mobile uMove system . 89

5.4.1 Type of service: local versus global . 90

5.4.2 Mobile uMove as a service manager 90

5.4.3 Smart environment finder . 91

5.4.4 Mobile service manager . 91

5.5 uMove-enabled applications . 92

5.6 uMove System Editor . 93

5.6.1 Entity management . 95

5.6.2 Saving and loading a system configuration 95

5.6.3 System monitoring . 96

5.6.4 Application and service loader . 96

5.7 Summary . 98

6 Prototypes and validation 99

6.1 Methods of evaluation and validation . 99

6.2 Smart Heating System . 101

6.2.1 User’s activities and contexts . 101

6.2.2 Software architecture . 101

6.2.3 Hardware . 102

xi

6.3 Robin project: how Ubicomp technologies can help firefighters 103

6.3.1 Context of the project . 103

6.3.2 Gathering contextual information . 104

6.3.3 Robin architecture . 104

6.3.4 IWaT session . 105

6.3.5 Session results . 106

6.3.6 The prototype . 106

6.3.7 Global results . 111

6.4 EMS project: Elderly Monitoring System . 111

6.4.1 General requirement . 112

6.4.2 Setup . 112

6.4.3 Server application . 113

6.4.4 Mobile application . 114

6.4.5 Evaluation of uMove . 114

6.5 SMSService: a concrete use case of a uMove service 115

6.5.1 Server part . 116

6.5.2 Client part . 117

6.6 Summary . 118

7 Conclusions and Perspectives 121

7.1 Thesis orientation . 122

7.2 uMove framework: a promising wholistic tool 122

7.2.1 Conceptual model . 123

7.2.2 uMove system architecture . 124

7.2.3 Integration of a mobile server-based uMove 125

7.2.4 Implementation tools . 125

7.2.5 Validation projects . 126

7.3 Perspectives . 127

7.3.1 uMove API . 127

7.3.2 uMove System Editor . 128

7.3.3 Mobile uMove middleware . 129

7.3.4 Development of services . 129

7.3.5 Activity and situation management . 130

7.3.6 Full evaluation . 130

7.4 Epilogue . 131

Bibliography 135

Terms and definitions 147

List of Tables 148

xii

List of Figures 149

List of Listings 153

Curriculum Vitae 157

xiii

Chapter 1

Introduction

Contents

1.1 Research challenges . 2

1.2 Goals . 4

1.3 Focus of the thesis . 5

1.4 Contribution . 6

1.5 Outline of the thesis . 7

Ubiquitous Computing (Ubicomp) is radically changing our everyday activities by bring-

ing computing power into our living environment. Computers are more and more distributed

throughout the environment and tend to disappear into everyday objects. They are enhanced

by technologies able to sense the environment, communicate and provide information to a

user any time and any where.

In the late 80’s, Mark Weiser put forward the idea of invisible computing. He predicted

that in the near future, we would see a shift in computer systems: from the concept of ”one

computer one user” we would move to ”one user many computers” [Weiser, 1991]. That the

desktop computer would be replaced by many specialised computing devices scattered in the

space around us, able to sense our environment and provide help in our everyday lives. As

Weiser wrote in the fundamental article in Scientific American:

”The most profound technologies are those that disappear. They weave themselves

into the fabric of everyday life until they are indistinguishable from it”

Weiser’s vision of Ubiquitous computing is partly becoming a reality and there exist

plenty of Ubicomp applications, components and infrastructures such as GPS navigation

in cars, electronic agendas synchronised with computers, or mobile communication systems

including laptops, netbooks, netpads, mobile and smart phones and PDAs. During the last

decades, we have seen a shift from the traditional desktop computer toward heterogeneous

1

2 Chapter 1: Introduction

technologies from small and mobile interconnected devices to large wall-sized displays as well

as car embedded computing systems.

These technological examples show that Ubiquitous Computing has evolved in the last

twenty years. However, many questions about Ubicomp remain open: What really evolved?

Concepts or technologies? Where do we stand with Weiser’s concept of invisible computing?

[Bell and Dourish, 2007, Rogers, 2006] Have we fundamentally changed our way of interacting

with computing systems? What research challenges are still relevant after thirty years of

Ubicomp development?

As mentioned by Schmidt in [Schmidt, 2002, ch. 2], research in the domain of pervasive

or ubiquitous computing is diverse and this field is still not properly defined. Ubicomp

includes aspects of Distributed Systems, Mobile Computing, Software Architecture, Human-

Computer Interaction (HCI), and Artificial Intelligence (AI) as well as engineering as it deals

with hardware such as sensors (Fig. 1.1).

Figure 1.1: Panel of the different computing domains that are included in the concept of

Ubicomp

1.1 Research challenges

Because it is a multidisciplinary domain, Ubicomp has no formal nor unique definition and

includes several research approaches. Many challenges are addressed in Ubicomp and among

them, there are three aspects which we found particularly important to explore: 1) wholistic

tools to develop Ubicomp infrastructures, 2) smart applications allowing users to benefit

from the distributed computing power in their environment and 3) the integration of enriched

human-computer interactions using motions, activity and situation provided by the increasing

sensing capability of the user environment or mobile devices.

1.1: Research challenges 3

1.1.1 Tools for developing and deploying Ubicomp systems

There are at least two problems in the development of Ubicomp systems. The first one is the

generic modelling tools to properly define complete systems (from the sensors to the applica-

tion). Projects such as CAMUS [Hung et al., 2004] or MUSIC [Reichle et al., 2008] propose

frameworks for context modelling and ontology-based representation. They are predominately

oriented towards functional aspects of the system and, even if they adopt a user-centered and

context-aware approach, they do not necessarily propose the tools for designing the system

including users, environments (places) and relations between entities which constitute the

system.

The second problem is the integration of heterogeneous hardware and software technolo-

gies in order make them work together and provide coordinated services to users. Due to

the distributed and dynamic nature of Ubicomp systems, this challenge includes dynamic

coordination and communication of devices and applications active in the user environment

as well as service discovery and security [Coulouris et al., 2001, p.6-7] as proposed in the

GAIA project [Roman et al., 2002] or HP’s CoolTown project [Kindberg and Barton, 2001].

There is a strong need for standardised platforms, frameworks and middlewares allowing to

develop infrastructure and connect several kinds of sensors and computational devices, and

to run contextualised applications and services.

There exist different tools and environments to support the development of systems.

Among them, are Georgia Tech’s Context Toolkit [Dey et al., 2001], MIT’s Oxygen1, Carnegie

Mellon’s Aura [Garlan et al., 2002] and the ActiveCampus [Griswold et al., 2003]. These

projects focus on the implementation of systems integrating different types of interacting

physical devices including smart phones, sensors and large scale public displays.

The challenge consists of developing integrated tools including three aspects of the de-

velopment process which are 1) the definition of the Ubicomp system (the model), 2) the

evaluation of the model and its validation and 3) the implementation of the system modelling

the user’s environment and applications.

1.1.2 Smart and adaptive applications and services

Ubicomp system interfaces should adapt their behaviour according to the situation, be aware

of the context and not require much user attention. Recently, we have witnessed an increasing

number of mobile devices such as smartphones and academic applications such as CyberGuide

[Abowd et al., 1997], GUIDE [Cheverst et al., 2000] or UbiCicero [Ghiani et al., 2008] which

use information about user contexts gathered through sensors in order to do the right things

at the right time. There are also commercial applications such as Google AdSense2 which

contextualise information and services according to a user’s location. Context-awareness and

1http://oxygen.lcs.mit.edu/Overview.html
2https://www.google.com/adsense/

4 Chapter 1: Introduction

context-aware systems have been extensively explored and many articles have been written

about since the ’90s [Shilit and Theimer, 1994].

Generally, context-aware applications use contexts such as location, time, temperature,

light intensity or, nowadays, accelerometers to trigger events. For example, in some smart-

phones, the silent mode can be enabled when they are placed in a given position or, in the

best case, in a given location. In the first case, the result is obtained by direct user interaction

with his device (turning the phone face down) and in the second through the location context.

However, we believe that applications could be smarter if more user’s characteristics such as

motions and activity were combined with other contexts.

1.1.3 User interaction

As a new paradigm, Ubicomp has also changed the way the user interacts with computing

devices. Computers systems and devices offer different modes of interaction with sometimes

only a minimal portion of the ordinary desktop interface (screen, keyboard, mouse). Also,

the growing number of devices surrounding users no longer allows each of them to capture the

user’s full attention. Following the idea of ”computer everywhere”, also called Everyware by

Greenfield [Greenfield, 2006], Weiser proposed the concept of calm technology or computing

[Weiser and Brown, 1996] which suggests that users should not be overloaded by information

and that some of it can be put at the periphery, leaving user attention for the main user

activity. For Weiser, ”A calm technology will move easily from the periphery of our attention,

to the center, and back”.

This also influences the mode of interaction with computer systems and creates a need

for more implicit interaction rather than the current explicit one. Consequently, the user-

computer interfaces and, more importantly, the interaction mode must be adequately designed

in order to reach this goal. With the development and miniaturisation of sensors, we tend to a

more sensor-based and implicit interaction [Dix, 2002] and therefore move from the commonly

used Graphical User Interface (GUI) toward a Ubicomp User Interface (UUI) [Krumm, 2010].

In order to reach this goal in the next generation of Ubicomp and context-aware systems,

there is a need to enrich the contexts by taking into consideration user behaviour and in-

tention. There is already an increasing interest in the integration of new parameters such

as user motions, gestures activities and situation in order to make applications smarter and

more adaptive.

As pointed out by Sparacino in [Sparacino, 2005]: ”[...] computation and sensing are

moving from computers and devices into the environment itself. The space around us is

instrumented with sensors and displays, and this tends to reflect a widespread need to blend

together the information space with our physical space”.

1.2: Goals 5

1.2 Goals

The first goal of this research was to explore an interaction paradigm we called Kinetic User

Interface (KUI) which includes user activity and situation as input modalities for context-

aware systems, and to propose a platform to support this paradigm. However, before reaching

this goal, we found two aspects which need to be primarily addressed as they are often missing

in the Ubicomp development process. The first one is the lack of tools for the modelling of

(user’s) environments in which the Ubicomp systems are set. In many projects or research,

the proposed solutions include all the components from the sensors to the application in one

concept instead of clearly separating the environment, the technologies which allow to gather

information about the environment and the applications (which can be heterogeneous and

specialised). The second aspect concerns the development of integrated tools that designers

and programmers can use to develop systems which allow a seamless integration of user

activity and situation.

1.3 Focus of the thesis

In this thesis, we focus on two particular aspects. The first aspect concerns the development

of a comprehensive framework to design and develop Ubicomp systems representing different

kinds of physical or virtual environments. This framework, called uMove, proposes both

theoretical foundations and implementation tools, and is divided in three specific facets. The

first facet is the conceptual model which describes a Ubicomp system made of entities and

observers within their physical or logical environment (Fig. 1.2). The second facet proposes

the system architecture which allows designers and developers to theoretically define a logical

system, including the types of contexts taken into consideration. The third facet is the

development tools allowing programmers to implement their system and applications.

Figure 1.2: The three facets of the uMove development framework: semantic modelling, archi-

tecture of the system and the implementation.

The second aspect focuses on the way to integrate, within the framework, the management

6 Chapter 1: Introduction

of the kinetic properties (motions and activity) of entities in order to enrich the interaction

with context-aware computing systems and to allow the development of applications and

services which adapt their behaviours to the situation of the moving entity.

1.4 Contribution

The main contribution of this thesis is the creation of a comprehensive development framework

for Ubicomp systems and context-aware applications. The specific contributions are:

� The definition of a semantic model for the modelling of physical or virtual environments

(A city, a university campus, computer games, web sites) into logical representations.

� The definition of an architecture model for Ubicomp systems and a set of tools to

support designers in the validation of their model before the implementation phase.

� A set of programming tools for the implementation of systems and applications.

� Proof-of-concept applications integrating the activity, motion and situation implemented

with the framework.

1.4.1 System modelling

The approach chosen for our model of environment follows the systemic concepts and the

semantic model is based on Von Bertalanffy’s General System Theory (GST) [von Bertalanffy,

1969]. Von Bertalanffy was a biologist who developed a theory generalising the definitions of

systems used in specific scientific disciplines such as physics, (bio-)chemistry, mathematics,

biology, economics or social sciences. A modelled environment becomes a system, in the

systemic sense.

A system models the physical or virtual world where objects (entities), possibly living

things capable of motion, interact naturally with their environment and are observed by

agents (observers).

1.4.2 System architecture

Based on the semantic model, we propose an architecture which allows to define different

layers of abstraction including a system made of interacting entities, the sensors gathering

the different entity contexts, the system observation and the context-aware applications which

handle the events received by the sensors. We also present a methodology to evaluate the

design and components architecture of a Ubicomp system and application to ensure that

the various algorithms, strategies, inferences (of activities or context) and sensors operate

together smoothly, satisfy user requirements, take into account technical and infrastructure

limitations and form a coherent and comprehensive system.

1.5: Outline of the thesis 7

1.4.3 Implementation tools

Once modelled and validated, a system can be implemented with a set of Java-based pro-

gramming tools. We developed APIs that offer the necessary classes and methods to build

the middleware on which the system will run. These APIs allow to connect sensors and

context-aware applications which interact with the entities, and they offer functionality for

the monitoring and integration of mobile devices running on the Android platform. We also

propose a graphical user interface which can instantiate and monitor a system and dynami-

cally load services for mobile devices.

1.4.4 Validation scenario and applications

We propose a set of validation projects that use the uMove framework, implement the concepts

of systems and test the capability of the proposed concepts to adequately address the research

goals. Through these projects, we also experiment with the concept of Kinetic User Interface

(KUI) using scenarios which imply a mode of interaction where location and motion tracking,

including user activity, can be used as first order input modalities to a Ubicomp system. The

goal of a KUI is to allow users to interact with Ubicomp systems in a more implicit way using

their kinetic properties to trigger events at the level of applications.

The first project, called Robin, focuses on the observation of a rescue team helped by

a semi-autonomous robot. The robot is sent ahead of the team and gathers contextual

information in a building (in case of fire for instance) to send back to the server for situation

analysis and activity recommendation or possibly alarms. The second project provides a

smart environment for a nursing home. It focuses on the activity tracking of elderly persons

who are still independent but monitored by medical staff in case of problems. Finally we

describe an activity recognition module which can be plugged into a KUI system in order to

track and analyse predefined categories of activities.

1.5 Outline of the thesis

This dissertation is organised as follows:

Chapter 2 We present the related work and research on ubiquitous and pervasive com-

puting, context-awareness, context-aware computing systems and middlewares for pervasive

systems. We also present the state of the art in the field of human-computer interaction

with Ubicomp systems including mobile computing. In particular, we give an overview of

activity-based and motion-based interaction as well as the situation reasoning perspective.

Chapter 3 This chapter presents the uMove conceptual model and the approach we have

chosen to represent and describe the moving entities interacting with the environment. It

describes General System Theory, the fundamental theory on which we have based our model

8 Chapter 1: Introduction

of uMove systems. The semantic model focuses on 1) the entities populating a system and all

the properties of the entities including their contexts, the activities and the relations between

the entities and their environment and 2) the concept of system observers and viewers which

analyse the situation of entities. We also present a functional model of activity and situation

representation and integration in uMove.

Chapter 4 This chapter presents the architecture of the uMove system and tools which

designers and developers can use to theoretically define and design their system and all of its

components (users, physical spaces, sensors, contexts, activities and situations).

Chapter 5 We present a programming tool that allows the implementation and the setup

of a uMove-enabled system in which the physical (or logical) world is virtually represented.

These APIs allow to create a middleware with which uMove-enabled applications or services

can interact and can gather contextual information such as location or activity of active users

or objects in order to trigger appropriate events and actions. This chapter also describes

the prototype of the uMove System Editor allowing to 1) set up a uMove system by using a

graphical user interface and 2) to load uMove enabled services for Android smartphones.

Chapter 6 . Applications implementing the uMove concept are presented in this chapter.

We describe in detail the projects and also the issues we wanted to test with each application.

Chapter 7 . We draw conclusions and present future perspectives for this research.

Figure 1.3 shows how the whole thesis is structured around the two aspects, three facets and

the integration of the kinetic properties within the uMove framework.

Figure 1.3: Structure of the thesis: the three facets and the integration of the kinetic properties

Chapter 2

Background and related work

Contents

2.1 Ubiquitous and pervasive computing 9

2.2 Ubiquitous computing: definition of the paradigm 10

2.3 Context-aware computing . 13

2.4 Human-computer interaction in ubiquitous computing 23

2.5 Activity-based computing . 26

2.6 Reasoning on situation: an evolution of activity-based computing 30

2.7 Summary . 32

In this chapter, we analyse existing research, concepts, paradigms, middlewares and tech-

nologies used in ubiquitous or pervasive computing projects. We present some aspects and

components which generally constitute Ubicomp systems and which are related to the uMove

project and model. We also review the evolution of Weiser’s vision and see where we stand

now. The chapter also includes the HCI aspect in the context of Ubicomp, as well as current

research in User-Ubiquitous Computing Interfaces and, in particular, we study some theories

and models that support the integration of user motions, activity and situations as possible

interaction paradigms.

2.1 Ubiquitous and pervasive computing

Thirty years ago, the concept of ”computer” almost exclusively referred to mainframes pro-

cessing input data and producing output results. At that time, the interaction between users

and computers was extremely limited and users were more often considered as operators than

clients. That was the first computing era with the concept of ”one computer-many users”.

Then, with the development of personal computers (PCs), the second era of computing began:

9

10 Chapter 2: Background and related work

”one computer-one user”. At that time, we saw not only the user operating the computer but

also clearly interacting with it through graphical user interfaces, keyboards and mice. In the

late ’80s, Mark Weiser, working at Xerox PARC, proposed a new computing concept called

ubiquitous computing (Ubicomp) [Weiser, 1991]. This new way of understanding computer

technology came from the fact that computers became smaller and could be embedded into

everyday things. It was a paradigm shift between ”one computer-one or many users” to ”many

computers-one user”, and the beginning of the third computing era (Fig. 2.1).

Figure 2.1: The three modern computing eras (source: [Krumm, 2010, ch.1])

The term ”Pervasive Computing” was proposed by IBM in the mid-90s (IBM Mobile

and Pervasive Computing), and had almost the same meaning as ubiquitous computing.

Ubiquitous computing tends to integrate disparate technologies to meet a design goal and

pervasive computing tends to develop wireless and mobile platforms running standardised

operating systems deployed in the form of smart phones (IBM WebSphere or J9, Android

and Java platforms). However, Want states in [Want, 2010, p.11]: ”more than 10 years later,

any unique position described by either party has been slowly integrated into the shared

vision and by the mid-2000s any publications that set out to describe this topic presented

fundamentally the same position”. From now on, we will use the term Ubicomp to describe

both paradigms.

2.2 Ubiquitous computing: definition of the paradigm

What fundamentally changed between desktop computing and Ubicomp? Ubicomp is a sub-

area of Distributed Systems and its main focus is research on how heterogeneous, networked

computing devices can be embedded in objects of daily use to enable applications to create

new user experiences. Weiser’s vision of Ubicomp was that computing will be embedded in

everyday artifacts, used to support daily activities, applicable to our work, managing our

homes, and for play [Want, 2010, p.4]. In other words, the computer, as we know it now,

will disappear into our environment and the computing power will fade inside the network

2.2: Ubiquitous computing: definition of the paradigm 11

infrastructure. Consequently, we will have more heterogeneous computing devices ranging

from small, specialised and interconnected devices to high-performance servers scattered in

our environment.

Weiser’s vision of ubiquitous computing has been largely adopted by the scientific commu-

nity [Dey et al., 2001, Loke, 2007, Abowd and Mynatt, 2000, Abowd et al., 2002, Greenfield,

2006, Bellotti et al., 2002] and Weiser is probably the most cited author in the field of Ubicomp

and Pervasive Computing.

2.2.1 Ubiquitous computing is not nomadic computing

Ubiquitous computing is often confused with nomadic computing and mobile computing

[Kleinrock, 1997]. Nomadic computing is the form of computing where the user can access his

data any where and any time while on the move. In the past fifteen years, we have witnessed

a substantial increase of mobile computing devices such as laptops, personal digital assistants

(PDAs) and smartphones. The main trigger of this change was the significant evolution of the

networking and (tele)communication capabilities. The Internet became part of our lives and

wireless communication in now available almost everywhere in different forms such as GPRS,

UMTS or WIFI. Other factors that have boosted the development of these technologies are

the need for mobility in our societies, and the decreasing cost of hardware and services.

Access to information (private or professional) and the ability to work everywhere or to be

reachable at all times have entirely become part of our lives. However, and even if we consider

the paradigm shift between desktop computing and nomadic computing, it is still a kind of

(mobile) desktop computing: there is still a direct and explicit interaction between the human

and computers.

Ubiquitous computing goes beyond this concept. In Ubicomp, as we will see later on, the

user does not necessarily interact explicitly with the computer through a screen, keyboard

and/or mouse. As stated by Weiser1:

”[ubiquitous computing] is different from PDAs, dynabooks, or information at

your fingertips. It is invisible, everywhere computing that does not live on a

personal device of any sort, but is in the woodwork everywhere.”

2.2.2 From Weiser’s vision to now: where do we stand?

Rare are the papers on Ubiquitous or Pervasive Computing that do not refer to Mark Weiser’s

fundamental article [Weiser, 1991]. Twenty years of research and a substantial amount of

projects have taken their inspiration from the central idea of ”computer everywhere”and ”calm

technology” [Weiser and Brown, 1996]. The questions now are: Is this vision of computer

everywhere a reality? Do we have concrete projects that implement the concept of calm

1http://www.ubiq.com/hypertext/weiser/UbiHome.html

12 Chapter 2: Background and related work

technology or ubiquitous computing? Did we reach the goals of calm technology? For the

first question, it is undoubtedly the case. For the other two, the answer is rather negative.

As mentioned by Rogers in [Rogers, 2006], considerable efforts have been made to realise

Weiser’s idea by developing frameworks, technologies and infrastructure to support people

in their daily life, but ambitious projects such as HP’s cooltown, IBM’s BlueEyes or MIT’s

Oxygen are still far from reaching the goal. And, even if our environment is augmented and

sensed by several sensors creating smart homes or smart environments, they do not match

up to a world of calm computing.

Bell and Dourish in [Bell and Dourish, 2007] argue that a gap exits between Weiser’s

vision of Ubicomp, particularly in the technological development, and the present time. The

invocation of this vision ”neglects the significant difference between then and now, and [the]

changing techo-social contexts”. In other words, they say that ”today’s technological land-

scape is quite radically different than that of the late 1980s”.

Bell, Dourish and Rogers’ arguments highlight two main problems. The first one is situ-

ated at the interaction level. Calm technology is supposed to help users release unnecessary

cognitive load while interacting with computing systems and carrying out other human ac-

tivities at the same time. Because users are surrounded by several computing devices simul-

taneously, those devices should not take a user’s full attention. It means that the interaction

mode with Ubicomp systems must be smooth and implicit and the technology should be put

at the periphery of user attention [Weiser and Brown, 1996] if any action is required. The

level of attention required by the different computing systems is adaptable and it moves back

and forth. The problem we face today is that computer systems are intrusive and capture the

attention of the user (e.g. large public displays, mobile phones, GUIs on laptops or desktops)

or require direct interaction too often.

The second problem is situated at the technological level. When Weiser published his arti-

cle in 1991, his vision was already implemented in lab conditions, ”complete with photographs

of devices that had already been designed and built, and reports on their use” [Bell and Dour-

ish, 2007]. But technology did not follow exactly the same way that Weiser predicted and we

moved from desktop computing to nomadic computing. With the miniaturisation of desktops

which were transformed into portable computers, laptops, PDAs and netbooks, we do not

reach the idea that computers will fade into the infrastructure but rather they physically

surround us and are part of our lives.

However, Want argues that smartphones are not so far from the original Xerox ParcTabs2

[Want, 2010, p.30]. Telecommunication has also completely changed our way of living with

exponential development of mobile phones and in particular smartphones. As mentioned by

Bell and Dourish, the first cellular service begun 1983 in the US and in 1988 there were

approximately 1.6 million subscribers. According to Want, in 2008, 1.2 billion cell phones

were shipped and we reached the level of 3.3 billion subscribers around the globe.

2http://sandbox.xerox.com/parctab/

2.3: Context-aware computing 13

The market and the development of mobile technology have clearly driven the research on

Ubicomp. Instead of experiencing Weiser’s original idea of calm technology, we have rather

desktop applications adapted to mobile computers (with a small portion of screen) that allow

users to communicate or get contextual information and services while moving. Even if

the surrounding user environment is enriched with sensors and computing power appears

in everyday life objects such as proposed in the MediaCup project [Beigl et al., 2001], we

are far from the idea of a user being surrounded by technology observing and acting in

an unobtrusive manner according to user needs. In this thesis, we explore the possibility

for Ubicomp systems to take advantage of this new generation of mobile, interconnected and

sensor equipped technologies for the development of applications that stick to the original idea

of calm technologies and interfaces. We propose an architecture which uses recent technologies

such as smartphones or smart environment and supports the development of context-aware

applications able to provide useful and non-intrusive services for users.

2.3 Context-aware computing

Since the ’90s, there has been a growing interest in context-aware computing. A significant

number of journals and conferences have published articles in this area [Hong et al., 2009].

The fact that the computing paradigm has changed from personal computing toward mobile

and distributed computing has initiated the development of a new type of application, smarter

and more adaptive to a user’s contextual needs. Context-awareness started in 1992 with the

ActiveBadge project of Want et al. [Want et al., 1992] which is considered as the first context-

aware application [Baldauf et al., 2007]. The ActiveBadge project was an indoor location

system based on a badge transmitting a signal each 15 seconds. This signal was recognised

and located within a building, giving the physical position of the person carrying the badge.

The initial application of this system was intended to be an aid for a telephone receptionist to

locate people and automatically transfer incoming calls to the nearest phone extension. In this

example, the main contextual information was the location, but context-awareness includes

more than one context. As mentioned by Shilit and Theimer, context-aware applications

adapt according to the location of use, neighbouring people, hosts, accessible devices and,

can examine the computing environment and react to contexts changes [Shilit and Theimer,

1994].

2.3.1 Context: concept and definitions

Even though many researches have studied ”context”, there is still no common definition. For

Shilit and Theimer [Shilit and Theimer, 1994] context is defined by the location, identity and

changes of nearby entities (people or objects). For Brown et al. [Brown et al., 1997], as for

Ryan et al. [Ryan et al., 1998], context is also identities of the people around the user, the

season, the time and temperature, for instance.

14 Chapter 2: Background and related work

There is also a different approach proposed by Schmidt, Beigl and Gellersen [Schmidt

et al., 1998]. They define a working model for context in which context has a unique name

and defines a situation that a user or device is in. The context contains a set of relevant

features. For example, a physical environment context has conditions (e.g. light, pressure,

audio), infrastructure and location as important features.

For Chen and Kotz [Chen and Kotz, 2000], context is a set of user relevant environmental

states and settings that determines an application behaviour. They consider five classes of

contexts: 1) computing context, 2) user context, 3) physical context, 4) time context and 5)

context history.

Korkea-aho [Korkea-Aho, 2000] considers context as situational information and states

that ”Almost any information available at the time of an interaction can be seen as context

information”. Some examples are :

� identity

� spatial information - e.g. location, orientation, speed, acceleration

� temporal information - e.g. time of day, date, season of the year

� environmental information - e.g. temperature, air quality, light or noise level

� social situation - e.g. who you are with, people that are nearby

� resources that are nearby - e.g. accessible devices, hosts

� availability of resources - e.g. battery, display, network, bandwidth

� physiological measurements - e.g. blood pressure, heart rate, respiration rate, muscle

activity, tone of voice

� activity - e.g. talking, reading, walking, running

� schedules and agendas

Lieberman and Selker [Lieberman and Selker, 2000] propose an approach where context

is an implicit input and output for an application and is used with the explicit input to affect

the computation and the output (Fig. 2.2).

Dix et al. in [Dix et al., 2000] focus on the use of context in the design of mobile

systems. They consider four different types of contexts. The infrastructure context concerns

the environment in which the mobile device and the application runs. The variability in the

infrastructure (wireless communication quality, service availability) can dramatically affect

interaction, and it is essential that interaction styles and interfaces also reflect the state of

the infrastructure. The system context covers two aspects. The first one is the possibility

to have applications distributed within several computing devices. The second aspect is the

capability for devices to be aware of other devices and to some extent, applications to be aware

2.3: Context-aware computing 15

Figure 2.2: Context is an implicit input that influences the computation and the output of a

context-aware application, [Lieberman and Selker, 2000]

of other applications. The domain context considers the semantics of the application domain.

It concerns the relationship between the application and the user, and the determination of

the appropriate interfaces. The physical context is the surroundings the mobile computing

system is aware of or embedded into. For instance, embedded computing systems are running

into application-specific devices and they may need to know their environmental context (e.g.

speed of the car). This information may be used to modify the interfaces, the behaviour, the

light intensity or simply be delivered to the user.

As mentioned by Loke in [Loke, 2004], the work of Shilit et al. provides a generic definition

of what context is Dey et al. [Dey and Abowd, 1999] propose a more operational and broader

definition of context:

[Context] is any information that can be used to characterise the situation

of entities (i.e. whether a person, place or object) that are considered relevant

to the interaction between a user and an application, including the user and the

application themselves. Context is typically the location, identity and state of

people, groups and computational and physical objects.

Context can also be seen as a way to represent a problem. As mentioned by Dourish in

[Dourish, 2004], software systems being representational, a concern with context naturally

leads to a concern with how contexts can be represented and encoded. Taking into account the

different definitions of Shilit, Dey and Ryan [Shilit and Theimer, 1994, Dey and Abowd, 1999,

Ryan et al., 1998], Dourish regroups four assumptions that underlie the notion of context.

First, context is a form of information. It can be known, represented and encoded. Second,

context is delineable. It is possible to define in advance for some set of applications what

16 Chapter 2: Background and related work

counts as the context of activities the application supports. Third, context is stable. Context

does not vary from instance to instance of an activity or event although it may vary from

application to application. Fourth, context is separable from activities. Activities happen

within a given context.

Even if there is no universal definition of context, we have pointed out four contexts, or

type of contexts, that are presented by the selected authors and with which we work in this

thesis:

1. Location: an entity (user or object) is always in a location. It is one of the most used

contexts.

2. Identity: the entity must be identified in order for an application to adapt its behaviour.

3. People nearby: who or what is around the entity and what are the relations between

them. It can help to deal with privacy issues for instance.

4. Environmental context: what are the physical conditions around the entity.

With these four categories of contexts, we can answer the ”where”, ”who”, ”who’s around”

and ”in which condition” questions. These types of context are used in this thesis to charac-

terise the situation of an entity (Fig. 2.3).

Figure 2.3: Types of context characterising the situation of an entity

2.3.2 Context-aware architectures and middlewares

The following review refers to work and projects that might seem to be outdated but they

represent the fundamental principles of the context-aware computing and are still mentioned

several times in recent papers and books [Krumm, 2010, Cipriani et al., 2011]. Context-

aware architectures present interesting aspects for the development of Ubicomp systems where

2.3: Context-aware computing 17

1) user’s environments are enriched by (possibly sensed) contexts, 2) mobile devices are

integrated within the environment and 3) the user-computer interactions tend to be as implicit

as possible. Context-aware architectures are frameworks and middlewares that support the

development of context-aware applications. Among the most known architectures developed

in the past twenty years, we find Shilit et al.’s PARCTAB [Shilit and Theimer, 1994] which is

considered as the first architecture (software and hardware) a context-aware application could

exploit. PARCTAB is a small handheld device using an infrared-based cellular network for

communication and acting as a graphics terminal. The applications run on remote hosts and

information is sent to the portable device. Applications adapt their content only according

to the location of the device. This system can be considered as a ”location-based” system

rather than a context-aware system as it deals with a limited number of contexts. Recent

context-aware systems include many other contexts such as the user’s profile, the time and

the people nearby.

The Context Toolkit, developed at the Georgia Institute of Technology [Dey and Abowd,

1999, Dey et al., 2001], is another well known context architecture that supports context-

aware applications such as the Conference Assistant or the Intercom, which keeps track of

the locations of people and enables people to send messages to other people using voice

commands. The Context Toolkit provides a strong formalism for describing contexts at

different levels of abstraction and contains three types of objects: 1) Widgets, implementing

the sensor abstraction, 2) Servers, responsible for aggregation of contexts and 3) Interpreters,

responsible for interpretation of context (Fig. 2.4). The interesting aspect of Context Toolkit

is the clear separation of data gathering from single or multiple sensors through widgets3, the

fusion of those data and the high-level description of context. But, it does not provide user

environment modelling which is also important in the process of context-aware application

development.

The Easyliving project developed at Microsoft Research [Brumitt et al., 2000] proposes

an architecture able to support and dynamically aggregate heterogeneous I/O devices (TV,

video, audio) within a single room. They focus on a middleware facilitating distributed

computing using asynchronous messaging, geometric knowledge (relations between people,

places, devices and things), detection of the people (in the room) and the service description.

The interesting aspect of this project is the management of the relation between users (people)

and between a user and the smart environment. However, Easyliving is strongly focused on

multimedia technologies and no downloads are available.

The University of Illinois at Urbana-Champaign has developed GAIA [Roman et al.,

2002], ”a distributed middleware infrastructure that coordinates software entities and het-

erogeneous networked devices contained in a physical space. GAIA is designed to support

the development and execution of portable applications for active spaces”. An active space

is a physical boundary containing objects, heterogeneous networked devices, and users per-

3Usually widget stands for windows gadget but in the Context Toolkit, it represents a sensor abstraction

18 Chapter 2: Background and related work

Figure 2.4: Context Toolkit architecture

forming a range of activities. An active space is coordinated by a responsive context-based

software infrastructure that enhances a mobile user’s ability to interact with and configure

their physical and digital environments seamlessly. GAIA is a meta-operating system and

an implementation of a CORBA4 middleware. The interesting aspect of this project is the

coordination of multiple situated devices and distributed applications. The limitation is given

by a proprietary scripting language and no downloads are available.

Reichle et al. [Reichle et al., 2008] propose a context model called MUSIC (Self-Adapting

Applications for Mobile Users in Ubiquitous Computing Environments). The authors de-

scribe the project as ”a comprehensive open-source computing infrastructure and an asso-

ciated software development methodology that facilitates the development of self-adapting,

context-aware applications in ubiquitous and pervasive computing environments”. MUSIC

is built on three layers of abstraction. The conceptual layer allows the definition of context

artifacts such as elements, scopes, and entities and their representation based on standard

specification languages like UML [Fowler, 2004] and OWL [OWL]. The exchange layer con-

cerns the representation of context (e.g. XML, JSON). Finally, the functional layer is the

actual implementation of the context model and can use different platforms such as Java or

.Net. The model is interesting for the context management, including the users, but seems

to not include the concept of activity associated with the users.

2.3.3 Context-aware applications

As mentionned by Dey [Dey, 2010], context-aware applications look at the who’s, what’s,

where’s, when’s. Context-aware applications adapt their behaviour according to the context

4CORBA (Common Object Request Broker Architecture) uses an interface definition language (IDL) to

specify the interfaces that objects will present to the outside world.

2.3: Context-aware computing 19

in which they run (user, activity, location, time). Here we review some applications of two

types in domains where contexts are useful for automatic behaviour adaptation: tour guides

and healthcare. As we are interested in location context and activity, the following appli-

cations propose interesting solutions for tracking users in their environment and providing

adapted services. As mentioned above, the first context-aware application was Want et al.’s

ActiveBadge [Want et al., 1992]. Nowadays, this application would be put into the category

of location-based services as it deals only with the user’s location. Location (physical and

symbolic) is probably the most used context and many projects and devices were developed

for this purpose. As mentioned by Hightower and Boriello [Hightower and Borriello, 2001],

”to serve us well, emerging mobile computing applications will need to know the physical

location of things so that they can record them and report them to us”.

Tour guides are typically a type of application that uses location context and user profile

such as the language choice to provide relevant information to the user.

The Cyberguide of the Georgia Institute of Technology [Abowd et al., 1997] proposes a

stand-alone application preinstalled on a portable device with all information. The Cyber-

guide receives beacons with a location ID and retrieves locally stored relevant information.

The main limitation of this application is the static behaviour of the system due to the local

storage of information and it does not take context other than location into consideration.

The GUIDE5 project of Lancaster University [Cheverst et al., 2000] proposes a context

sensitive tourist guide for visitors to the city of Lancaster. Users carry a laptop connected

via WIFI to retrieve information. Based on user preferences and the user’s environment

(location), the user obtains 1) broadcasted information about the region or 2) specific user

requested information. GUIDE is an evolution of the Cyberguide but still does not use

contexts other than the user profile and location.

Ghiani’s UbiCicero [Ghiani et al., 2008] proposes an environment which aims at supporting

multi-device interaction and games, integrated with a location-aware support exploiting RFID

technology. Their goal is to improve a user’s experience while visiting a museum by facilitating

access to information available and increasing the interactivity of the environment (Fig. 2.5).

In this application, the concept of user-environment interaction is important and reinforces

the user experience in a specific environment through a Ubicomp system. Also the RFID-

based tracking system corresponds to our approach of user tracking. This application does

not include user activity.

Another active research field is context-aware applications in health care [Bardram, 2004,

Gong et al., 2005, Catarinucci et al., 2009]. The information needs of hospital workers are

highly dependent on contextual information such as location, role, time of day, and activity

[Favela et al., 2007]. There exist commercial solutions such as Cisco Context-Aware Health-

care [Cisco, 2009] which enables hospitals to integrate real time contextual information such

as location and status of medical equipment and staff into the workflow. They propose a

5http://www.guide.lancs.ac.uk

20 Chapter 2: Background and related work

Figure 2.5: UbiCicero environment: the Museum Mobile Guide (Courtesy Ghiani et al.)

complete architecture supporting zone inventory and management, presence applications and

condition monitoring. Those applications are interesting as they include the user activity in

addition to other contexts such as the location and time of day. However, they often consider

static or predefined activities and process real-time motion in order to infer the user’s physical

activity.

There exist many other domains where contexts are used and the increasing popularity of

smartphones running platforms such as Android or iOS (iPhone OS), equipped with different

sensors have boosted the development of applications such as Aloqa6 or Jigsaw Beta Context

Aware App7. On Android, ”Aloqa solves both the search and discovery issues by utilising a

user’s context - their location, time, preferences and relationships - to notify them in real time

of friends, places, events and entertainment opportunities around them without delays” and

”Jigsaw can determine our location and our actions no matter where we are and it would store

the data for other applications to use”. This is now possible in mobile computing because of

the rapid development of several miniaturised sensors embedded in the handheld devices.

2.3.4 Sensing contexts

Another important issue in context-aware computing is of course the acquisition and the

processing of contexts in a broad sense. Integrating contexts into an application also means

acquiring contextual data in different ways. We consider two main ways that are relevant

in this thesis. One way uses the static description of the context such as the user profile,

6http://www.aloqa.com/
7http://www.bukisa.com/articles/405690 download-jigsaw-beta-context-aware-app-for-symbian-and-

iphone

2.3: Context-aware computing 21

for instance, using the Microsoft Active Directory8 or even, at a certain level, social profiles

available on Facebook or Twitter. The profile of a user can provide administrative or social

information that can help a context-aware application to adapt its behaviour.

The second way is by sensing the environment and getting real-time environmental in-

formation. We have identified two types of sensing. The first one consists in using sensors

placed in the user environment and the second one is the use of body or mobile device em-

bedded sensors. Body sensors can provide personal information such as heart rate or blood

pressure and are typically used in healthcare context-aware applications. Mobile devices are

also equipped with many sensors such as a GPS, a light detector, an accelerometer, a compass

and a thermometer, but also Bluetooth and WIFI used to locate people [Benford et al., 2005].

There is still work to be done at the level of data processing and representation [Gellersen

et al., 2002, Hung et al., 2004]. In this thesis, we focus on location sensors such as RFID

locator or wireless location techniques such as the one presented in the RedPin project9, an

indoor positioning system providing room-level accuracy, developed at the ETH in Zurich

[Bolliger, 2008]. RedPin is a finger-print system providing symbolic identifiers such as, for

example, the number or name of a room. This project is very interesting because it is a zero

configuration Java-based project running on Android and iOS mobile devices.

We also consider the accelerometer as a main sensor for the activity recognition with

algorithms and classifiers such as k-nearest neighbour (KNN) or Hidden Markov Models

(HMMs), näıve Bayes networks, decision trees and Support Vector Machines (SVM) [Mathie

et al., 2003, Ravi et al., 2005, Long et al., 2009].

2.3.5 Ambient intelligence and smart environments

User environments are also benefiting from the rapid development and miniaturisation of

sensors: they are becoming smart. The so-called ”smart environments” are combinations of

network-enabled devices and applications capable of adapting their behaviour in order to

provide context-aware services and to make the life of users more comfortable. As proposed

by Das and Cook [Das and Cook, 2006], a smart environment can be defined as ”one that is

able to autonomously acquire and apply knowledge about the environment and adapt to its

inhabitant’s preferences and requirements in order to improve their experience”. They point

out four main components that constitute smart environments and which are part of this

thesis: smart devices and embedded systems, wireless mobile communication, a computing

paradigm and a middleware.

Smart environments have become a dynamic field of research and many projects have

been developed around this topic. Based on the survey by Endres et al. [Endres et al., 2005],

some projects related to this research are taken into consideration here. Among them, there

is the EasyLiving project from Microsoft [Brumitt et al., 2000] presented in 2.3.2 as well as

8http://technet.microsoft.com/en-us/library/bb727067.aspx
9http://www.redpin.org/

22 Chapter 2: Background and related work

the Aware Home from Georgia Tech [Lesser et al., 1999]. The project provides a three-story,

5040-square-foot (470 m2) home that functions as a living laboratory for interdisciplinary

design, development and evaluation of applications such as Aging in place, Technology coach,

Family Video Archive, PowerLine positioning or Event detection, Baby steps and others. The

interesting part of this project is its implementation in real conditions and not only in a lab,

and also the development of user’s ”activity” detection which is one concern of our research.

The Aura10 [Sousa and Garlan, 2002] project from Carnegie Mellon University provides

a digital ’halo’ of computing and information while trying to reach goals such as maximizing

the use of available resources while minimizing the distraction of the user.

HP’s CoolTown11 represents real world objects (people, places, devices) through web

pages. The web pages automatically update themselves when new information about the real

world entity they represent becomes available. Web servers are used for the representation

of real world entities, and sensing mechanisms (bar code reader, infrared, etc.) for obtaining

URLs from real world objects and accessing their web representation. This project is probably

the closest to our goal in the sense that it deals with the virtual representation of people and

the relations with their environment. However, it is limited to web-based technology and

seems to not integrate the concept of activity.

MoCA [Viterbo et al., 2007], proposes a service oriented solution for smart environments

and is focused on applications which need to find appropriate services (such as a printing

service) and which do not necessarily involve a user. Metaglue [Phillips, 1999, Coen et al.,

1999] from MIT is part the Oxygen project12 and is a framework which seems to be partic-

ularly suitable for developing distributed information systems spread over many devices and

users, using agents as the basic underlying paradigm. Different aspects within those topics

are investigated such as security, authentication [Abdallah et al., 2007] and monitoring of

user activity [Hussain et al., 2009].

2.3.6 Discussion

In this section we have presented a concept which has changed the way of developing appli-

cations. Context-awareness has become a major trend in computer science since the ’90s and

we have reviewed three aspects that are related to this research.

The first aspect is the definition of context. We have seen that there is no universal

definition of context but we have identified types of contexts that are commonly used in the

computer science community. We believe that the first context to consider is the location.

There are no context-aware applications, to our knowledge, that do not integrate the entity

(user, place or object) location as context. The second one concerns the identity of the

entity. The identity context helps to adapt the application behaviour according to the entity

10http://www.cs.cmu.edu/ aura/
11http://www.hpl.hp.com/techreports/2001/HPL-2001-22.pdf
12http://oxygen.lcs.mit.edu/Overview.html

2.4: Human-computer interaction in ubiquitous computing 23

interacting with it. The third type of context is the physical environment around the entity.

It concerns elements such as time, temperature and light intensity for instance. Finally, we

also consider relations between entities as an important context to characterise the situation

of the entity.

The second aspect is the types of architectures and frameworks that were developed dur-

ing the last decades. We noticed that there are four distinct approaches: 1) supporting the

programming with context (from sensors to high level context representation), 2) setup of

a complete a context-aware infrastructure and applications with which the user interacts,

3) setup of context-aware infrastructure supporting the dynamic integration of mobile ap-

plications and 4) web representations of entities and the dynamic association of contextual

services. To our knowledge, none of these approaches and projects propose a clear modelling

tool that designers and programmers can use to theoretically define user environments (pos-

sibly smart environments) independent from the context-aware applications and/or services

they will provide on top of the environments.

The third aspect is the application domain of context-aware computing. We have pre-

sented two relevant types of context-aware applications that illustrate a need for the consid-

ered contexts. The first type is related to location-awareness and the contextualisation of

information content available for the user. The second concerns the management of informa-

tion related to activity in healthcare.

We found that the Ubicomp domain needs to be further explored in terms of:

� Comprehensive architectures that integrate flexible sensing mechanisms associated to

the environment and entities.

� Modelling tools to clearly separate the representation of an environment made of entities

(users, places, things) and context-aware applications or services.

� New modes of interaction that are more implicit and are based on user activity and the

context in which it is carried out.

The last point is important because it concerns the difference between the current state of

Ubicomp and its original idea. The next section will present the HCI aspects that can bring

current approaches of Ubicomp closer to Weiser’s calm computing concept.

2.4 Human-computer interaction in ubiquitous computing

When HCI intersects Ubicomp, many assumptions that are made when designing interaction

for ordinary computing devices are no longer valid. In Ubicomp, computers exist in different

forms and only a minimal portion are ordinary desktop computers. As pointed out by Weiser

and other Ubicomp researchers, interacting with a ubiquitous system should be done through

unobtrusive interfaces. More precisely, interfaces that should not capture the full attention of

24 Chapter 2: Background and related work

the user, who should still be able to use the system when performing other foreground tasks

(Calm computing) [Weiser and Brown, 1996]. Weiser stresses the importance of adapting

computers and their interfaces to human space and activity rather that the other way around.

In this vision, computers should follow users in their daily activity and be ready to provide

information or assistance on demand.

2.4.1 Post-desktop paradigm of interaction

Weiser’s idea of Ubicomp pushed researchers to develop a new way of understanding computer

technology, and also the necessary paradigm to interact with such systems. As defined by

Dix et al. the term interaction is ”any communication between a user and a computer”

[Dix et al., 2004], where computer means any technology, process or system, which in turn

could have non-computerised parts including other users. In desktop computing, HCI mainly

focuses on Graphical User Interfaces offering the WIMP (Windows, Icon, Menu and Pointer)

metaphor, and this interaction paradigm is clearly oriented toward direct manipulation of

graphical objects through a mouse and keyboard. Technological advancement over the last

fifteen years also allowed the development of mobile phones, smartphones and PDAs with

styli, tablets and touchscreens [Quigley, 2010, ch. 6.1.1]. More recent research proposed

the development of game controller input or gesture-driven control for game platforms such

as Microsoft Xbox and Kinect13 or the Nintendo Wii14. There are other aspects that are

considered in human-computer interaction such as manipulation of physical objects in the

user environment. This paradigm has been defined by Dourish as Embodied Interaction

[Dourish, 2001] and aims at exploring new interaction patterns where the user-computer

interface is moved off the screen and put in the real world. For instance, the Tangible User

Interface (TUI) paradigm [Ullmer and Ishii, 2000, Holmquist et al., 2004] replaces the desktop

GUI paradigm by a direct manipulation of physical objects called ”phycons”. The motion

of objects in physical space triggers the execution of operations and actions such as object

selection, service requests and application launching (e.g. music player). In [Rekimoto, 1997]

the Pick&Drop pattern, an extension of the Drag&Drop pattern, has been proposed to move

items across computers. Fitzmaurice, in his work on Graspable User Interfaces [Fitzmaurice,

1996], proposes to extend interaction with classical GUIs by means of physical objects (e.g.

LEGO bricks) over an augmented desktop surface. There is an alternative class of interaction

with computing systems called the Surface User Interface (SUI) [Quigley, 2010, ch. 6.3.2].

The system relies on self-illuminated liquid crystal displays (LCD) or projected surfaces of

different size. The interaction is relatively close to TUI by using computer vision and motion

detection, acoustic wave detection or resistive membranes which determine user input. SUI

is typically used in public places (kiosks, ATMs) or in many personal devices equipped with

touchscreens (smartphones, PDAs).

13http://www.xbox.com/en-US/kinect
14http://www.nintendo.com/wii

2.4: Human-computer interaction in ubiquitous computing 25

Even if TUI, SUI and Graspable Interfaces are a great achievement in HCI, they are

strongly biased by GUI interfaces: almost no new types of interaction induced by the nature

of physical space and objects have been proposed other than replicating those available on

desktop GUIs and using the WIMP metaphor.

2.4.2 From GUI to UUI: a new opportunity for human-ubicomp system

interaction

Ubicomp has the potential to simplify people’s lives through digital environments that sense,

adapt, and respond to people’s needs. This means that systems should be capable of detecting

a user’s behaviour, motion, gesture and intention. As pointed out by Greenfield [Greenfield,

2006], new physical interaction such as Rekimoto’s DataTiles project [Rekimoto et al., 2001]

represents only a short step to purely gestural interaction like the one present in Steven

Spielberg’s movie ”Minority Report”. As discussed in the previous section, the majority of

actual user interfaces made for potentially pervasive devices still involve the user in a direct

interaction.

In recent years, we have seen a new mode of interaction increasingly used in the design

of ubicomp systems and user experiences: sensor-based interaction. Originally designed to

measure the environment, sensors (thermostats, light intensity, infrared) were transmitting

data to systems which were then controlling different devices such as heating systems, lights

and air conditioning. Nowadays, sensors are increasingly used to control appliances that

previously required physical manipulation by the user. As mentioned by Ensing [Ensing,

2002], in the last decade, more and more sensors have been used to improve the capabilities

of applications. A basic example is an automatic light switch using a motion detector or

an infrared sensor. The information transmitted is the input of the application. It creates

a context and based on it, the application can produce a result. We experience a shift of

physical-interaction toward sensor-based interaction.

The problem with this shift of interaction mode is that in most situations, humans like to

keep control of their actions and interactions [Shneiderman, 1998]. As mentioned by Rogers

and Muller [Rogers and Muller, 2006], ”The lack of control in sensor-based interactions can

result in frustrating, annoying and distracting user experiences - especially when people are

caught unaware”. Bellotti et al. [Bellotti et al., 2002], address the problem of designing

sensor-based systems taking into account the user, the system and expectations during the

interaction (e.g. input protocol, feedback, mistake correction). Another problem that is often

discussed is the accuracy of data acquired by the sensors and the inferences themselves which

can be imperfect and therefore may cause imperfect predictions. This means that actions

should be triggered with caution.

However, sensor-based interaction is part of our life and we do not notice it anymore.

For example, the majority of shopping centres or airport entrances are equipped with auto-

matic doors and we are not systematically looking for a handle when entering these buildings.

26 Chapter 2: Background and related work

Sensor-based interaction can be used in two different ways. The first one consists of replac-

ing the physical contact to control a computing system or devices such as taps and switches

[Rogers and Muller, 2006] by motion and gestures, which are explicit and purposeful. In the

second one, the system reacts according to implicit actions executed by users. As proposed

by Ju et al. in their example of interaction with smartboards, they use the current distance

between the user and a smartboard to engage diverse interactions such as removing a screen-

saver or erasing the previous ”whiteboard” content and getting reading for new drawings [Ju

et al., 2008]. Dix [Dix, 2002] proposes the concept of incidental interaction and defines it

as ”where actions performed for some other purpose, or unconscious signs, are interpreted

in order to influence/improve/facilitate the actors’ future interaction or day-to-day life”. In-

cidental interaction is situated at one end of a spectrum of interaction. This spectrum is a

continuum where in the other end is intentional interaction. Intentional interaction includes

all purposeful commands that a user is giving to the system, whatever interface it uses (GUI,

TUI, SUI or sensor-based).

As our environment is increasingly sensed through various devices (mobile phones, move-

ment detectors, locators) and computers become more invisible or integrated in the physical

environment, we are inevitably moving toward implicit Human-Computer interaction (iHCI)

[Schmidt et al., 2005] where human activity (action and motion) is integrated to enrich the

contextual information. Even if the HCI in generally associated with the concept of GUI,

we consider in this research that iHCI can be associated with our concept of Kinetic User

Interface (KUI) as its goal is to take user’s motions and activity as an (possibly the main)

input modality like in activity-based computing. In the next sections, we review some work

and theories of activity-based computing and situation reasoning that are considered in this

thesis.

2.5 Activity-based computing

This thesis does not propose activity-based applications but focuses more on how user inter-

action with Ubicomp can include the user’s activity. We need to study what is currently done

in activity-based computing and what kinds of models are usually considered, in order to in-

tegrate them in our model and architecture. The goal is to offer an architecture that supports

such a paradigm and allows designers and developers to create activity-aware applications.

Even if context-awareness has brought a new dimension in the way users interact with

computing systems, Activity-based computing is one of the most promising steps toward

Weiser’s vision of Ubicomp. For Dey et al. [Dey et al., 2001] or Korkea-aho [Korkea-Aho,

2000], user’s activity is part of their context. Dourish [Dourish, 2004] argues that activity

is separable from the context and an activity is done within a context. As discussed in

chapter 3.5.3, we share Dourish’s opinion. However, human activity represents important

contextual information to make applications smarter. Up to now, often only environmental

2.5: Activity-based computing 27

contexts provided information to adapt the application behaviour. But, if they are enriched

by associating a current activity then the system can better infer on the user situation and can

react differently and more appropriately. For example, a smartphone changes its setting (is

put in silent mode) when it is located in a given place (in a meeting room). If the user activity

is added as a new parameter then it might react differently. If the user is ”having a meeting”

(the activity) then it is appropriate to set the phone in silent mode. But if the activity is

”reading a report” and the location remains the same, meaning in the empty conference room,

then the device can simply not react (stay in ring mode). Integrating activity as a main input

modality allows to develop more implicit or incidental interaction [Dix, 2002] with computing

systems.

The majority of research concerning human activity recognition only considers physical

activities. These are defined by Preece et al. as ”any bodily movement produced by skeletal

muscles that results in energy expenditure above resting level” [Preece et al., 2007, p.31].

Bodily movements can be relatively easily measured and identified in laboratory conditions,

however the use of isolated actions in analysing real-life situations outside of a laboratory is

much less fruitful.

As mentioned by Kaptelinin [Kaptelinin, 1996], the lack of an adequate theory of HCI has

pushed researchers toward Activity Theory (AT) as a possible framework for the development

of new HCI models. Bødker [Bødker, 1990] presented the basic idea and potential benefits

of activity theory to the HCI community. Since then, many papers have been written on AT

and HCI [Nardi, 1992, Norman, 1991, Draper, 1993, Kaptelinin, 1992, Kuutti and Bannon,

1993].

2.5.1 Activity Theory: concepts and applications

Activity Theory (AT) is a philosophical framework that allows the study of different forms

of developmental processes where both individual and social levels are interlinked. AT was

initiated by Russian psychologists L. Vygotsky, A.N. Leont’ev and A.R Luria in the ’20s and

’30s. AT is not a strict theory but more a set of basic principles usable in more specific

theories. The principles include the hierarchical structure of activity, object-orientedness, in-

ternalization/externalization, mediation and development. The object of AT is to understand

the unity of consciousness and activity [Nardi, 1995]. It is called the ”principle of unity and

inseparability of consciousness (i.e., human mind) and activity” which means that the human

mind can only be understood within the context of meaningful, goal-oriented, and socially

determined interaction between human beings and their material environment [Bannon and

Bødker, 1991]. The basic notion of AT is that the individual participating in an activity does

it to achieve a certain goal. Activity is a set of high-level goals and they correspond to either

desired states of the environment (e.g. moving from point A to point B) or internal cognitive

states (e.g. being happy). Goals can be made of sub-goals. As in holonic systems, a goal can

be part of a larger goal.

28 Chapter 2: Background and related work

After Vygotsky’s early death, Leont’ev extended Vygotsky’s research framework and pro-

posed a model of activity. In his model of activity, Leont’ev distinguishes activity, action and

operation. Actions describe what must be done to achieve an activity (to reach the final goal)

and they are typically conscious. Activities are realised with individual, cooperative, chained

or networked actions related to each other by an overall motive [Kuutti, 1996] (Fig. 2.6).

Operations are, in contrast, typically unconscious, routinised actions that require almost no

explicit attention. A good example of action-operation is shifting gears in driving. At the

beginning, all operations are conscious, coordinated actions, (ease the gas pedal, push the

clutch pedal, move the gear box lever). Then it becomes a ”routine” and the level passes from

”conscious” to ”unconscious”. Actions become operations and operations implement actions.

An action is performed by executing one or more operations. Operations can be used in many

actions and are typically executed by operating artefacts through their ”interfaces”. These

hierarchical levels of activity are interesting because they give a clear view of which steps raw

data representing the motion should pass in order to become an activity, and this is used in

our motion-aware model presented in chapter 3.5.2

Figure 2.6: Hierarchical levels of an activity

2.5.2 Models and tools

Activity-based computing (commonly named ”ABC” in the literature) is an active field of

research and there exist different models and tools to support user (human) activity as an

input modality for Ubicomp systems. As we are interested in architectures that support

the integration of user activity detection, we present a few models and environments where

human activity is specifically used as input into Ubicomp systems.

Ubicomp research in healthcare is particularly active and often integrates activity in the

computing process. We also propose a validation scenario which takes place in nursing home

environment where activity of elderly people is monitored (Ch. 6). Bardram [Bardram, 2005]

considers that healthcare is an interesting area for the development of pervasive computing

systems as it requires extreme mobility, and involves ad hoc collaboration, interruptions,

and a high degree of communication. The ABC Framework project [Bardram, 2005] has a

runtime infrastructure and a programming API, used to develop activity-aware applications

as well as to tailor the behaviour of the infrastructure. The type of activities used in the

2.5: Activity-based computing 29

ABC Framework are not physical activities sensed and represented in real time but more,

as described in the scenarios in [Bardram, 2005], tasks executed or possibly executable (e.g.

patient daily activity record or invitation for a ”radiology meeting” activity). Activities are

collections of configurations of services and data. Each service needs to be able to hand

over state information when needed. According to Bardram, activities can be broken down

along three dimensions: 1) task and material: activity is accomplished by carrying out tasks

which use or manipulate materials. A computational activity reflects this as a collection of

computational tools for carrying out tasks (applications and services), 2) time and space:

activities are managed and persistently saved over time, are distributed across computational

devices that can handle them, and are directly accessible to users in the user interface. 3)

users: activities are inherently shared, are collaborative and can have several participants.

Favela et al. [Favela et al., 2007] describe a project in a hospital environment for the

estimation of medical staff activity using neural networks. They train the network with

the information recorded from a workplace study conducted in a hospital. They claim that

with this approach, they correctly estimate hospital worker’s activities 75% of the time (on

average) and how, once an application has strong evidence of the user activity, it could adapt

itself by displaying information relevant to the task at hand, and infer secondary context,

such as availability. They also present an application on a mobile device that implements the

concept.

Moving out of the healthcare environment, Li and Landay [Li and Landay, 2008] focus

their attention on everyday life activity. They discuss Activity-Centered Design (ACD) which

is a set of perspective concepts which uses long-term and high-level activity (e.g. ”keeping fit”).

They propose an ”activity-based ubicomp prototyping process” supporting activity-centered

Ubicomp design. The idea is to analyse and model activities based on field observations and

then to create an interaction prototype. They use Activity Theory as ground theory and

apply the principle of operation-action-activity (Fig. 2.6) for the analysis and modelling of

activities. To represent context-rich human activities in a prototyping process, they extended

this hierarchy by introducing three new concepts: situations, scenes, and themes. Actions

(e.g. running) are performed in certain circumstances (e.g. in a gym or park and with

friends) called situations. The combination of an action with its associated situation creates

a ”scene” which represents a real scenario or observation of everyday life. In this article, the

authors also present the ActivityDesigner, a graphical application which allows ”a media-

rich representation of everyday observations”. ”A designer adds concrete scenarios about

everyday life to her design as scenes”and enables the creation of prototypes based on modelled

activities by allowing designers to specify stream-based interaction behaviours using direct

manipulation and an activity query language. It also supports real world experiments by

generating prototypes that can run on different devices allowing continuous in situ testing

over an extended time period. It also allows designers to monitor and analyse participant

behaviours for the next design iteration. The ActivityManager is very focused on the user

30 Chapter 2: Background and related work

activity monitoring and proposes the concept of situation but does not allow a third party

application to use this information to trigger specific actions.

Prekop and Burnett [Prekop and Burnett, 2003] propose a model of context that focuses

on capturing and using the context that surrounds the performance of an activity by an agent.

They call it activity-centric context. They argue that simply defining context is not enough

to be able to use the concept of context to develop context-aware applications. It is also

important to understand the properties of context and the relationships between context and

other closely related concepts, especially tasks or activities and users or agents. Context can

be seen as a container, holding information relevant to the problem or domain being examined.

In the activity-centric view of context, the problem is how to identify the information relevant

to the activity being performed before the activity has been performed? Their approach is to

refine the activity and the associated contexts from more generic activities and contexts to

more precise ones. They create cascading activities and contexts. It is an inheritance process.

In the paper, they give the example of the organisation of a workshop by an agent (a user).

The concerned contexts taken into consideration start from generic ”job context”then ”project

context”, ”task context” and finally refined to ”workshop context”. The activity ”organise

workshop” is surrounded by all the described contexts. They claim that with this approach,

applications can be truly context-aware as they integrate not only the direct contexts but also

the contexts surrounding the activity. The interesting point in this approach is that contexts

are used to refine activities but they do not consider, as Dourish does [Dourish, 2004], that

an activity can be done in different contexts and therefore it creates another user situation.

2.6 Reasoning on situation: an evolution of activity-based

computing

The notion of ”situation”has rarely been exploited in Ubicomp but it seems to be an evolution

of activity-based computing, as an activity associated with contexts represents a situation

[Dey and Abowd, 1999]. In this thesis, we are interested in supporting situations and present

two different approaches that have been proposed and developed in the scientific community

and review some applications using the situation concept.

2.6.1 Definition of situation

Situation has been discussed and defined by several authors such as Barwise et al. [Barwise

et al., 1991], Devlin [Devlin, 1991, 2006], Loke [Loke, 2004, 2007] and Li and Landay [Li and

Landay, 2008, 2006]. The first three authors propose a mathematical approach for situation

representation. Li and Landay are more focused on activity-based computing where situations

are parameters for activities [Li and Landay, 2006].

We often use the word situation in everyday life to talk about context. Situation and

context in written language often have different meanings. The Cambridge Advanced Learner

2.6: Reasoning on situation: an evolution of activity-based computing 31

Dictionary15 provides a definition which clearly reflects this relation: ”Situation is a set of

things that are happening and the conditions that exist at a particular time and place. The

context is the situation within which something exists or happens, and that can help explain

it”. This relationship between situation and context explains why people use situation and

context equally in spoken language. Cooper and Kamp [Cooper and Kamp, 1991] define the

notion of situation as: ”an object in situation theory which is defined by the collection of

infons16 that it supports, where an infon is a situation theoretic object which has a relation,

an appropriate number of arguments and positive or negative polarity”.

According to Loke, the notion of context is linked to the notion of situation. In [Loke,

2004], he mentions the definition of situation from the American Heritage Dictionary: ”The

combination of circumstances at a given moment; a state of affairs”. He proposes the aggre-

gation of (perharps varieties of) contexts in order to determine the situation of entities. In

that sense the situation is thought of as being at a higher level than context. Loke makes

a difference between activity and situation and considers an activity as a type of contextual

information to characterise a situation.

Devlin [Devlin, 1991] has included situations in his ontology for the study of information

and cognition (based on individuals, relations, spatial and temporal locations). An agent

world divides up into a collection or a succession of situations (situations encountered or

referred to). That is to say, an agent’s behaviour changes according to the situations it is

facing (behaviour of people or mechanical behaviour). Thus, people do not react in the same

way if they are in a threatening situation or a pleasant situation. A mechanical device will

not behave correctly if it is used in a situation it has not been made for. This vision of

situation shows that agents (entities in our model) adapt their behaviour to the situation. A

situation includes the individuals, relations, spatial and temporal locations and polarities. In

other words, a situation depends on the contexts of an entity. Li and Landay also propose

that an activity changes every time it is carried out in a particular situation [Li and Landay,

2006]: ”A situation is a set of actions or tasks performed under certain circumstances”, what

we call context.

2.6.2 Situation theory

Situation theory was formulated in the ’80s by Barwise and Perry [Barwise et al., 1991]

as a mathematical theory of meaning to support the study of situation semantics in an

analytic fashion [Devlin, 1991]. The development of this theory comes as a result of an

interdisciplinary effort, namely cognitive science, computer science and AI, linguistics, logic,

philosophy, and mathematics. The theory was approached from different perspectives, either

from a perspective of proof and mathematical rigor, or from a perspective of practicality.

15http://dictionary.cambridge.org
16an infon is a discrete informational item representing an entity of the world

32 Chapter 2: Background and related work

2.6.3 Application of situation theory

One domain where Situation Theory is used is in linguistics. Features such as self-reference,

relativisation of assertions to situations and direct access to the relationship between situ-

ations make situation theory applicable to many different aspects of language and commu-

nication and explain linguistic interest. Nivre uses situation theory [Nivre, 1991] to study

spoken language and human face-to-face communication. Devlin [Devlin, 1994] shows how

situation theory underlies the way we encounter the world and influences our behaviour and

communication in our society.

The use of situation theory in computer science was motivated by the mathematical and

logical issues that arise within it [Tin and Akman, 1994]. The inference issues in situation

theory were the main motivation in Artificial Intelligence (AI). The relationship between

information content and situation was used to analyze the information flow. Tin and Ak-

man [Tin and Akman, 1994] review different approaches (PROSIT17, ASTL18, BABY-SIT)

to computational situation theory and mention that those approaches are especially designed

with mechanisms allowing state of art constructs of situation theory. PROSIT is a situation-

theoretic programming language [Nakashima et al., 1988] implemented in common Lisp and

designed for knowledge representation. ASLT, developed by Black [Black, 1992], is imple-

mented in common Lisp and designed for natural language processing. BABY-SIT developed

by Tin and Akman is a computational medium based on situations and aims to provide

testing of programs in domains ranging from linguistics to AI by using situation-theoretic

constructs. With the growing use of the web and distributed systems, new approaches to use

the concept of situation are emerging. These approaches try to use situation theory to adapt

an application according to situations. Situation theory is not very developed yet in Ubicomp

but as far as the application behaviour can be adapted according to contexts and activity it

also concerns the situation of users. The complexity of situation theory and its application

has probably prevented researchers from using it. However, Loke proposes LogicCAP, an

extension of Prolog which uses the concept of situation programs. A situation program is

a logic program which allows to represent situations in a convenient way and can be done

by meta-programming. The representation of situation is made of collections of rules. This

makes LogicCAP a high-level declarative language. Thus, context-aware applications using

LogicCAP can be concisely expressed [Loke, 2004, 2007]. An interesting approach towards

the use of situation theory is introduced by Kokar [Kokar et al., 2009]. This approach aims to

capture situation-theoretical constructs within a Web Ontology Language. In this approach,

the ontology captures facts about the world and by using an inference engine other facts are

deduced. The advantage of this approach is that it uses a commonly supported language to

express situation and therefore bring situation theory to practice. However, situation theory

is, for now, marginally used in computer science and, compared to AT in HCI, not many re-

17PROgramming in SItuation Theory
18A Situation Theoretic Language

2.7: Summary 33

searchers have taken it as ground theory for their projects. It is a mathematical theory which

implies an important level of complexity when describing a situation with many parameters

(contexts).

2.7 Summary

This chapter has presented some relevant aspects of Ubicomp that are tackled in this thesis

and we reviewed different architectures, middlewares and frameworks that support Ubicomp

applications. We discussed the problem of context-awareness and types of context commonly

considered in context-aware applications (Sec. 2.3.6). We identified two aspects that are

further explored in this thesis: 1) Ubicomp architectures and 2) interaction modes with

Ubicomp systems.

The first aspect concerns the need of architectures that integrate flexible sensing mecha-

nisms associated with interacting entities and environments and the possibility to integrate

modules that process contexts, activities and situations of the interacting entities. Further-

more, it seems that there is a need for a better separation between the logical representation

of an environment made of different entities and the (smart) applications.

The second aspect concerns the interaction mode with Ubicomp and the dichotomy that

exists between the original vision of Ubicomp and its actual situation. Ubicomp is supposed

to promote natural and implicit interaction with computing systems that fade into our en-

vironment and infrastructure. Today we still experience a strong explicit interaction with

multiple mobile computing systems we can name nomadic computing rather that ubiquitous

computing systems. We have noticed that the traditional desktop computer has been trans-

formed into small and smart mobile computing devices (laptops, pads and smartphones) often

associated with the concept of Ubicomp. However, the interaction mode often remains the

same, meaning explicit, direct and using sophisticated and adapting GUIs, but it definitely

does not implement the concept of calm computing which Ubicomp systems are supposed to

promote. Users are interacting with many different devices often at the same time and their

attention is fully captured by those ones.

With the architecture we will present, we propose a solution to support in the future ap-

plications that will allow to reduce the explicit interaction with Ubicomp systems by following

the concept called Kinetic User Interface (KUI) which takes advantage of new technologies

such as miniaturised sensors put in our environment or in mobile devices to sense user’s

motion and activity. The goal is to use kinetic properties as an input modality and there-

fore develop a more implicit interaction with the computing system that can become truly

ubiquitous.

34 Chapter 2: Background and related work

Chapter 3

Conceptual model

Contents

3.1 System modelling . 36

3.2 General System Theory . 38

3.3 System . 38

3.4 uMove system . 39

3.5 Kinetic dimension . 51

3.6 Summary . 57

As presented in chapter 1.3, this thesis focuses on the development of the uMove frame-

work which offers a set of tools for the development of Ubicomp systems including those that

use motion as an input modality. The framework contains three distinct parts: conceptual

modelling, architecture design and implementation tools (Fig. 3.1). They allow to develop

the system from its abstract representation to an implemented solution.

Figure 3.1: The three facets of the uMove framework

In this chapter, we present the first part of the uMove framework, the conceptual model,

35

36 Chapter 3: Conceptual model

and the approach we have chosen to describe the components of a uMove system. The model

contains one possible perception of the world, the different objects populating it, the relations

between these objects, their behaviour and the objects logical representation. This chapter

is divided into two main parts: the first part defines the uMove system, the environment in

which entities interact and the way they are observed (Sec. 3.4). The second part presents

the motion-aware model, which shows how kinetic properties of entities are integrated in the

uMove model (Sec. 3.5).

Before describing our model, we need to clarify the notion of conceptual model and the

reason to use it. We define a conceptual model1 as a way to outline an approach to a

system analysis and modelling project. The model is made of a set of concepts describing

an existing system of objects, behaviours, functions, relationships and methods. uMove

conceptual modelling is necessary to properly define and clarify the concepts, the components

and, in particular, the vocabulary which we will use all throughout the development of the

project.

3.1 System modelling

Generally, context-aware middlewares or frameworks provide infrastructures and models to

support mobile, user-centric active space applications [Roman et al., 2002], context handling

mechanisms [Dey et al., 2001], and integration of heterogeneous devices [Brumitt et al., 2000]

and developers usually focus on the design of applications which include sensors and mobile

devices used by users. Applications are either strongly coupled to the middleware or are

environment dependent (e.g. Guide [Cheverst et al., 2002], UbiCicero [Ghiani et al., 2008]).

In the uMove project, we propose an approach which clearly separates the user environ-

ment and its logical representation from the sensing layer and the application. As in HP’s

Cooltown, where the entities (users, places and things) have a Web representation, our model

proposes a logical representation of an environment which evolves independently. This sepa-

ration of concerns allows applications to change without interfering with the environment. A

database, for instance, when queried, provides information to heterogeneous and unrelated

applications using protocols such as SQL2, but lets data evolve separately (by means of other

applications).

Our approach is motivated by two concepts which, we believe, Ubicomp systems should

implement:

1. A system should not be intrusive and should propose unobtrusive user interfaces.

2. The interaction between users and the computing system should be as implicit as pos-

sible.

1also named semantic model”
2Structured Query Language is a language for querying relational databases, developed at IBM by Donald

D. Chamberlin and Raymond F. Boyce in the early 1970s.

3.1: System modelling 37

To achieve these goals, the user environment (physical or virtual) should be observed by com-

ponents (e.g. software agents) called observers which do not interact with it. The observers

send events to the applications which then react and possibly send feedback to users. With

observers, an environment is clearly separated from the applications. It is, in some way,

similar to the MVC3 pattern first proposed by T. Reenskaug at Xerox PARC and originally

implemented with Smalltalk-80 [Burbeck, 1992].

To illustrate the concept of observation, we propose the example of UN4 observers or

peacekeepers (blue helmets) placed at the border between two countries during a cease fire

(Fig. 3.2). Their role is to watch the environment, to observe movements of troops of both

countries (the situation) and to react (or notify) when they detect violations of rules. These

rules are established in advance and must be respected by the actors on the field (e.g. soldiers

must not cross the no-man’s land). A UN observer reports any incident or violation to the

higher level (their hierarchical superior, such as the UN security council). The higher level

reacts and makes recommendations to the political institution of each country to change their

behaviour and respect the agreements/rules.

Figure 3.2: Example of a UN peacekeeping functional diagram.

Unlike the concept of perception, which is a passive process, observation is a proactive

process which allows to react, to adapt, to learn and to progress. We observe the solar

system or the universe, a cell, a population, an ecosystem or a social behaviour to learn

about them. We also continuously observe everything around us and adapt our behaviour

in the environment we belong to. We can see from these examples that the concept of

observation includes an observer and an observed element (a single entity or an environment)

and generally generates an output. The output can be used to modify the observed entity

behaviour (self observation) or to make the external entity modify its behaviour, e.g. a car

changing its trajectory after observing a traffic jam in its environment.

From a systemic point of view, when an environment and observers are put together they

3Model-View-Controller
4UN : United Nations

38 Chapter 3: Conceptual model

are called a system. Systems are everywhere: a cell is a (living) system, a social group is

a system, as is the universe. They are all managed by different kinds of rules and their

components have roles, and relationships with each other. For instance, our solar system

is managed by different forces that make all planets stay in their own orbits and create an

equilibrium.

In Ubicomp, the challenge consists in modelling the physical or logical environment in

which entities live and interact into a conceptual system representing the observed environ-

ment in a simple and flexible manner. The solution we propose uses a systemic approach

and the conceptual model is based on General System Theory (GST) [von Bertalanffy, 1969,

Boulding, 1956, Bouvier, 1994].

3.2 General System Theory

Ludwig von Bertalanffy was a biologist who, in the ’70s, developed the General System Theory

(GST), which generalises the concepts of systems used in specific scientific disciplines such

as physics, (bio-)chemistry, mathematics, biology, economics or social sciences. As stated by

Boulding [Boulding, 1956] : ”General Systems Theory is a name which has come into use

to describe a level of theoretical model-building which lies somewhere between the highly

generalised constructions of pure mathematics and the specific theories of the specialised

disciplines. [...] Each discipline corresponds to a certain segment of the empirical world,

and each develops theories which have particular applicability to its own empirical segment.

Physics, chemistry, biology, psychology, sociology, economics and so on all carve out for

themselves certain elements of the experience of man and develop theories and patterns of

activity (research) which yield satisfaction in understanding, and which are appropriate to

their special segment”. In other words, General System Theory tends to regroup ideas and

central concepts which describe specific systems, and propose general concepts applicable in

many kinds of systems. In the case of uMove, GST is an improved theory that offers the

necessary concepts to define the types of systems concerned in context-aware systems and

smart environments.

3.3 System

There are many definitions of systems. In our model we use parts of the definitions proposed

by four authors that we found particularly interesting and relevant to our work.

System as complex unit According to Alain Bouvier [Bouvier, 1994, p.18], a system

(complex organised unit) is a set of elements (components) in dynamic interaction, or-

ganised to reach a certain goal and differentiated within their environment. It has an identity

and represents a ”finalised whole” (principle of teleology).

3.4: uMove system 39

Everything is a system Edgar Morin [Morin, 1995, p.28] writes ”[...] Toute réalité

connue, depuis l’atome jusqu’à la galaxie, en passant par la molécule, la cellule, l’organisme

et la société peut être conçue comme un système”. This means that from atoms to a galaxy,

everything can be conceived of as a (more or less complex) system.

Types of systems General System Theory defined by von Bertalanffy [von Bertalanffy,

1969] gives the framework and the concepts to model specific systems studied in science.

Systems can be inert (dead) or living (evolutionary). A system is said to be inert when

every element is static (nothing ”moves”). Living (evolutionary) systems are in constant

change. A living system is defined by the dynamism of its elements (interacting with each

other). Systems can be open or closed. An open system is defined as a system exchanging

matter with its environment, representing import and export, building-up and breaking-down

of its material components [von Bertalanffy, 1969, p.141]. In this case the environment of

a system can be other systems. For instance, we can see the world as a whole extremely

complex and open system. The world (the planet) is one component of the solar system and

it is part of the equilibrium of this system. Conversely, a closed system is a system where no

exchanges are made with the outside.

Entity interaction Boulding [Boulding, 1956] mentioned that an ”individual” - atom,

molecule, animal, man, crystal - (entity) interacts with its environment in almost all disci-

plines. For Boulding, each of these individuals exhibits ”behaviour” (action or change) and

this behaviour is considered to be related in some way to the environment of the individual,

that is, with other individuals with which it comes into contact or into some relationship.

The important points in Boulding’s definition are that:

� The entity’s actions (activities, behaviour) are related to its environment.

� Entities have relations with each other.

3.4 uMove system

In our model, a system contains three elements. 1) An environment made of a set of entities,

2) observers and 3) viewers (Sec. 3.4.2). The environment is open and dynamic (living) and

its complexity evolves with respect to the entities it contains. An environment can contain

sub-environments and consequently, an entity can also be an environment.

Definition

A system is an observed environment.

A system S = (E,O,V) is given by

� a set E of environments

40 Chapter 3: Conceptual model

� a set O of observers

� a set V of viewers

Figure 3.3: System diagram

3.4.1 Environment and entities

In the uMove system model, an entity behaviour can be influenced by 1) the interaction with

the environment (other entities) it belongs to and 2) by feedback generated by the observer

and the processing of the actions it performs in the environment. For instance, an action

performed by a student in the cafeteria (environment) can be interpreted as inappropriate by

the manager (the observer) who might react and advise the student to change his behaviour.

In this case, the student is part of a system which is governed by rules in order to make it

work. The observation of the environment assures that those rules are followed and the whole

becomes a system.

Definition

An environment is a set of observable, interacting and interdependent entities,

physical or virtual, forming an integrated whole.

Figure 3.4: Examples of environments observed under different points of view

3.4: uMove system 41

To illustrate the concept of system, figure 3.4 shows two systems. In system A, a chemist

observes a reaction through her microscope. The chemist is the observer who reports her

observations, the environment is the interacting molecules (the entities) and the microscope

is the viewer, defining the scope of the observation.

In system B, the astronomer observes a comet approaching a planet with his telescope.

The system is defined by the astronomer, the interaction between the comet and the planet

and finally the telescope which gives a point of view on the situation.

Entities

In GST or in the definitions proposed by Bouvier and Boulding, a system is made of elements

that interact with each other. Those elements, called entities, are no doubt the main com-

ponents of the defined systems. In a uMove model, entities are what we observe and they

are the main component of an environment. In this section, we define the entity through its

main characteristics, which are relevant for our model.

Characteristics The characteristics presented below are the necessary ones to define and

manage all types of entities within an environment. They are: Identity, Status, State, Type,

Location, Structure, Role, Relations and Environmental contexts.

Identity and status The identity is needed to differentiate an entity within the environ-

ment [Bouvier, 1994]. It is the name of the entity and must be unique. In a Ubicomp system,

the identity can contain the name, the description of the entity, and a unique identifier (UID).

The status provides information about the mobility of an entity. In uMove, an entity can be

either mobile or static. A mobile entity can change its location and is therefore capable of

motions while a static entity does not move. Status is dynamic and can change over time.

The observer needs the status to infer on the entity’s situation (e.g. a static entity that is

moving can indicate an abnormal situation).

State and type The uMove model considers entities from real and virtual worlds and

an entity has two dimensions of properties: physical and organisational. Physicality is the

state of the entity: real or virtual, e.g. a real human or his avatar in a virtual world. The

organisational dimension is the type of the entity: physical or logical. A physical entity can

be a place, a building with physical boundaries or a graphical object in a GUI which has

graphical boundaries. Logical entities are typically all entities defined by rules, such as social

groups, geographical zones or name spaces (Table 3.1).

As shown in Table 3.1, in most cases, our model allows to classify entities. However, it

is not perfect and we see some limitations. For instance, the terms ”physical” and ”real” can

be confusing but we have used them and their opposites in order to respect their general and

accepted definitions. Another limitation could be in cases where both physical boundaries

42 Chapter 3: Conceptual model

Table 3.1: Examples of statuses and types of entities in a uMove model

and rules (logical boundaries) are used to define an entity. For instance, some countries may

have physical boundaries (e.g. a river) with another country and both governments respect

them by mutual agreement (defined rules). In this particular case, the entity falls into both

physical and logical types and the context of use must be taken into consideration to decide

which one is the more appropriate.

Location Location is an important piece of information that an observer needs to know

about an entity. It was one of the first contexts used in context-aware computing to adapt

application behaviour [Want et al., 1992]. In the uMove model, the location of an entity is

defined by two parameters: the coordinates and the address. The coordinates are considered

as the absolute location and are given in reference to a fixed point of origin [McGraw-Hill,

2002]. With a GPS device or software program such as Google Earth, a physical entity can

get their absolute location on Earth. In the uMove model, the point of reference could be

outside the considered system and is set for the entire system. This means that the coordinate

system used to locate an entity should be indicated, in order to convert it if it is different

from the one used in the system (e.g. WGS84 vs Swiss Grid format). For virtual entities such

as widgets in a GUI, the reference point is one specific coordinate in the graphical interface

(e.g. upper-left point of the screen in JAVA).

The other location parameter is the address (symbolic location). It shows where an entity

is located within the structure of the system. Like with a postal address, an entity is located

by following a path, e.g. 51, Wallaby Street, Sydney, Australia (Fig 3.5). Each component

of the address represents an entity. For virtual entities such as files, directories or web sites,

the URL is usually the address where the resource can be located.

In our model, we differentiate physical and logical locations. At the same time and same

point of reference (or view), an entity can be in only one physical location but in many

logical ones. For instance, if a physical place such as an office is divided into two logical

places representing two departments (accounting and marketing) and one particular desk is

shared by both of them, an employee working at this desk is physically in the office structure

and logically located in the accounting and the marketing department structure.

3.4: uMove system 43

Figure 3.5: Example of an entity located by its address

Structure The structure of an entity is defined by the entities it is made of. We have

introduced the concept of environments containing entities which recursively can be them-

selves environments under certain circumstances. An environment is therefore a complex

element which allows observers to get access to entities it contains. In this model, there

exist two types of structure for an entity: simple or complex. A structure is said to be

simple (atomic) if an entity does not contain any other entities (e.g. a user). An entity with

a complex structure is said to be composed (e.g. a building), contains other entities and

must have at least one entity (an atom) and have a dynamic structure. The definition of

a structure is environment-dependent in the sense that the same complex entity (e.g. the

world) can be characterised differently. As shown in figure 3.5, the entity ”world” is defined

by the continents and then the cities, but it could also be defined with states and counties

and finally the cities and streets.

Figure 3.6 shows the physical structure of an entity. Entity e1 is the root and has a

complex structure: e11 (complex), e12 (simple). The structure is represented by a tree.

Figure 3.6: Structure of the entity e1

For example, a house is a complex entity composed of rooms, people and objects. If it is

observed, it becomes a system and also the root entity of the system. A room is complex if

it contains other entities (rooms or people). The structure of a house can evolve over time

depending on people’s locations: At time t, three people stand in the living room. At time

t+1, two of them leave the living room (complex entity) and enter the kitchen (simple entity).

44 Chapter 3: Conceptual model

In this case, there is a change of structure. The entity ”living room” contains only one entity

and the entity ”kitchen” which was a simple entity at t becomes a complex one at t + 1 with

2 entities.

Role of entity We have seen that entities are made of other entities or located within an

entity and, in the different examples, entities were places, buildings, rooms, human beings or

objects. This means that an entity plays or has a role in a system and the role depends on

the state, type and the structure of the entity. We have defined two roles in our model of a

system: Actor and Place.

Actor An actor is considered as an ”atom” in the environment, has a simple structure

and can be physical (human, object, robot, artefact) or virtual (character in a computer

game, widget). The actor’s environment is made of other actors and places with which it

interacts and is located within a place. With an actor, only its activity or motion, contextual

information and relationships with its environment are taken into consideration. A cruise

boat, for instance, has a role of actor if we are interested in its motion information and not

what’s happening on board.

Place A place is a portion of structured space: it is delimited by physical or logical

boundaries and can be real (tangible objects, building, square, rooms) or virtually represented

by an artefact in computer games or a window in a GUI. Table 3.2 shows an example of places

classified by type and boundaries.

Type of places: Physical place Virtual place

Boundaries

Physical Building, room, square, park Window in GUI, computer

games, 3D animation

Logical Department, geographical

zone

Social networks (Facebook,

MySpace), web sites, groups

Table 3.2: A taxonomy of place

Physical boundaries are visible separations such as walls, floors and frames [Vallg̊arda,

2005]. Both real and virtual places can be physically bounded (building, room, square or

window in GUI). In a GUI object, we can also call these ”visual” boundaries instead of

physical ones. Logical boundaries are not visible but defined by rules such as political or

social agreements. An entity inside a real place defined by physical boundaries cannot be in

another place at the same time. By contrast, an entity can be inside two or more places at

the same time when those places are defined by logical boundaries and they overlap (Fig.

3.7).

3.4: uMove system 45

A virtual place with logical boundaries is called a ”group” which is defined as ”An assem-

blage of persons or objects gathered or located together”5. A group is a set of entities which

share characteristics, follow the same rules or have relations (social networks, associations)

between them. In the uMove model, a group is a virtual entity that contains other entities

(actors, groups or places) and does not have a ”real” location. The concept of group is very

important as it contributes to the definition of some relations between entities. Those rela-

tions are used, for instance, to allow or not some interactions between entities when trust

and privacy issues are concerned.

Figure 3.7: Entity in two places with logical boundaries

The differentiation between physical and logical boundaries and the multiple logical lo-

cations of entities changes the representation of an environment. A physical environment is

represented by a n-ary tree since a physical entity can only be in one place at a time and

therefore can only have one parent (Fig. 3.7). A logical environment is represented by a

graph because it can have multiple parents (i.e. a person can belong to many social groups

at the same time).

Activities in places In the uMove model, places are where actions, activities, motions

and interactions between entities (actors, places) happen. Activities are controlled within a

place. Places are governed by rules which determine the possible activities they physically or

logically afford (Table 3.3). Physical affordance is typically determined by the shape or the

dimension of a place (e.g. limited occupants in a room) and logical affordance concerns the

social aspect in real places (e.g. smoking in a non-smoking waiting room).

In our model, activities are listed in different categories and are attached to places. Rules

allow to check if a detected activity is acceptable or not in a given place. Rules use three

categories of activities: authorised activities, forbidden activities and negotiable activities

(not necessarily appropriate activities). To illustrate the concept of rules and activity lists,

we propose the example of a coffee shop where activities are checked by observers. We have

three activities and situations:

1. A customer is quietly drinking a coffee and reading a newspaper. This is considered as

5American Heritage Dictionary

46 Chapter 3: Conceptual model

Affordance: Physical Logical

Place

Real size, shape social, organisational, political

Virtual size of a window or screen respecting design principles for

GUI

Table 3.3: Example of aspects limiting place affordances

an authorised activity. Reading does not harm or bother anyone and a coffee shop is a

typical place to do it.

2. If in this coffee shop, ”no smoking”signs are put on walls, there is an immediate reaction

from the smoking detection system if a customer lights a cigarette. Smoking is clearly

in the Forbidden activity list.

3. We also have the third case (negotiable activity) where nothing is explicitly defined

about the smoking policy and someone lights a cigarette. The situation is evaluated

and the reaction depends on contextual information, like for example ”is the coffee shop

empty or not?” or ”is it lunch time?” or ”are children present?”.

Relations The notion of relation was introduced at the beginning of this chapter in the

definition of a system and is fundamental in the interaction between entities. In any system,

entities have relationships with their environment and those relations, called spatio-temporal

relations, are important because they provide information about the state of entities and

contribute to the evaluation of a situation. They also allow to define the structure and the

logical location of entities.

A spatio-temporal relation defines the physical or logical connection between entities with

regard to time and mainly concerns the location of entities. When an actor is near a place or

another actor at the same time, a temporary spatial relation exists between them. Relations

are dynamic and evolve with the movement (change of location) of entities. Our model of

spatio-temporal relation is inspired by the spatial relationship used in GIS6 [Calkins].

We differentiate spatio-temporal relations between an actor and another actor or a place

(actor-actor/place) and the relation between places (place-place).

Actor-actor/place relations An actor-actor/place relation is created between two enti-

ties based on their position (location). We have two types of such relations:

1. Proximity (Next To)

2. Containment (Inside)

6GIS stands for Geographic Information System. It is a computer-based system for capture, storage,

retrieval, analysis and display of spatial (locationally defined) data - The National Science Foundation, USA.

3.4: uMove system 47

Next To is the relation established when two entities are physically close to each other

according to a defined distance criteria. Inside is the relation established when an entity

(actor or place) is inside a place.

Place-place relations The place-place relation is established between two places. It

includes the possible connection of places defined by rules but not necessarily by physical

separation. We have two types of such relations:

1. Contiguity (Juxtaposition)

2. Coincidence (Overlapping)

Two places next to each other are juxtaposed. An open office divided into two places with-

out physical separations is considered as juxtaposed (e.g. the accounting and the marketing

departments sharing the same room).

Logical places can overlap and share part of their physical space. For example, land

belonging to a village can overlap a natural and protected zone. Both zones are managed by

different rules and do not have physical boundaries.

Representation of a relation A relation R is represented by a tuple of size 4 which

contains the two concerned entities, the type of relation and a time stamp:

R =< E1, E2, r, t >

E1, E2 = entities in relation

r = type o f relation

t = time stamp

Environmental contexts Contexts (user or entity contexts) were defined in chapter 2.3

as information that characterises the situation of entities [Dey and Abowd, 1999]. The main

contexts used in different projects, architectures and middlewares were the location, the

identity and the people nearby. Those contexts were presented above and are, in the uMove

model, part of the main characteristics of an entity. In this section we complete the definition

of an entity with environmental contexts. They are all contexts that provide information

about the surroundings of the entity. Typically, for a physical entity, the temperature, the

light intensity and noise level are environmental contexts. For a virtual one, time can be

an environmental context. The structure of an entity might be indirectly influenced by the

environmental contexts if they contribute to making inside entities change their location like,

for instance, in the case of an extreme temperature in the room which might make people

inside the room leave.

48 Chapter 3: Conceptual model

Conceptual link between location, structure, role and relation

Entities are defined in a way so that they naturally build a consistent environment, meaning

that they are identified, are located and have relations. As shown in figure 3.8, a link exists

between the location, the structure, the relation and the type of an entity. The location

indicates the position of the entity and therefore it is possible to establish a relation with its

parent entity (plain arrows). If the entity e11 is physically located in entity e1, we can establish

an Inside relation and also derive the role ”place” of the entity e1 because it contains at least

one entity. The other way to define the role of an entity is by its structure. It indicates which

entities it contains (if any) and allows to establish the relations 1) between the parent entity

and the children and 2) between the children. An entity located in a place which contains

other entities automatically has some relations with those entities (e.g. ”next to” relation

indicated by the dashed arrow).

Figure 3.8: Conceptual link between the location, structure, relations and role of an entity

Location and structure are powerful attributes that allow to build and manage (using

relations for instance) an environment.

Abstract representation of an entity

To summarise the concept of entity, figure 3.9 shows all components allowing the proper

definition of an entity with its contexts.

3.4.2 Observation

As defined in section 3.3, an environment becomes a system when it is observed. This

section presents the second part of the model of system which involves the observation of

an environment. The observation level is made of two components: observers and viewers.

They provide situational information about the environment to a higher level. The observer

represents the processing part of the observation (e.g. the UN observer) and the viewer is

the instrument used to observe, giving a point of view on the environment (e.g. binoculars).

3.4: uMove system 49

Figure 3.9: Composition of an entity in a uMove system

Observers

Observers are the ”active” elements that watch the entities in an environment. An observer

collects information (activities and contexts) about watched actors and places, analyses it and

determines their situations. The observer is programmed with a set of rules and a situation

reasoning logic which allow to infer on and to react to certain situations (e.g. dangerous

or inappropriate) in which actors could be. Observers analyse a small number of specific

situations or even only one unique situation. Our vision is to have more observers but less

complexity per observer (e.g. four pedestrians at a crossroad will be watched by four observers

instead of only one managing all types of situations of the four concerned entities). Observers

are the interfaces between the environment which evolves independently and the higher level

which takes actions according to the reported situation of the entities.

Viewers

The concept of viewer comes directly from concrete examples such as the UN peacekeeper

situation in figure 3.2. In this example, the soldier is using binoculars to get information

about the situation on the field. The binoculars provide a point of view on the situation and

the soldier sees only what is within the field of vision. In uMove, the viewer is based on the

same concept and it represents the environment in a certain form (e.g. tree or graph) and

can be set to focus on only a part of the environment. Observers can choose different points

of view to analyse the same situation (Fig. 3.10 a.). Many observers can choose the same

viewers but for different situation analysis (Fig. 3.10 b.). A viewer is a multidimensional

filter placed between an observer and the entities.

Dimensions A viewer allows (or constrains) the observer to focus on a certain part of the

environment. The focus can range from the entire environment to one atom. We have two

dimensions in our model of a viewer: range and level.

The range is a parameter that influences the scope (the angle) of the observation and

the level is the parameter which gives the granularity of the observation. The granularity

50 Chapter 3: Conceptual model

Figure 3.10: a) 1 observer using multiple views to watch 2 boats, b) multi-observers using one

view to watch their respective boat

means the number of components and sub-components in the entity tree that are taken into

consideration.

For instance, a photographer uses different lenses (wide angle or macro) according to the

level of observation. The wide angle lens will give a large view of the landscape but loses

all details like ants climbing a tree, or bees on flowers. If the focus is the bees on the flower

then a macro lens is needed. The level changes. In real life though, a photographer cannot

have a focus at the level of a bee and a wide landscape at the same time. This limitation of

range/level is solved in our model.

Figure 3.11: Observation of the ocean structure (first level): 2 boats & 1 island

Figures 3.11 and 3.12 show examples of applications which monitor the boat traffic around

the Sydney opera house. This observed environment becomes what we call a smart environ-

ment as it is monitored and boats can receive notifications if, for instance, their routes are

not as planned or danger is detected. In figure 3.11, the observer watches the activities of

the two boats with respect to the island. The range is the ocean (place) and it is interested

in the first level. It means that the moving boats (actors) and the island (place or actor) are

considered as the bottom of the tree, the atoms of the system.

In figure 3.12, the application is interested in the people, so the level changes. The observer

is now focusing on the activities of passengers on the boats down to the second decks. In this

3.5: Kinetic dimension 51

situation, boats and decks change their roles and become places and the atoms are now the

passengers in both boats.

Figure 3.12: Observation of the third level of the ocean structure

Like the UN peacekeeper point of view, viewers are dynamic and the point of view on an

environment can change over time by changing the two parameters Range and Level in order

to adapt to new situation needs for instance.

In the two last sections, we described the concept of ”system” made of an environment

and observations. We mentioned that the main component of a system, the entity, is capable

of activities which are reported and analysed at the observation level. The next section

presents the model ”kinetic-awareness” which will allow the integration of motion, activity

and situation analysis in a uMove system.

3.5 Kinetic dimension

As previously introduced, this thesis aims at enriching traditional context-aware computing

systems by adding the concept of activity and situation in the framework of the uMove system.

Interaction with computing systems based on user or object motion and activity is considered

as a possible and useful input modality for the type of Ubicomp systems we consider.

In this section, we present the concepts of motion, activity and situation and the way

they can be integrated in the uMove system in order to infer the situation of entities. Figure

3.13 shows the model and the different levels containing the kinetic components (motion,

operation, action, activity).

Our model offers a clear separation of concerns starting from raw data (sensor readings)

to a high-level semantics (situation interpretation). Observers and entities are responsible for

processing their specific information which, consequently, decomposes the complexity of the

motion-awareness into small interconnected modules (i.e. entities process their activities and

observers interpret situations).

52 Chapter 3: Conceptual model

Figure 3.13: General diagram of the motion-aware model

3.5.1 Separation between activity and situation

As figure 3.14 shows, the integration of motions and activity can be made at the level of the

application with or without the use of the observer concept. This type of integration already

helps to limit the explicit interaction by recognising the entity’s kinetic properties (motion

and activities) by means of sensors and to generate an appropriate feedback.

Figure 3.14: Activity-based computing: the application processes the input and gives feedback

The uMove model takes into consideration the concept of situation as a way to better

evaluate the need of an application to react and generate feedback to an entity (e.g. a user).

Figure 3.15 shows a clear separation between the situation analysis made by the observer

taking the motion, activity and contexts into account and the application generating the

feedback to the user when needed.

We now present our vision of motion, activity and situation and the way they are con-

nected in order to be properly integrated in uMove. Even if the purpose of this thesis is not

3.5: Kinetic dimension 53

Figure 3.15: Situation-based computing: the application receives a situation status including

contexts (e.g. time) and gives feedback if needed

activity recognition and situations analysis, we need to study models of those components in

order to propose a realistic integration in our framework. The approach to motion-activity-

situation we chose tends to be as generic as possible to allow future users (designers and

developers) to consider other modelling approaches of activity and situation.

3.5.2 Motion

Motion is the first semantic level of the model and is close to sensors responsible for acquiring

the raw data. Motion is a universal property of matter. Everything is moving or is in motion

in the universe. From atom to galaxy, every component is in motion. A motion is a continuous

change of position over time and is relative to a reference point.

In Wiktionary7, a motion is defined as:

1. A state of progression from one place to another.

2. A change of position with respect to time.

3. A change from one place to another.

A motion is more than a simple change of location (context) that happens over time. It

is a more or less complex combination of location changes and is recognised as activity or

action.

Based on the previous definitions we define a motion as follows:

Definition

A motion is any sequence of movements which involves a change of position of an

entity or part of an entity over time and in a given frame of reference.

7http://en.wiktionary.org/wiki/motion

54 Chapter 3: Conceptual model

A motion is said to be basic if it is composed of one and only one movement (one change

of location) between times t and t+1. Motion is complex if it can be decomposed into

more basic movements. Any mobile entity (i.e. actor or place) can produce motions. For

example, in a gliding activity, a pilot spiraling in a thermal to gain altitude makes a complex

(continuous) motion made of basic ones (turns).

We also differentiate two types of motions: exogenous and endogenous. We consider an

exogenous motion to be any change of location in a space with a frame of reference external to

the actor. The change of location of a walking person is considered as an exogenous motion.

An endogenous motion is any change of an actor’s position or part of the actor with a frame

of reference centered within the actor. Typically, gesture can be considered as endogenous

motion. Endogenous and exogenous motions can be done in parallel and/or be combined to

provide more information for the activity recognition.

We will see in the next section that combinations of motions create actions and, with the

presented model, activities stand in higher semantic complexity.

3.5.3 Activities

Activities are defined as ”lively actions or movements”8. In Activity Theory (cf. ch. 2.5),

activities set high-level goals and they correspond to either desired states of the environment

(e.g. moving from point A to point B) or internal cognitive states (e.g. being happy) [Kuutti,

1996]. For Loke [Loke, 2004], activity typically refers to actions or operations undertaken by

human beings such as ”cooking”, ”running”, ”reading” or ”listening to music”.

In the uMove model, an activity is information that indicates the current goal oriented

actions of an entity (e.g moving from A to B, reading, driving). Activity can be physical

or logical: A human moving from A to B does a physical activity, but thinking about global

warming to find solutions is a logical activity. In uMove, we consider both physical and logical

activity. Figure 3.16 shows Leont’ev’s model of activity [Kuutti, 1996, p.30] and the hierar-

chical relations between actions/operations and the activity (the goal). The uMove model

includes motion in the hierarchical level of an activity as it is one of the main components

of a physical action/operation (e.g. the movement of a person or the change of position of a

graphical object in a GUI).

Activity is what the observer needs to know about the entity to infer on its current

situation. However, an activity is not sufficient to properly determine the entity situation

and an activity is usually carried out in different contexts.

3.5.4 Contexts

Contexts were extensively presented in chapter 2.3 and are part of the entity definition.

Referring to Dey’s definition which says that context is any information that can be used

8Collins English Dictionary©Complete and Unabridged - HarperCollins Publishers 2003

3.5: Kinetic dimension 55

Figure 3.16: Hierarchical level of an activity in AT and in uMove model

to characterise the situation of entities [Dey and Abowd, 1999], the uMove model considers

the identity, relations, location and the environment of the entity as the main contextual

information used at the observer level to infer on the situation. We consider that an entity

does activities in different contexts. As shown in figure 3.17, activity and contexts are attached

to an entity. uMove systems use different kinds of sensors to gather entity-related data and

transforming them into information before using them at the entity level.

Figure 3.17: The sensed data are processed before being sent to the entity level where activity

and contexts are stored

3.5.5 Situations

The concept of situation is the highest semantic level of our ”kinetic” model which includes

motion and activity-awareness, and is inspired by the work of Loke [Loke, 2004, 2007] and

Devlin [Devlin, 1991, 2006] who propose a mathematical approach for situation representa-

tion, and Li and Landay who are more focused on activity-based computing where situations

are parameters for activities [Li and Landay, 2008, 2006]. Loke makes a difference between

activity and situation and considers an activity as a type of contextual information to char-

acterise a situation. For Devlin, a situation includes the individuals, relations, spatial and

temporal locations and polarities. In other words, a situation depends on the contexts of an

entity. Li and Landay define a situation as a set of actions or tasks performed under certain

56 Chapter 3: Conceptual model

circumstances. Circumstances are what we call contexts. The following example illustrates

the relation between activity, contexts and situation: A person doing his jogging in a shady

environment, such as a forest, in the middle of a summer day is in a different situation than

when doing the same jogging along a busy road, at the same time and without shade.

Our view of situation combines the two visions (contexts and activities) and we define it

as follows:

Definition:

A situation is any activity performed in contexts.

As figure 3.18 shows, we divide our model into two parts. First, at the entity level, we have

the activities and contexts and include motion detection. Second, situations are analysed at

the observer level. Observers get high-level semantic information and do not deal with sensed

motions and raw data.

Figure 3.18: activity and contexts are components of a situation

The usefulness of a ”situation-aware”model resides in the willingness to limit the unneeded

interaction between 1) the environment being observed and the application and 2) between

the application and the user or object of the system. In the jogging example, the situation

analysis can allow the system to determine the physical condition of the person and, in case of

health danger (heat stroke), send a warning to the jogger. This is a typical danger avoidance

scenario which can be extended to many others such as assistance of impaired people or

prevention in dangerous working environment.

We conclude this section with a bottom-up overview of our kinetic model. As shown in

figure 3.13, the model is divided into four levels (sensor, entity, observer and application).

We consider that the application has the highest semantic complexity, receiving the events

from the observers, and sensors provide the less complex information (raw data) needed at

the entity level for interpretation and contexts such as location, acceleration and time. In

section 3.5.2, we presented motion as one of the main components (input) of operations or

actions. The actions/operations shown in figure 3.13 are one possible model of recognising

an activity based on the detected motion. In parallel to the activity process, sensors provide

the raw data for contexts associated with the (moving) entities. At the observer level, the

situation is derived from the entity activities and the contexts.

3.6: Summary 57

We will see in the next chapters that, depending on the requirements, the system to be

developed can be a context-aware system if only contexts are taken into consideration, or

it can become motion-aware or activity-aware if motion and activity are processed. Finally,

if the system includes situation processing, it becomes situation-aware. A combination of

the components (contexts, motions, activity and situation) is also possible. The presented

model and its integration in the uMove framework offers an interesting flexibility in terms of

Ubicomp system modelling.

3.6 Summary

In this chapter, we described the model of the uMove system and introduced its different

components. We started with the general definition of a ”system” from a systemic point of

view and our interpretation and its adaptation to this research. The approach is to model

an environment (real or virtual) as a logical representation which will interact with an appli-

cation. The main component of an environment is the entity which can be a human being or

objects (physical or logical). Entities have characteristics such as identity, location, structure

and relationships with other entities in the environment and they also include the environ-

mental contexts (e.g. temperature, light intensity, noise level). We differentiated two roles

for entities: actor and place. We also presented the concepts of observers and viewers which

are the objects in charge of the observation of an environment. We defined a uMove system

as an observed environment. Observers do not interact with an environment but only report

to the higher level when something happens. The second part of the chapter described the

Figure 3.19: A complete uMove System: logical representation of a school and students being

observed by the applications

58 Chapter 3: Conceptual model

kinetic model of the uMove system. Entities do activities within an environment and are

influenced by the contexts in which they are carried out. The combination of activities and

contexts creates the situation of the entity. In the uMove model, the main role of an observer

is to get the two parameters, activities and contexts, and to determine the situation of one

or more entities, and if needed, report to the higher level (the application). Figure 3.19

shows a simple example of a complete uMove system which models a school where students

are observed in a corridor. Such tracking could be useful for applications that, for instance,

remind the student about a lecture when he/she is located far from the classroom and time

is running out to reach it. Or, an application indicating the position of classmates (belonging

to the same group) to a student only when he/she is nearby.

Chapter 4

System Architecture, Design and

Evaluation

Contents

4.1 uMove middleware: a multilayer architecture 60

4.2 Mobile uMove system . 68

4.3 Coordination and communication in uMove 68

4.4 Applications and services . 69

4.5 IWaT: methods and tools to test the uMove system 70

4.6 Summary . 74

This chapter presents the second facet of the uMove framework (Fig. 4.1) which is the

functional architecture of a uMove system, applications and services.

Figure 4.1: The three facets of the uMove development framework

Based on the conceptual model presented in the previous chapter, Ubicomp system de-

signers need to be able to define the specific architecture and components they need for their

59

60 Chapter 4: System Architecture, Design and Evaluation

projects. The first part of the chapter (4.1 - 4.4) describes the different components of a

server-based and mobile uMove system and its associated applications, the relation between

mobile and server systems and the concept of services. The second part (4.5) presents the

way in which developers can use this architecture to design a real uMove system and evaluate

this design before the implementation phase.

Before starting the description of the uMove system, we need to define what we consider

as a server-based and/or mobile uMove system and the concept of client-server architecture.

First, we will see that a uMove system can run both on a ”server” meaning any machine that

is connected to a network (possibly wireless) and on a mobile device able to be connected to

a network (WIFI). The server-based uMove system usually manages a more complex system

like for example an entire building with many users, floors and rooms. The mobile uMove

system often represents a unique user (the unique entity) carrying the mobile device and

is connected to a server-based system. We consider this architecture as a client-server one

because services running on the server have a client part on the mobile device and the client

service (process) interacts with the server service (process) [Coulouris et al., 2001, p.34].

4.1 uMove middleware: a multilayer architecture

A uMove system architecture is divided into different layers representing the sensors gathering

the entity data, the environment with all entities, and the observers and viewers which relay

the processed entity information to the application. This layered architecture is called the

uMove middleware and allows 1) to represent the physical environment, 2) to connect physical

sensors to the uMove system and 3) to connect applications or services.

Figure 4.2: General diagram of the uMove middleware

A layered architecture allows for a clear separation of concerns of the different objects

in the uMove system and divides the complexity of the whole project into different layers.

4.1: uMove middleware: a multilayer architecture 61

Another advantage of this type of architecture is the possibility to conceptually change one

layer with no consequences for the other layers.

As shown in figure 4.2, the uMove middleware is divided into three layers: the sensor

layer, the entity layer and the observation layer. Each layer is responsible for the different

components of a uMove system and separates the semantic levels of the system. It also has

clear interfaces to communicate with the other layers. In the following sections, we present

the different layers of the middleware starting with the physical level which is the lowest

semantic level of the system and finishing with the highest semantic level represented by the

applications and services.

We consider that an implemented uMove system becomes a uMove middleware. The

term ”middleware” is usually used in computer science to define the software layer that lies

between the operating system and the applications on each site of the system [Krakowiak,

2007]. We consider the uMove architecture as a middleware because it offers a platform

between the physical layer (sensors, the OS) and the logical layer (applications or services)

but also between server-based systems and mobile devices (Fig. 4.3).

Figure 4.3: a uMove middleware connecting the sensors to an application, and connecting

server-based systems and mobile devices

4.1.1 Sensor layer

In the uMove model, sensors are an entity’s source of contextual information. A sensor can be

individual, meaning that it provides data for one entity, e.g. temperature, GPS coordinates

or heart beat frequency. Usually this kind of sensor is carried by the entity on a mobile

phone or on specialised devices. A sensor can also be centralised and available for all entities

in the system. For instance, an RFID locator system can be a ”server-based” sensor if the

active parts (readers) are wired in the building and the users carry only passive tags. In this

case, the RFID locator maintains a user ID registry and looks for the corresponding entity

62 Chapter 4: System Architecture, Design and Evaluation

each time a tag is read in an identified place in the building. If the ID matches an entity, its

location is updated. This implies that all entity objects must be connected to this location

sensor. However, if the places in the building are equipped with passive tags and the users

carry the readers (e.g. integrated in their mobile devices) then, each entity must process its

location when a tag identifying a room is read. In this case, each entity is connected to an

individual location sensor.

The integration of sensors into a system can become complex depending on the type of

sensing architecture and the types of sensors. In uMove, physical sensors are separated from

entities by sengets1 which are logical abstractions of the sensors connected to the system.

Sengets can be attached to one or more entities depending on the type of sensors. This

concept is similar to the ”widgets”, used in Dey et al.’s Context Toolkit [Dey et al., 2001],

which are an abstraction of connected sensors. We use the term ”senget” instead of ”widget”

because originally, widgets are related to control objects (e.g. buttons or sliders) in a GUI

and are visible, which is not the case of the object representing the abstraction of a sensor.

The previous example of the RFID location system perfectly illustrates the concept of

sengets. As shown in figure 4.4, the generic senget is a ”location senget” and its role is 1) to

process a location of an entity with the data received from the different connected sensors

(RFID, WIFI, Bluetooth or the GPS) and 2) to send high level location information (the new

parent entity ID) to the newly located entity. The received data contain different types of

information such as, in the case of an RFID sensor, the read ID tag of a person and the ID of

the reader. Information is processed at the level of the senget which matches the detected ID

tag with an entity found in an entity registry and the parent entity where the RFID reader

is located. Finally, the senget sends the entity ID (not the tag ID anymore) and the location

(parent entity ID) to the entity object which then updates its new location.

Sengets make the sensor layer flexible and they represent the first semantic level of the

uMove middleware by processing the raw data from sensors into uMove objects. They also

hide the complexity of the connected sensors from the entity. In our example, if the physical

indoor location sensor changes (e.g. from RFID to WIFI or Bluetooth) or the four sensing

systems, shown in figure 4.4, are used in parallel, the entity is neither concerned nor aware

of it: when one of the sensing system detects a change of location, it sends a message to the

senget which then processes it according to the type of information (Tag, MAC address, room

name) received. The senget sends only one type of message to the concerned entity, with the

entity ID and the new parent entity ID. For the GPS sensor, the location senget sends the

parent entity ID as well as the coordinates.

Depending on the complexity of the data processing, it may be more appropriated to have

one senget per sensor technology instead of one senget accepting all types of data. In the

location senget example, the setup could be made with four different sengets, each processing

one type of data.

1Stands for sensor gadget similar to the concepts of widget (window gadget) or phidget (physical gadget)

4.1: uMove middleware: a multilayer architecture 63

Figure 4.4: Example of a sensor layer implementing a location senget and four types of location

sensing technologies

All types of sensors (e.g. temperature, accelerometer, light intensity, compass and hy-

grometer) are accepted in uMove as soon as they have a driver respecting an interface with

the senget object and their data are processed by the senget into a contextual information for-

mat accepted by the entity. Sengets use different concepts of processing and communication

which are described later in this chapter.

4.1.2 Entity layer

The entity layer is the core layer of the system and contains the logical representation of the

physical environment (i.e. users, places, objects) being observed. Each entity (actor, place

or zone) is defined by its identity, role, status, location within the environment (logical and

physical), structure, contexts and current activity (Fig. 4.5 a). As shown in figure 4.5 b), the

Figure 4.5: a) components of an entity; b) entity location principles: physical and logical

parents, and structure

64 Chapter 4: System Architecture, Design and Evaluation

entity location is defined by 1) one physical location (its parent entity) and 2) one or more

logical locations represented by the up arrows. The physical locations of entities organise the

environment in an n-ary tree and all entities have a parent node except for the root of the

environment (e.g. the world or the building). The logical locations (dashed arrows) organise

the environment in a graph because an entity can have several logical locations (parent nodes).

The structure of an entity is made of entities (children) which are represented in figure 4.5

b) by the down arrows. As with the root of the tree which has no parent, the leaf entities

have no children and their structure is empty. The entity tree (and/or graph) represents

Figure 4.6: Entity layer, sensor layer

the e-space (Fig. 4.6). The entity layer also contains two other components: the relation

manager and the activity manager. The relation manager is a component which processes

the relations of an entity taking into account its current location and contexts. Relations are

not stored within an entity, but processed when needed. This guarantees real-time relations

and gives a snap-shot of the entity surroundings by checking what is nearby or inside. The

relation manager is provided by the framework and can be used by the developer whenever

the state of an entity must be known.

Contexts of entities are updated with the information provided by the connected sen-

gets. Sengets send messages (the inter-object communication is presented in section 4.3) to

the entity each time they process a change of value received from physical sensors. Con-

textual information is stored within the entity and contains processed values such as <

Temperature ; 37.2 ; celsius > and not raw data.

4.1.3 Observation layer

The third part of the uMove middleware is the observation layer which stands on top of

the entity layer and is, semantically, the highest level before the applications and services.

The role of this layer is to observe the e-space, or part of it, and to report entity changes

to applications. It contains three components: 1) the observers, 2) the viewers and 3) the

4.1: uMove middleware: a multilayer architecture 65

situation management.

In a project, the design of the observation layer first consists in a proper definition of an

observation strategy. Depending on the type of application, the configuration of observer-

viewer will be very different. For instance, if the environment is a train station and the

application is responsible for observing the misbehaviour of people, such as roller skating

fast in the main hall, then one observer and one viewer focusing on the hall are enough.

The observer receives all messages from entities located in the hall and processes only their

acceleration context. If a person is identified as moving too fast, then it is possible to a create

specific observer and viewer focused on this person in order to process a specific situation

based on his or her activity. Now, if the application tracks technical staff at the train station

in order to optimally assign work or tasks, then another observer-viewer configuration may

be set up. Observers can be attached to one or more viewers, and viewers can be used by

one or more observers.

Figure 4.7: Two viewers observing the eSpace with two different roots and levels

The differentiation between the observer and the viewer comes from their specific role

in the system. The goal was to divide the complexity of the observation process into two

specific parts. Viewers are responsible for managing the representation of the environment

they focus on and relay all messages coming from entities in the range of their observation to

observers. A viewer is set with only two parameters, which are the root entity and the level

or the depth of its observation (Fig. 4.7). More specifically, a viewer updates positions, adds

or removes entities in the observed tree and relays entity events to the connected observers.

Conceptually, the observers are the interfaces between the eSpace (through the viewers)

and applications or services. Their role is to receive entity events such as changes of location,

identity, contexts, status, structure or activity. An observer is used to process and filter entity

events according to the application needs. The idea is to provide only relevant information

to an application and ignore the rest. Different applications observing the same environment

may need specific types of information and distinct types of observers processing and filtering

events. For instance, a person might have his health condition monitored by one application

66 Chapter 4: System Architecture, Design and Evaluation

and his time schedule or agenda by another application and, in those two cases, two specific

observers are required.

Figure 4.8: Observation layer completing the uMove system architecture

In the observation layer, the event processing essentially concerns the situation of the

entity. For each received event, the entity situation is (re-)evaluated by the attached observers

and their situation managers (if they are present) and the result (situation status) is sent to

the application level (Fig. 4.8). If no situation managers are attached to the observers then

events (e.g. entity contexts changes) are processed by the observer logic (e.g. filtering some

events) and if necessary sent to the application.

However, it might happen that applications need to know every change of the observed

entities and the observers are set to relay everything without event or situation evaluation.

The uMove middleware can be used without any processing between the entity and the

application.

4.1.4 Message processors

We have presented the different uMove objects (senget, entity, viewer and observer) in the

three layers of the uMove middleware and they all ”process” information coming from a lower

level in order to be sent to a higher one. The type of processing is proper to each type of

uMove object (entity, senget, observer, viewer) and also to each object. This means that, for

example, all entities of an environment are independent from each other and can have their

own logic processing their specific contexts received from the sengets they are attached to. To

make uMove as flexible as possible, we developed the concept of a message processor which

4.1: uMove middleware: a multilayer architecture 67

was motivated by the need for the senget object, generic by definition, to implement different

algorithms depending on the type of connected sensors. Message processors are separated

from uMove objects and are objects that implement the specific logic to process the different

types of incoming messages.

Figure 4.9: Message processors attached to all uMove system objects

With this concept, developers can define their processing logic without redefining the

uMove objects (entity, senget, observer and viewer) and a message processor can be replaced

by another one, for instance, more adapted to the new characteristics of the system. This

concept was then generalised to all levels and all objects of a uMove system (Fig. 4.9). In the

next chapter, we will present standard implementations of message processors for all objects

of the uMove middleware, making it usable as such.

4.1.5 Activity and situation manager

As mentioned in the previous chapter, the uMove middleware can be set to be context-aware

only or activity and/or situation-aware depending on the application requirements. This

means that the middleware can process, or not, an entity’s activity and situation for the whole

or only a part of the environment. If activity and situation are taken into consideration, they

are processed at the level of entity and observer respectively by two specific objects called

the activity and situation managers, which are attached to the message processors. The two

managers are independent and must be specifically developed for groups of entities or for

each specific entity and observer (for the situation).

68 Chapter 4: System Architecture, Design and Evaluation

Figure 4.10 shows the flow of information between a sensor and an entity. When a sensor

event is sent to the entity (1), the message processor processes the event (2) and, if needed,

(3) transfers it to the activity manager for activity recognition and/or update and waits for

the answer (4) before storing the activity in the entity. Finally, the entity sends a message (5)

through the viewer to the observer to inform it about the change. At the observer level, the

same principle is applied for the evaluation of the entity’s new situation using the observer

message processor and the situation manager.

Figure 4.10: Context change and activity management at the entity level

4.2 Mobile uMove system

As introduced at the beginning of this chapter, the uMove middleware can be set up as a

server-based component. There are two cases where uMove can be set on a mobile device. In

the first case, a uMove system can be composed of one entity which has different connected

sensors and which runs different location-aware (e.g. using Google maps) or activity-based

applications. These kind of systems could run on a smartphone and be used by users when

moving. No connections with a server are required; the uMove system is autonomous.

In the second case, users should carry mobile devices equipped with sensors providing

the server-based system with contextual information. The server processes it and, if needed,

sends feedback to users through the mobile device, as in UbiCicero [Ghiani et al., 2008] or

GUIDE [Cheverst et al., 2000]. Another advantage of an architecture distributed between a

server and a mobile device is situated at the level of the coordination, communication and

compatibility of information, which is discussed in the next section.

4.3 Coordination and communication in uMove

The coordination and communication between objects in uMove is managed by a component

called the Coordination manager [Hadorn, 2010] detailed in chapter 5.2.2). Its first role

is to coordinate different aspects related to uMove objects such as the connection between

4.4: Applications and services 69

objects or the consistency and priority of the communication, which is based on message

passing. The second role of the Coordination manager is to send and receive messages from

the uMove objects. This allows the entities, sengets, observers and viewers to transparently

communicate with each other and also allows different uMove systems to be connected to one

another. Each entity communicates together in the same way regardless of whether they are

local (same uMove) or remote (on a mobile uMove). To illustrate this concept, figure 4.11

shows an entity in the server-based system sending msg2 to an observer (dashed arrow) or a

remote actor, located in the mobile device, which is sending msg1 to its representation (stub

actor) in the server-based system.

Figure 4.11: Coordination: message passing between entities in server-based and mobile uMove

systems

4.4 Applications and services

Up to now, the term ”application” was generally used to describe any software component

connected on top of a uMove middleware. An application processes the information coming

from the entities and generates an output (feedback to users or triggering an action).

In this section, the concept of application is further defined and we introduce the notion

of service. The difference between an application and a service is situated at two levels: the

output and the infrastructure. In the uMove model, an application does not necessarily give

an output to the observed user but can trigger actions for the management of the system

(e.g. raising an alarm if forbidden activities are detected in a room) or update logs or GUIs

(e.g. people tracking system in a building) which are not noticed by users and do not require

an interaction. In the case of the RFID locator, users can be identified in the server system

only with their RFID badges and the application can send feedback (if needed) by SMS or

email. An application can also be web based and communicate with the users via their mobile

browser available on their smartphone.

70 Chapter 4: System Architecture, Design and Evaluation

Figure 4.12: Difference between an application and a service

A service is always proposed to a user (meaning an entity which is observed in the uMove

system) and implies an interaction with this user. A service contains a server and a client part.

The client service usually runs on a mobile device which can have any kind of user interface

(GUI, voice or haptic). A service therefore requires a mobile uMove, while an application

does not.

Figure 4.12 illustrates the difference between an application and a service. The scenario

is a nursing home equipped with a uMove system which runs an Elderly People Monitoring

application to detect any medically suspicious activities and one service which helps the

elderly people if a problem is detected and they need some advice. This scenario will be

further discussed in chapter 6.

This last example concludes the presentation of the uMove middleware and the architec-

ture of a uMove system. The next section will present a method to evaluate the design of a

uMove system before starting the implementation.

4.5 IWaT: methods and tools to test the uMove system

The uMove model and the related uMove conceptual framework enable designers to specify

the architecture and content of their pervasive system.

4.5: IWaT: methods and tools to test the uMove system 71

Figure 4.13: Project development phases and tools

Once user requirements have been translated into a system design, an evaluation of that

design at a functional level, and at a point before actual implementation has begun, can

greatly help to reduce the existence of errors in the overall functional design. This type of

functional evaluation can help answer questions such as: Is the architecture of the system

well designed and robust? Do the individual modules allow for the necessary behaviours? Do

the modules communicate with each other as expected? Does the global behaviour of the

Ubicomp system meet technical and end-use requirements? A contribution of this thesis is

that this type of evaluation has not been done in the past [Bruegger et al., 2010].

The IWaT (Interactive Walk-Through) evaluation method was conceived to fill the func-

tional evaluation gap and was inspired by the family of walkthrough methods from User Cen-

tered Design (UCD). The method can be used to test the design and components architecture

of a pervasive application to ensure that the various algorithms, strategies, inferences (of ac-

tivities or context) and measurements (for example from sensors) chosen by the designers or

developers operate together smoothly, satisfy user requirements, take into account technical

and infrastructure limitations and form a coherent and comprehensive system. Implementa-

tion is often costly in terms of time and manpower and it is always difficult to modify code

and/or the entire structure of the project if the design is scrutinised only through evaluation

of an implemented system (even if this system is only an early prototype). IWaT is intended

to be used between the design and implementation phases (Fig. 4.13) in order to reduce the

risk of encountering design problems that are usually detected only during the prototype or

system evaluation phases. Moreover, it can be used at any iteration in the design process,

although its use in early stages of design and development is the most fruitful.

4.5.1 Using IWaT with uMove

The IWaT evaluation was conceived in relation to the uMove framework and the implemen-

tation of the uMove concept, and therefore easily fits into the process of designing pervasive

system with these tools. In any development process, independently of the method used, there

are steps that define the software architecture, possibly the design pattern to be used, the

algorithms that need to be developed and the technological and hardware choices. A uMove

72 Chapter 4: System Architecture, Design and Evaluation

conceptual model helps to rapidly get the main aspects and functionalities of a system, such

as the objects involved, the activity or situation algorithms (possibly in pseudo-code) and

the sequence of operations. The model is important because 1) it gives an idea of how the

components will behave and 2) it encourages reflection on the design [Schon, 1983]. However,

a single model itself is not sufficient to assure the validity of its design within the whole

system. It therefore needs to be tested together with the models of the other components.

The IWaT evaluation method allows for just this type of testing. Once the evaluation has

been completed and the conceptual model has either been validated or refined and retested,

the system design is ready to be implemented, and the implementation can be done directly

using the implementation tools of the uMove framework.

4.5.2 How it works

The IWaT evaluation method assumes that each component of the pervasive system is being

developed by a different team. Therefore, for the evaluation, each team comes with the

model (for instance the algorithms) they have developed for their component. The goal of

the evaluation is to create a physical interaction between the components where the developers

become the“processors”and interpret their algorithms. For example, the team responsible for

the mobile phone component manually runs their application and sends paper-based messages

to the team responsible for the server application. Then, these messages are interpreted by

applying the application algorithm in pseudo-code and possibly sending a message back to

the mobile phone team. A log of the events is kept on a board where a process sequence

diagram is represented (Fig. 4.14).

Figure 4.14: The events are logged on a sequence diagram board

The method clearly shows the flow of information or messages between the components

(Fig. 4.12) and quickly gives a good picture of how the system runs in general.

An important aspect to consider when preparing an IWaT evaluation is how to prepare

the evaluation environment. In particular, careful thought should be given to the physical

distribution of the components (the teams) within the space, taking into consideration the

message flow between the components since it will have a manifestation in the physical space.

4.5: IWaT: methods and tools to test the uMove system 73

For example, two components that send messages to one another on a regular basis should

not be placed in physically distant locations in the evaluation environment since the team

members from those components will have to move on a regular basis as well. Moreover,

thought must be given to what types of physical artefacts of the evaluation are necessary.

For example, is a board for the sequence diagram of the interaction between the different com-

ponents necessary? How can the initial and global states of the application be represented?

Are extra people necessary to perform tasks such as updating the sequence diagram?

4.5.3 Advantages and drawbacks of using IWaT

As with any other evaluation methodology, there are both advantages and drawbacks to

using IWaT to evaluate a pervasive system. Again, the overall goal of the method is to eval-

uate the general design of a system, and of its components, without having to implement it.

IWaT enables evaluation of the design of a system, that its overall behavior works as expected,

and that its components collaborate smoothly. A by-product of the IWaT methodology is

that it encourages discussion and collaboration among the components’ developers and, as

such, favors team building. The method requires functional descriptions of the components,

which can be simulated, and depending on the size of the project, the number components

and the number of people involved, it can take times to run the evaluation.

Disadvantages

In order to do a thorough evaluation, the whole system will need to be run, and as many test

cases as possible will need to be taken into consideration. This implies three things. The first

is that at least one member of each of the teams for all of the components needs to be present

at the evaluation in order to play the ’role’ of the component. It can be hard to arrange for

a time when all of the teams can be represented. Moreover, depending on the size of the

system and the number of teams involved, a sufficiently large physical space will need to be

found in which the evaluation can take place. Second, the process can be slow since a human

will be stepping through the algorithm and not a machine. For large and complex systems,

this might mean that the evaluation will not be completed in just a few hours, but rather

might require a whole day or more. Third, being able to accurately record the steps and

artefacts of the evaluation might be difficult for large systems because the number of steps

and cases required could become too large to note explicitly in a physical space. Related to

this is the issue that the data that is recorded will need to be easy to understand, particularly

given the potentially large quantity. These three factors imply a lot of overhead and careful

planning which might not be feasible for some situations such as projects which have very

short production times or which are being developed by large numbers of dispersed teams.

74 Chapter 4: System Architecture, Design and Evaluation

Advantages

Despite the disadvantages presented in the previous section, we believe that IWaT has several

advantages which can outweigh the inconveniences in some situations. The first advantage is

that this type of evaluation can save a lot of time and effort during later stages of development

if it is done early enough in the system lifecycle. Since the evaluation primarily focuses

on testing the inter-operability of the different components, it allows system designers to

quickly and accurately pinpoint problems with the information flow within the system and to

determine which components are involved in or are causing the problems. This is something

that is hard to do when testing individual components, and is even harder to do when

testing the system as a whole using prototypes and end-users if careful and detailed logging

capabilities are not built into the system from the start. Having information about problem

areas available before implementation begins allows designers to reconsider or appropriately

modify their design before significant time and effort has been put into the development

process. Once development has reached an advanced stage, most stakeholders in the system

are very reluctant to make changes except when they are critical, which is understandable

given the complexity of pervasive systems, but can also be detrimental to the overall usability

and acceptance of the system by end-users once the system is launched. Moreover, this type

of evaluation does not require any type of prototype, nor does it require any type of technical

infrastructure, such as a wireless network to be in place, which means that it can be done

at any time and in virtually any location without having to worry about network failures or

other types of technical problems.

This method has been published in the Journal of Mobile Multimedia and presented at

the MOMM conference 2009 in Kuala Lumpur [Bruegger et al., 2010, 2009a]. A concrete case

study is described in chapter 6.3.

4.6 Summary

In this chapter, we have presented the second facet of the uMove framework which consists of

an architecture to guide the design of uMove systems consistent with the conceptual model

and the predefined specifications of the project to be implemented. This architecture allows

to represent the different components that will constitute the implemented system. Starting

with the entities which will be active in the system, the designer can also define the sensor

and sengets providing the contextual information and the message processors (at all levels)

needed to correctly process the events coming from the different levels, and set the observation

strategies and the points of view needed for the application level. The architecture also allows

to define the number of activity managers needed for the different entities (actor and places)

and the situation managers. Once the system is represented, as shown in figure 4.12, designers

and development teams can test their architecture using the IWaT method. Finally, when the

4.6: Summary 75

architecture is accepted by the design and development teams, the project can be implemented

with the tool presented in the next chapter.

76 Chapter 4: System Architecture, Design and Evaluation

Chapter 5

Implementation tools

Contents

5.1 uMove API . 78

5.2 Coordination and communication 82

5.3 Mobile monitoring . 86

5.4 Mobile uMove system . 89

5.5 uMove-enabled applications . 92

5.6 uMove System Editor . 93

5.7 Summary . 98

This chapter presents the third facet (Fig. 5.1) of the uMove framework which is the

programing tools allowing to implement Ubicomp projects based on the uMove conceptual

model and architecture. In the first part of this chapter (Sec. 5.1 - 5.4), we explain the

components (API) used to create the uMove middleware, the interfaces needed to connect

sensors and applications and the mobile uMove application that runs on Android devices.

Figure 5.1: The three facets of the uMove development framework

77

78 Chapter 5: Implementation tools

In this project, the APIs and the graphical user interfaces are implemented in Java 6.

Java has the advantage of being a popular language in the academic community and also

offers a multi-platform programming environment. However, the uMove middleware can be

implemented with any object oriented language and platform (.NET and C], C++, Objective

C). A uMove middleware uses three APIs which offer the necessary classes, interfaces and

methods to build the uMove system and manage the different objects it contains. They are:

1. The uMove API (5.1)

2. The Coordination API (5.2)

3. The MobileMonitoring API (5.3)

The uMove API is the main library used to build a uMove system. It uses the Coordination

API for the communication between objects in the system and the MobileMonitoring API

for the detection and integration of mobile uMove systems (5.4). uMove API also allows to

connect server-based applications on top a running system (5.5).

The second part of the chapter (Sec. 5.6) presents the uMove system editor, a visual tool

which encapsulates the complexity of the programming and manages the uMove middleware.

5.1 uMove API

Any uMove project will use the uMove API or, more precisely, the uMove.jar library. This

API contains all classes needed to define entities, observers, viewers, sengets, message pro-

cessors, and activity and situation managers. The main components such as the entities,

observers, viewers and sengets are runnable objects and run in separated threads. The uMove

API proposes a specific object, called UMoveSystem, which represents the entry point of a

new system and encapsulates the programing complexity of the different uMove objects.

5.1.1 UMoveSystem

A system is created as soon as the UMoveSystem object is instantiated. It encapsulates all

the methods allowing the creation of the objects (e.g. entities, observers, viewers) as shown

in the following example (Listing 5.1).

1 UMoveSystem kS = new UMoveSystem ();

2

3 Entity zone0 = kS.createPhysicalZone("Gruyere","Région de Gruyere",

4 IDTags , null , null ,

5 new Coordinates (575000 , 165000 , 800, CoordinatesFormatEnum.CH1903)

, eGeom , null);

6

7 Senget s1 = createSenget(zone0 , LocationSendgetMessageProcessor);

5.1: uMove API 79

8

9 Viewer v1 = kS.createViewer(zone0 , 3);

10

11 Observer o1 = kS.createObserver(v1, new MySituationManager ,

12 new ObserverMessageProcessor ());

Listing 5.1: Code sample of UMoveSystem instantiation

The system instantiated in this example is a simple uMove system made of one entity,

one observer and one viewer. Already at this stage, an application can be connected to the

kS object and can receive events from the observer.

The management of the objects is done through UMoveSystem which is the ”handle” of the

system. UMoveSystem offers methods to connect the sensors and applications and to access

the system objects and all get-set methods to manage them, and also launches all threads

when the system is started.

Creating an entity

Entities, which make up the e-space, are instantiated using UMoveSystem methods such

as createPhysicalZone(), createPhysicalActor() and createGroup(). There are three

types of entities that can be created: zones, actors and groups. We have chosen these names

for clarity reasons when programming the system. They clearly differentiate the role of the

entity within the system respecting the conceptual model, and they allow a simple parametri-

sation of the Entity class during the instantiation of the objects.

Zones Zones are typically places (building, rooms) or objects (cars, boats) and have a

dimension or a geometry. They can be physical or logical, mobile or static. A zone is defined

by giving a location point called ”point zero” and either a set of vectors if it is a polygonal

zone or a radius if it is a circular zone. A zone must be located in a parent zone. If the

zone is the root of the system, its parent, set as ”null”, is considered as the ”universe” and the

system manages it as such. For instance, a system modelling a building will have the building

with its physical dimensions as the root zone. This zone ”building” will be made up of floors,

and floors may contain sub-zones (offices). The result will be a tree of zones representing the

structure of the building.

Actors Actors are the physical users or the mobile objects of the system. The actors are

considered as atomic entities located in one point with no dimension and no geometry. They

move in the tree of physical or logical zones.

Groups Groups are special entities which have no logic and no location but contain other

entities. Users can belong to several groups, for example a student can belong to the computer

science department group, the university basketball team group and the vegetarian group.

80 Chapter 5: Implementation tools

Groups are a simple way to manage relations between actors and, for instance, help determine

situations at the observer level and help applications adapt their behaviour.

Parameters As shown in listing 5.1, an entity has different parameters that can be given

during the instantiation phase and modified when running. The main ones are:

� Name and description: the name and description are strings that define the entity but

do not identify it within the system; this is done by the unique ID generated when the

entity is created.

� Tags: e.g. IP address, MAC address, RFID tag, Bluetooth name.

� Physical location: coordinates of the entity.

� Logical location: the parent entity where an entity is located (except for the root entity

of the system).

� Geometry: shape and dimension of the entity (for places only).

� Message processor: object implementing the message processing algorithm (Sec. 5.1.2).

� Activity manager: object implementing the activity recognition algorithm (Sec. 5.1.3)

Senget

Senget objects are the interface between the sensors (or specifically the sensor driver class)

and the entities. A senget can be created by UMoveSystem and contains two parameters: the

entity or entities to which it is attached and the message processor, in order to process the

SensorData received from the sensor object.

Figure 5.2: Sensor and senget classes and message passing

5.1: uMove API 81

As shown in figure 5.2, the AccelerometerSensor class processes the data coming from

the physical accelerometer and calls the method setSensorData() of the attached Senget.

Then, the Senget transfers the data to the AccelerometerMessageProcessor object and

waits for a result (e.g. an Acceleration object) before sending it to the concerned entity.

Viewer and observer

Viewers are also instantiated by the UMoveSystem and contain two parameters: the entity

object which represents the root point of the observation, and the level which is the depth of

the observation within the entity tree. A viewer is automatically attached to the entity tree

as soon as it is created, which implies that the e-space must be created before the viewer, or

that at least one root entity to observe must be set.

Observers are instantiated with three parameters: the attached viewer(s), the situation

manager and the message processor. If the situation manager is set to null, it indicates

to the observer that situations are not considered and all messages or events coming from

the observed entities are processed at the level of the message processor and sent to the

application level.

5.1.2 Message processor

As explained in chapter 4.1.4, each object at the different levels of a uMove system must

instantiate a message processor which represents the logic of the object. Each level has a

specific message processor which receives the message from a sender object (entity, senget,

observer, viewer), processes it and returns the result to the sender as illustrated in figure 5.3.

Figure 5.3: Sequence diagram of a message processor and activity manager

uMove provides generic message processors for all uMove system objects, but they can

be replaced by custom message processors implementing the MessageProcessor interface. At

82 Chapter 5: Implementation tools

the senget level, we propose a specific message processor called LocationSengetMessageProcessor

as the location is a key element needed to manage the entity tree. This is a generic location

processor which is able to receive messages containing either GPS coordinates, an RFID tag,

a parent entity ID, a Bluetooth or a MAC address assigned to an entity. This message pro-

cessor processes them and returns a message containing the ID of the entity and its parent

entity ID. At the observation level, the viewer message processor implements an algorithm

for the management of the entity tree taking into consideration entities leaving or joining the

observed part of the tree. The entity and observer objects use special message processors

that allow to attach an activity manager and a situation manager respectively.

5.1.3 Activity and situation managers

An activity manager is a class which implements the interface ActivityManager and the

method checkActivity(Entity e) which must return an Activity object (Fig. 5.3). This

is the only constraint imposed on the developer. The same rules apply for the situation

manager, which implements SituationManager and its method checkSituation(Entity e)

which returns a Situation object.

If an entity or an observer message processor does not use an activity or a situation

manager, messages coming from the lower level are processed at the level of the message

processor and sent to the higher level. No calls to checkActivity() or checkSituation()

are made.

All objects described in this section communicate with each other by means of message

passing. The communication between objects is managed by the Coordination API. Since

both activity and situation are very specific to the context of a project, no activity nor

situation manager is provided with the uMove API.

5.1.4 Relation manager

The RelationManager is an object which is always available when a uMove system is started.

It is a singleton that can be called to check the current relations of an entity and it offers differ-

ent methods such as getAllPhysicalRelation(entity) or getInsideRelation(entity).

The methods can be used by any uMove object including, for instance, activity and situation

managers during the evaluation of the activities and situations.

5.2 Coordination and communication

The Coordination API was developed as an evolution of the first version of the uMove API

[Bruegger, 2007, Bruegger et al., 2007] which implemented the concept of Listener based

on the Observer design pattern [Gamma et al., 1995] for all communication between uMove

objects. The objects were listeners of the sender objects (e.g. an entity object listening to the

attached senget). This approach was very efficient for all communications within the same

5.2: Coordination and communication 83

virtual machine but caused problems for remote objects. The solution was to use JavaSpace

and JINI [Freeman et al., 1999, Newmarch, 2006] for remote communication. The advantage

of using a tuple space is its asynchronous messaging capability. But, a disadvantage is that

each smart environment needs to run and manage a JINI platform in order to accept new

mobile or server-based uMove systems.

The current version of the uMove API uses the CoordinationManager object proposed

in the Coordination API [Hadorn, 2010] for all communication between objects in the uMove

system (local or remote) in a transparent manner.

5.2.1 Coordination manager

One of the most important objects in a uMove system is the coordination manager. As shown

in figure 5.4, the coordination manager 1) is responsible for all communication between the

uMove objects active in the system, 2) manages (creates, modifies and removes) all port

couplings and 3) manages the entity registry used to locate the different entities in all uMove

systems (server-based and mobile) that are part of the smart environment. The coordination

manager also evaluates the rules and enables or disables contextual services for users using a

mobile uMove system.

Figure 5.4: Tasks and management of the coordination manager

Rules

uMove, via the coordination manager, also implements the concept of rules. Rules offer a way

to manage the availability of services for mobile users. Services can be enabled or disabled

according to the type of activity or the context (e.g. location) of the user. For instance, a

university might not authorise a chat service during lectures and automatically disables it

when a student enters a classroom.

84 Chapter 5: Implementation tools

5.2.2 Communication

The communication between uMove objects is done by means of ports. When a uMove object

is created, two ports (in and out) are created and attached to the object. Those ports are the

interfaces between the objects and the communication channel managed by the coordination

manager (Fig. 5.5). The communication channel is generic and can be implemented with

communication protocols such as IP (TCP or UDP).

Figure 5.5: Communication between two entities using ports

The ports communicate with each other through messages and there are two types of

message passing. The first one is anonymous message passing, which consists of establishing a

permanent coupling between the in/out ports of the respective objects (e.g. a senget attached

to an entity). With this configuration the message does not contain the receiving object ID,

but only the right communication port. The second type of message passing is identified

message passing, which is more dynamic and does not need to have a coupling between the

ports. The message contains all object IDs and temporary couplings are created with the

receiver port of the concerned objects. Listing 5.2 shows an example of the processMessage()

of an entity receiving a message from a senget, processing it and sending the result to the

unidentified viewers using its out port.

In listing 5.2, the out port uses the method write() to send the message. This method

calls the coordination manager of the system and requests to take care of the transmission

of the message to the right uMove object independent of whether it is locally or remotely

located.

1 protected void processMessage () {

2

3 IMessage pMessage = getMessage(true , true);

4

5 if (pMessage != null) {

6

7 //Relay the message to the stubs

8 if (! stubPorts.isEmpty ()) {

9 Iterator <IPort > It = stubPorts.iterator ();

10 while (It.hasNext ()) {

11 It.next().write(pMessage); }

12 }

5.2: Coordination and communication 85

13 if (pMessage != null) {

14 // Processing the message

15 pMessage = messageProcessor.processMessage(pMessage ,

this);

16 this.getOutPort ().write(pMessage);

17 }

18 }

19 }

Listing 5.2: Code sample of entity processMessage() method

ServiceAPI object

The ServiceAPI is a singleton object available in the Coordination API that encapsulates

all operations needed to send messages between services. It is also used to create, connect

and start server and client services at the coordination manager level. The ServiceAPI was

developed to facilitate the management of services for programmers.

5.2.3 Services: definition and monitoring

As presented in chapter 4.4, uMove implements the concept of services, which allow users to

interact with the smart environment through a mobile device and a server-based uMove.

There exist two types of service in a uMove system: the system service and the user

service. The system service deals with the identification and login of a mobile device running

a mobile uMove system entering into a smart environment. The discovery and login process

is done by the mobile monitoring API and is completely invisible to the programmer. The

system service is programmed and not accessible to users. The user services are situated at

the application level. User services are provided to users and contain a server and a client

part. These services are developed by programmers and attached to the uMove system in

order to be available for users in their mobile device.

Model of Service

All services are based on the same model, which contains four components (Fig 5.6): Service

Object, Service Provider, Service Session, Service Client.

The Service Object This is the ”processor” of the service. It receives messages, processes

them and sends answers to any request coming from the client. This object (the class) is

developed specifically for a service (e.g. SMS service, menu service or meeting service).

The Service Provider This is the object that connects a service client to the service

object. It uses a public port that listens to any request for a connection coming from a

service client.

86 Chapter 5: Implementation tools

Figure 5.6: Model of service connection: 1) request, 2) creation of a session, 3) communication

established between the client and the server

The Service Session This is a dedicated object created by the service provider when a

connection request comes from a service client. A service session is private and controls the

communication between the Service Client and the Service Object. A service session object

will be created for each client using the service. It is similar to the creation of a socket

between two remote objects.

The Service Client This is the counterpart of the Service Session. It manages the

communication between the application using a service on the mobile device and the service

object on the server side. The Client Service is attached to a public port declared in a port

list in the mobile uMove system (attached to an entity).

Connection to a service When a client requests a connection to a specific service, three

steps are done (Fig. 5.6). The first step is for the Service Client to contact the Service Provider

using its public port (1). Then, the Service Provider creates a Service Session object (2) and

connects the port of the Service Client to the Service Session port (3). Once the connection

is complete, the Service Object and the Service Client can start to communicate. Each client

gets its ”private” session with the server part of the service. The protocol used in our project

is IP-based (using wireless communication).

5.3 Mobile monitoring

As presented in the previous chapter, a mobile device running a uMove system is able to

connect to a uMove smart environment and get the available local services. A specific package

called MobileMonitoring has been developed in order for a mobile uMove system to 1) be

detected by another uMove System (smart environment) and 2) get the list of available

services.

5.3: Mobile monitoring 87

5.3.1 Monitoring mobile devices

A mobile uMove system entering in a WIFI zone broadcasts a specific ping message contain-

ing its open listening port for any echo message from a potential uMove system (a smart

environment). If, in this network, a smart environment is active, the server-based uMove will

answer with an echo message containing the open port address of the system service. This

service is used to log the mobile device in the smart environment and creates a permanent

communication channel. This channel will be used to pass all messages about public services

available in the smart environment and all mobile device context changes (e.g. location, mo-

tion, temperature) to the server. It can happen that multiple smart environments overlap

and provide different services. To benefit from all of these services, our mobile uMove system

allows connections to multiple smart environments at the same time.

5.3.2 Services list update

Services are stored in a Service Registry in every smart environment and can always be

enabled or disabled. Each time a service changes, the coordination manager checks for all

matching client ports in order to send the update information. The Service Registry also

keeps track of which service is available for which client (meaning a mobile uMove system).

This depends on the context of the user and the defined rules. For instance, a chat service

might not be available to the user if he stands in a meeting room and his agenda has an

entry ”Meeting, priority 1” or the menu service in a university might be disabled if the user’s

activity clearly shows that they are leaving the building to catch a train.

5.3.3 System service

The integration of a mobile device is managed by a service called SystemService. Once the

communication channel is established between the two uMove systems, the system service

creates a SystemServiceSession object and a stub for the entity object representing the user

in the mobile uMove system (Fig. 5.7). The stub allows to reduce the traffic of information

between the client and the server in the sense that each time the entity object has a context

change, it is transmitted once to its stub. From the server point of view, the stub repre-

sents a copy of the original entity and can be consulted any time without generating traffic

across the network to get contextual information that is perhaps unchanged. The System

Service is always present and cannot be disabled. It also allows proper management of the

disconnection of a mobile device by removing the stub and the System Session and closing

the communication channel.

5.3.4 Public services

Public services are third party client-server applications running on top of the uMove system

at the application level. They are developed for specific purposes and can be loaded, modified

88 Chapter 5: Implementation tools

Figure 5.7: Integration mechanism of a new mobile device by the System Service creating a

System Service Session, and creation of user service connections. This figure does not represent

all details of the uMove such as the observers and viewers

and removed without interfering with the uMove system. As mentioned in the previous

chapter, public services are always made up of server and client parts running on the mobile

uMove system.

Server part The server part of a public service is a standard Java application that can

be developed with any Integrated Development Environment (IDE) and compiled indepen-

dently from a running uMove system. The service can contain a graphical user interface

or any interface to interact with it on the server side. A service must extend the class

AbstractServerService which implements the methods to connect to a uMove system and

to send and receive messages from its counterpart on the client side. The parameters of the

AbstractServerService are 1) the name of the service, 2) the communication port number

(e.g. 9900) and 3) the observer to which it will be attached to in order to receive events from

the concerned entities. Entity events such as change of context can be used by the service

for its own processing. The name of a service is particularly important because it is used by

the client part in the mobile uMove to receive correct messages and also to send messages to

the right server service.

Client part The client part of a public service is set on the mobile device and runs in

parallel to the mobile uMove system presented in section 5.4. Since this version of mobile

uMove is based the Android platform, the client service should use Android technology and

APIs.

The client service is a standard Android application (APK) [Android Developers, 2011]

which communicates with a mobile uMove system (also an Android application) using an

5.4: Mobile uMove system 89

Android Intent1. Developers must create an Intent Handler class (e.g. MyIntentHandler)

by extending the AbstractIntentHandler object (available in the uMove API) in the client

service application in order to communicate with the message dispatcher of the uMove system

(Fig. 5.8). The server part of a service sends messages through the ServiceAPI and the

Figure 5.8: Principle of communication between a client services and the mobile uMove system

on the Android platform

mobile uMove receives and sends them to the Message Dispatcher which broadcasts messages

to the Android platform using an Intent. If a service corresponds to the service name put in

the message then the message is delivered using the Intent mechanisms.

5.4 Mobile uMove system

In this section, we present the way public services proposed to users are managed and how

they are integrated on their mobile devices. The mobile uMove system being not only APIs

but a running Android application (APK), we will present the general concepts and also the

different functionalities and GUIs it offers. In this version, the mobile uMove application

cannot be changed by programmers except if they modify the source code and recompile the

whole APK.

1Intent messaging is a facility for late run-time binding between components in the same or different

applications. The intent is a passive data structure holding an abstract description of an operation to be

performed. [Android Developers, 2011]

90 Chapter 5: Implementation tools

5.4.1 Type of service: local versus global

In contrast to applications loadable from a centralised source such as the Apple App Store2

or the Android Market3, we propose a different approach where services are contextually

available within specific smart environments (e.g. campus, shopping mall, train station) like

in MoCA [Viterbo et al., 2007]. Our concept comes from the idea of applications, or services

as we called them, that are not loadable once and permanently installed, but available and

installable at the time the user is in the environment proposing them and are automatically

removed when the user leaves the environment after a certain time period. However, the user

always has the choice to keep the services installed. Such services are still applications and

not web services.

We have identified at least four advantages of this approach. First, a user entering a

smart environment always gets the newest version of an application. For instance, a graph-

ical interface can evolve over time and change properties, making an older version obsolete.

Second, programmers developing services can work on extensions or maintenance without

worrying about compatibility between versions. Third, with the automatic removal of ser-

vices no longer in range, we avoid overloading the mobile device with applications which are

used only in given contexts and possibly not used most of the time, for example applications

accessed only during travel. Finally, this concept favours the development of small and spe-

cialised services with a minimal memory footprint rather than heavy applications using a lot

of mobile resources.

5.4.2 Mobile uMove as a service manager

To implement the concept of a local service market, the mobile uMove middleware was ex-

tended with the necessary functionalities to manage client services available in a smart envi-

ronment. The mobile uMove middleware is an Android application installed on the mobile

device, just like any other application available on the Android Market. It is set as an An-

droid Service and can run in the background. The mobile middleware is based on a project

which developed a local service market for uMove smart environments [Vonlanthen, 2011].

The goal of this project was to offer a local service management for services running either

on a server-based uMove system or on an Android platform. The interesting point of the mo-

bile middleware is that it is a standard server-based uMove system adapted to the Android

technology.

The mobile middleware has two main roles: 1) it looks for a uMove smart environment

in range and connects the device to it and 2) it allows to manage the local services available

in the smart environment.

2http://www.app-store.de/
3http://www.android.com/market/

5.4: Mobile uMove system 91

5.4.3 Smart environment finder

As shown in figure 5.9, the middleware allows to start the scanning for a smart environment

(a and b) and when a server running the server-based uMove middleware is found, the mobile

is connected and starts to communicate with the server part (c). During the login phase, the

server receives the information of the entity (mobile user) and creates a stub object in its

uMove system (Fig. 5.7). Then, the server sends the list of available services to the mobile

uMove.

Figure 5.9: Mobile middleware GUI: a) main screen, b) scanning for a smart environment, c)

connected to an environment

5.4.4 Mobile service manager

The second functionality of the middleware is the management of local services provided by

the server.

Loading a service

Once connected to a uMove smart environment, the user can consult the list of available

services by pressing the ”Manage Services” button. This list shows the system services that

are installed by default and the public services (e.g. SMSService).

As shown in figure 5.10 b), the selection of a public service opens a menu that gives the

possibility to get information about the service or to download and install it. Once installed,

a service is accessible like any other Android applications and the icon can be moved from the

”Setting” screen to the main screen. It will automatically communicate with the middleware

and access the resources of its counterpart on the server side.

92 Chapter 5: Implementation tools

A service is identified on the Android device by its name and the smart environment in

which it is available (e.g. SMSService@SmartEnv). This naming convention is necessary as

a mobile device can be connected to more than one smart environment at the same time and

services in different environments might have the same names.

Figure 5.10: Local Market installer: a) Available services, b) Download service from the server,

c) Android Installation procedure, d) Android uninstall confirmation

Removing a service

As already mentioned, one goal of the local service market is to leave a minimal footprint on

a mobile device when leaving a smart environment, and services installed and used within the

smart environment must be properly removed. The mobile uMove middleware manages the

services in two different ways: the first way is automatic and consists of removing the service

(the APK file) when the device has left the smart environment for a certain period of time.

This operation, initiated by the uMove middleware, requests a user confirmation as imposed

by Android. Any uninstall of applications from a mobile device needs to be confirmed by

the user whether it is done manually (by the user) or automatically (by another application).

The second possibility is to let users manage their unused or unnecessary services when they

are in a smart environment. In that case, the user can select the installed service to remove it

and when the window shown in figure 5.10 b), appears, can just press the ”Uninstall” option

and confirm the operation to definitely remove the service and the APK file (Fig. 5.10 d).

5.5 uMove-enabled applications

As explained in chapter 4.4, uMove-enabled applications are defined as software components

that are usually server-based and do not necessarily send feedback to mobile users (entities

5.6: uMove System Editor 93

of the system) as services do. They can be Java applications or any applications that can

interface with a uMove middleware. This implies that the application must be able to listen

to an observer in order to receive the events of the entities the application is focusing on.

Figure 5.11: a) Observer design pattern, b) Message listener pattern

The communication between the Observer object and the application is based on the

Observer design pattern (Fig. 5.11 a)[Gamma et al., 1995] which has been modified (Fig.

5.11 b) to have a message sender (the observer) and a message listener (the application).

An application must implement IMessageListener and the method sendMessage().

The sendMessage() method is called by the observer to which the application is attached

and the logic programmed in the sendMessage() methods processes (or relays) the received

message. The advantage of this concept, called a callback mechanism, is that the ap-

plication is not blocked by listening to an observer and can continue doing other tasks

(i.e processing messages from other observers); it is the observer which calls the applica-

tion when needed. An application is attached to a uMove middleware by invoking the

attachApplicationToUMoveSystem() method of the UMoveSystem object. By default, an

application is attached to the root entity observer. However, it is possible to define specific

observers for the application or to attach it to existing ones.

5.6 uMove System Editor

In the previous sections, we presented the APIs that are necessary to program and run a

uMove middleware. In this section, we present a prototype of a visual uMove system editor

that allows to manage a system and services using a graphical interface. The uMove System

Editor hides the programming complexity of the uMove middleware and offers the following

functionalities:

� Create/modify/delete entities and systems

94 Chapter 5: Implementation tools

� Save the system configuration

� Load a system from the configuration file

� Manage public services

As shown in figure 5.12, the uMove System Editor is a Java application made of two

tabs: the tree view of the system and a console. The tree view graphically represents the

structure of the system and is empty when no system runs (uMove system not started). The

first operation to be done when setting up a new system is the creation of the root entity.

This operation automatically creates an observer and a viewer, attaches them to the root

entity and starts the object threads as well as the smart environment. From this point on,

the system runs and mobile devices running a mobile uMove middleware can login to the

new smart environment. The console tab shows system messages and the activity between

the entities of the system. It allows to monitor the different context change messages and

possibly identify bugs in the processing flow of these messages (from senget to observer).

Figure 5.12: uMove visual editor and entity editor

5.6: uMove System Editor 95

5.6.1 Entity management

As shown in figure 5.12, entities can be created and edited by simply filling the different fields

of the tabs in the Entity Editor window. The entity can be entirely defined with its identity,

type, role, function, different tags such as RFID, MAC address, Bluetooth, and its location.

A mobile entity appears in the entity tree like other entities, but is not editable as it is

configured from the mobile device and its property values are only available for consultation.

The Entity Editor helps uMove system managers create entities that are locatable, for in-

stance, with RFID tags and Bluetooth or WiFi but which do not specifically run a mobile

uMove middleware on their smartphone. This type of system is close to the Active badge

location-based system of Want et al. [Want et al., 1992] and considers the change of location

as a kinetic property of the entity.

The uMove editor allows to delete entities and properly remove their profiles from the

system. It means that all entities with a relation to the deleted one are notified, the tree is

readjusted correctly and the observers send events to all applications and services that were

listening to it. For the users carrying a mobile devices running a uMove middleware, the

management of the entity representing them is automatically removed from the tree if they

leave the smart environment.

5.6.2 Saving and loading a system configuration

A uMove system configuration can be saved at all times in an XML based file which stores

information about entities (Listing 5.3). This allows the manager to backup the system and

to be able to reload it in case of a crash.

In this version of the uMove System Editor, the XML writer and reader are still relatively

simple and the consistency of the configuration file must be guaranteed, otherwise the system

will not be loaded and error messages will be raised in the console tab. This is particularly

important when the manager of the system manually creates or modifies the XML file. DTS

or XSD files should be created in the future in order to properly manage any uMove system

XML file.

1 <!-- - - - - ENTITY - - - - -->

2 <Entity >

3 <Identity description="PhD Student" function="RESIDENT" iconFileName="

\\ch\\unifr \\ kuiserver \\icons\\user -icon.png" id="3c33fc21 -e541 -4

e16 -9889- ba37c2b95c6b" name="Paul Young" role="USER">

4 <Tags >

5 <Tag type="MAC_ADDRESS" value="a2323423"/>

6 <Tag type="BLUETOOTH_ADDRESS" value="PY -01"/>

7 <Tag type="RFID_TAG" value="01056 e66da"/>

8 </Tags >

9 </Identity >

10 <Location >

96 Chapter 5: Implementation tools

11 <Coordinate altitude="0.0" format="CH1903" latitude="700.0"

longitude="400.0"/>

12 <ParentEntity id="ebbdfd91 -ca97 -480a-a08c -21 a3940ad5ac"/>

13 </Location >

14 </Entity >

Listing 5.3: Code sample of a configuration file: definition of an entity

5.6.3 System monitoring

As shown in figure 5.13, the uMove editor proposes system monitoring which allows to visu-

alise the connections and communications between the objects of the system (sengets, entities

and observers). It is made of two tabs which represent 1) the connection between the uMove

objects and 2) the message flow visualisation. This tool was specifically developed to identify

communication problems that might occur at the uMove object coordination level such as

message priority and ordering, and to be able to trace those problems. Even if this simple

monitoring system was created for testing and debugging purposes, it appears also to be

useful for managers to have a graphical representation of their systems.

Figure 5.13: System monitoring: uMove object connection

5.6.4 Application and service loader

As explained in chapter 4.4, the uMove architecture is made for loading applications and

services on top of the uMove system. The uMove editor allows to dynamically load them using

5.6: uMove System Editor 97

the Java ClassLoader. This possibility follows the goal of the uMove project in the sense

that it proposes a clear separation of the observed environment which evolves independently

and the applications that process the events generated by the system (change of context,

activities and situations). For instance, the service loader window (Fig. 5.14), opened from

the uMove editor, lets system managers select the service descriptor file and then load the

service. The service loader is a bachelor project developed by S. Vonlanthen [Vonlanthen,

2011] specifically for the uMove editor. It implements all functionalities to:

� get the service metadata description file

� parse the file and check the XML consistency

� load the service classes (server and client part)

� open the GUI (if available)

When the service is correctly installed and running, it appears in the ”Loaded services”

list and the client part becomes available for download on a mobile device. The complete

description of the project is available in S. Vonlanthen’s project report4. An example of a

concrete and implemented service is presented in chapter 6.5.

Figure 5.14: uMove service loader GUI

The application loading mechanism is based on the same concept (metadata descriptor,

class and GUI loading). Application developers get the uMove system object and can use

it to create the specific observers and viewers, as well as sengets specifically needed for the

application goals. The application loader is still in a very early version and needs to be

further developed.

4http://diuf.unifr.ch/pai/wiki/lib/exe/fetch.php/education:bscreport.pdf

98 Chapter 5: Implementation tools

5.7 Summary

This chapter described the different tools that allow to implement a uMove system (creating a

uMove middleware) and to integrate applications and services interacting with such a system.

First, we described the three APIs required to ”manually” develop uMove systems. Secondly,

we described the concept of server and client services and the mobile uMove platform running

on Android devices supporting the client services. Thirdly, we presented the first prototype

of the uMove visual editor which allows designers and programmers to develop uMove mid-

dlewares and manages the system using a GUI, and which also manages the applications and

services available in the active system.

The implementation of the uMove concept and the tools developed so far allows to build

and run uMove systems, but they are still prototypes and should not be deployed on the

market. In chapter 7, we will discuss the future work that needs to be done in order to

improve the middleware and these tools. The next chapter will present projects that were

developed with these tools, validating the different conceptual and implementation choices.

Chapter 6

Prototypes and validation

Contents

6.1 Methods of evaluation and validation 99

6.2 Smart Heating System . 101

6.3 Robin project: how Ubicomp technologies can help firefighters . 103

6.4 EMS project: Elderly Monitoring System 111

6.5 SMSService: a concrete use case of a uMove service 115

6.6 Summary . 118

The three previous chapters presented the different facets of the uMove framework starting

with the uMove model, then the architecture and finally the development tools. In this

chapter, we present the evaluation and validation processes we chose for the different uMove

components.

6.1 Methods of evaluation and validation

When we started this research, we considered two possible types of evaluation methods. The

first one was to define a complete conceptual model, create an architecture based on this

model, implement all features within an API and then develop a real project for the final

evaluation. Because of the large overhead that would have been involved in such a process,

this method would have allowed to make only one iteration, with the risk of having an

unsatisfactory result at the end.

The second method was more iterative and consisted in defining, in a relatively short

period, a conceptual model based a simple scenario, creating a basic architecture of the

system, implementing a small prototype and carrying out a preliminary evaluation in order

to detect problems and make the necessary adjustments at all levels (model, architecture and

APIs).

99

100 Chapter 6: Prototypes and validation

The current version of the uMove framework was built following the second method. It

was developed iteratively and the architecture and the middleware were constantly adapted

according to the changes of the model and vice versa. In each iteration, new elements were

added to the model and the architecture, and new features were implemented in the different

APIs.

One advantage of using an iterative method is the possibility to adapt the model, archi-

tecture and implementation to new technologies as they become available. In the case of

uMove, when we started the research, there was a limited number of mobile devices equipped

with sensors such as accelerometers, and none of them were running a full Java machine (only

Java ME was available with limited functionality). But, uMove was supposed to integrate

mobile devices able to communicate with a server-based system. During the development of

the thesis Android and its Java machine were released, allowing uMove to be fully compatible

with the expected goals set at the beginning.

The second advantage is that the uMove framework was validated step by step and version

after version. All extensions were included and tested with small prototypes. For instance,

the conceptual model presented in this dissertation is the third version of the model and the

systemic approach was validated during the second evaluation project. The uMove framework

evolved incrementally and for instance, we did not necessarily respect the backwards compat-

ibility with previous versions of the APIs if the new concepts or features really contributed

to increase the quality or stability of the system.

The third advantage is that we could implement different types of scenarios and applica-

tions which allowed to validate the generic aspect of the uMove architecture.

Choosing an iterative development and evaluation method also has a disadvantage. In

this thesis, it did not allow (due to lack of time and resources) to make a final evaluation

through a real project including all features proposed in the uMove framework, especially

at the implementation level. That is why we consider that the evaluations of the different

components of the framework carried out during this research were preliminary evaluations

and the projects were proof-of-concepts and prototypes. We mainly worked with students in

different contexts such as bachelor and master diploma projects and a master course project.

Thus, we could not expect the same results as if a team of designers and developers were

working on a real project with strict guidelines for the evaluation.

We will now present, in chronological order, four projects used during the iterative eval-

uation process to evaluate the uMove framework at different stages. At the end of chapter,

a table regrouping the four projects will summarise the evolution of uMove through the four

steps.

6.2: Smart Heating System 101

6.2 Smart Heating System

The Hestia project [Bruegger et al., 2009b] used the first two facets of the uMove middleware.

Hestia1 was an application that optimised existing heating systems by remotely regulating

the radiator temperature according to the user’s activities and needs (Fig. 6.1). The goals

of this project were 1) the reduction of energy consumption and 2) compatibility with a

majority of existing heating systems without high cost of transformation. This project was

only theoretically defined since we did not have enough time to implement it.

Figure 6.1: Functional diagram of the Hestia project

6.2.1 User’s activities and contexts

The project focused on a family house with bedrooms, a living room, a kitchen, bathrooms

and the members of a family. The user’s activities were classified into three categories: Ac-

tive, Quiet, Resting. The contexts used to analyse the user’s situation were mainly the bare

temperature of the observed room and the time of day. Table 6.1 classifies the activities, the

considered period of the day, the typical body temperature and the expected room tempera-

ture. The situation algorithm was based on the classification in this table.

6.2.2 Software architecture

Hestia contains three main components: the physical sensors, uMove and the valve control

system (Fig. 6.1). The sensors were connected to the systems via the sengets. In this

version of the project we chose accelerometers to capture the user’s motions rather than a

camera-based technology such as EyesWeb2. The users were localised with RFID tags and

1Greek goddess of home.
2 http://www.eyesweb.org

102 Chapter 6: Prototypes and validation

Class of

activity

Activities Period

of day

Body

temp.

Environment

Temp.

Active Playing games, moving,

dancing

All warm Cool

Quiet Reading, watching TV,

Listening to music,

All Cool Warm

Resting Sleeping, resting Night Cool Cool

Table 6.1: User activity classification

the temperature was provided by thermometers installed in each room. At the uMove level,

the entities representing the house, the rooms and the users were created and managed in the

e-space. Each user was attached to an activity manager which received the detected motion

from a motion detector. Each room was observed by an observer and any activity of a user

present in the room was analysed by the corresponding situation manager taking as contexts

the temperature and period of the day. The application level received a message from the

observers about the needed adjustment (e.g. room 1: cool down). Based on this information

the valve control unit processed the message and converted it into an electrical signal before

sending it to the thermoelectric actuator.

6.2.3 Hardware

For the first version of the project, we chose to use two types of sensors: phidgets3 and

SunSPOT4 devices. The location and temperature data were provided by Phidget RFID

devices and Phidget temperature sensors respectively. The user location and identification

was given by the RFID locator (a Java class available in uMove). Each user carried a passive

RFID tag and RFID readers and temperature sensors was installed in each room. Users’

motions and their body temperature were detected with the SunSPOTs equipped with 3-

axis accelerometers and a temperature sensor. Each user carried a SunSPOT device which

transmitted a continuous flow of acceleration data and temperature values to the motion

detection and the user temperature sengets. The data was then processed within the uMove

API and the valve controller application. The radiator valves were controlled by electrical

actuators such as the Danfoss TWA Standard Actuator series5.

As mentioned above, we were also working on a low-cost solution in terms of hardware.

The goal was to provide an easy-to-install solution.

3 http://www.phidget.com
4 http://www.sunspotworld.com/
5http://heating.danfoss.com/xxTypex/74981 MNU17378951 SIT54.html

6.3: Robin project: how Ubicomp technologies can help firefighters 103

6.3 Robin project: how Ubicomp technologies can help fire-

fighters

The Robin project was a project proposed during a Master’s course on Ubicomp and pervasive

intelligence and was developed by two teams of students. The first goal was to make two

teams work on the same project with the tools provided by the uMove framework, and the

second was to evaluate the usability of the uMove tools. The project was divided in two parts

and each team was responsible for developing one part and making it compatible with the

other.

The project examined the design and implementation of a system that supports firefighting

exercises based on Ubicomp tools and ideas. Throughout the development, a range of tech-

nologies and conceptual tools such as sensors, wireless communication, context-awareness,

situation management, and activity detection were used. The notion of implicit human-

computer interaction was particularly relevant and the use of a programming framework for

interaction through motion was a central aspect. The two teams had only the uMove API,

which was still managing the coordination and communication between the different uMove

objects.

6.3.1 Context of the project

Firefighting involves the work of skilled personnel who are regularly required to make impor-

tant decisions based on rapidly changing situations. They must make these decisions while

performing strenuous physical activities using heavy equipment and uncomfortable protective

clothing under life threatening conditions. Among the many hazards firefighters face which

might account for such elevated levels of stress are chemical exposure, thermal injury and

trauma, all of which potentially interfere with the assessment of the rapidly changing situa-

tions encountered during search and rescue operations, generally conducted in low-visibility

and high-heat conditions. Primary search operations require moving as quickly as possible

through the structure while being thorough, and although there is a variety of equipment

available to firefighters to perform their duties, it may hinder rather than facilitate the gath-

ering of information, as handling such equipment can be difficult because of its weight and

volume.

Semi-autonomous robots can help the work of firefighters in collecting data. Their use in

urban search and rescue operations is not novel. There is a wealth of research in this area,

even more so after the terrorist attacks of September 11th in the United States [Burke et al.,

2004, Driewer et al., 2007, Scholtz et al., 2004] and this is a good motivation for the Robin

project.

The important issue of this work was the development of a context-aware application able

to detect activity through motions. The application would interpret activities by sensing the

motions (including change of location) of firefighters, and would use semi-autonomous robots

104 Chapter 6: Prototypes and validation

as tools to collect environmental data that could inform a firefighter about their situation.

6.3.2 Gathering contextual information

Depending on the firefighter’s movements within a building, the system would possibly con-

trol robots sent ahead of the team to gather information such as the state of the site (e.g.

temperature, the presence of smoke and/or dangerous gases in rooms explored) that might

represent a potential physical danger for the rescue team. For example, we consider a scenario

where a firefighter might be aware of an injured person trapped in a room on fire. By de-

ploying a robot in advance to the room in question, the system has enough data to determine

whether firefighters can proceed safely or whether there are dangers to be taken into account.

This would prevent them from finding themselves in a critical situation unexpectedly, and

by doing so, it would increase the knowledge about the incident, reducing the levels of stress

and allowing them to perform the appropriate rescue operation.

6.3.3 Robin architecture

The general design and decomposition of the application into components was done together

by all the students. Each student actively participated in the definition of the project needs

and proposed solutions. Then, two groups were created and each one had specific components

to design and develop. The first group was responsible for developing the robot, the motion

detection and the activity detection classes (Fig. 6.2). The second group was in charge of the

observers, viewers, the situation management and the Robin application including the robot

control and feedback sent to the mobile device carried by the firefighter.

Figure 6.2: Robin project architecture and group task assignment

First, the two groups had to work on the interfaces between the different components. For

6.3: Robin project: how Ubicomp technologies can help firefighters 105

instance, they defined the type of interaction between the Robin application and the robot

or the type of motions processed in order to derive the activities. Then, each group worked

on the algorithms for the motion detection, activity detection and situation analysis. Once

ready, an IWaT session was organised to test their work.

6.3.4 IWaT session

The goal of the session was 1) to test the preliminary algorithms to control the robot, the

motion recognition and the activity and situation detection, i.e. identify the possible dead-

locks and 2) to validate the general design and decomposition of the project before starting

the implementation. The general scenario to be tested was the situation where a firefighter

and a robot are searching for heat sources on a floor that is possibly on fire. The robot always

has to be in front of the firefighter and sends temperature readings to the Robin application

in order to inform the firefighter of potentially dangerous situations.

Figure 6.3: Students applying their algorithm during the IWaT session

The first step was to define the environment and the number of required participants, the

physical distribution of the participants (Fig. 6.3) and the sequence diagram board repre-

senting the different components of the system. The evaluation involved a total of 8 people:

2 students for the motion and activity recognition, 2 students for the situation manager and

Robin application, 1 student for the Robot, 2 assistants for the uMove components (entity

and observer) and 1 assistant for the sequence diagram board management.

All participants where grouped per component around a table. The spatial distribution

of the components depended on their inter-communication order. For instance, the observer

was next to the situation manager and next to the Robin application in order to facilitate

physical message passing. The sequence board was hidden from the participants as was the

virtual robot represented on a floor map. No discussion was allowed during the run of the

scenario. The idea was to put the participants in the exact situation of their component and

avoid human interpretation bias. Only the algorithms were interpreted. The initial situation

106 Chapter 6: Prototypes and validation

was: “The firefighter and the robot reach the problematic floor and start to search. The robot

is still close to the firefighter and no heat source is detected. The firefighter knows the layout

of the floor.”

A sequence was considered to be the complete processing of one message. For instance,

when footsteps were detected, an event (message) was generated by the senget and sent to the

entity which, then, sent it to the activity manager and waited for an answer. The answer was

forwarded to the observer and then to the situation manager. Finally the situation manager

processed the situation, taking the firefighter’s activity and contexts and after receiving the

detected situation (e.g. normal or critical), the Robin application sent a new command to

the robot and feedback (if needed) to the firefighter. At that moment, the next sequence

began. During a sequence, each group manually applied their algorithm(s), processed the

input message and sent the result to the next component.

6.3.5 Session results

The scenario was played for about 1 hour and about 20 sequences were completed. The

session revealed some important points that would need to be modified and/or adjusted in

the project. The students highlighted the following sources of problems undiscovered during

the design phase:

� Some situations could not be analysed because the activity was not defined properly.

� The motion detection algorithm was insufficient to detect proper movements.

� The robot was not autonomous enough and did not give enough feedback on its location.

� The firefighter was delayed by the robot, which got stuck quickly.

During the debriefing, the students talked about the general behaviour of the application

and, for instance, the idea of removing or replacing the robot was discussed. They also

naturally considered the decomposition of the application and tuned the type of input and

output that each component must receive and provide.

From the method evaluation point of view, we noticed that the overall student experience

was good and the discussions following the session showed the motivation of the groups to

interact and exchange information in order to adjust the different components. It also allowed

to note major problems and bugs and possibly reconsider the pertinence of some components.

The most important point is that this method made possible an important test before starting

the concrete implementation of the project.

6.3.6 The prototype

The project was developed in JAVA using uMove as the core middleware, SunSPOTs6 as

sensors for the motion (robot and firefighter) and temperature data, and LEGO�Mindstorm

6http://www.sunspotworld.com/

6.3: Robin project: how Ubicomp technologies can help firefighters 107

NTX7 for the robot. The mobile device used by the firefighter was a Glofiish X500 smart-

phone running Windows Mobile 6. Android phones were not available when the project was

developed and the choice of smartphones running a full Java virtual machine was small. The

students had to use a Mysaifu Java virtual machine8 for the mobile programming. The mobile

uMove middleware was only partially developed and the feedback was unidirectional using

the UDP protocol.

The application contained two main programming parts: the Robin application and mo-

bile application, and the motion recognition using the SunSPOT devices and the NTX con-

nection.

Robin application and situation management

The first team worked on the implementation of the Robin application attached on top of

the uMove middleware [Hadorn and Wilde, 2009] and the situation management. Robin was

the central component of the project. It was responsible for:

� getting the contextual information from the firefighters (e.g. activity, temperature,

physiological data)

� getting the contextual information from the robot (e.g. temperature, smoke density,

gas)

� processing the situation of the firefighter (situation manager)

� controlling the robot

� sending an alert to the firefighter

As shown in figure 6.4, the application tracked the firefighter and the robot in a building.

Each time the robot, equipped with a SunSPOT device, moved or detected a change of

context, it sent the new value to the Robin application which reevaluated the situation of

the robot and the firefighter. Mainly, the robot measured the temperature of the room and

the smoke density, and the sensor on the firefighter got the temperature. Ideally, contexts of

both firefighter and robot should be completed by the type of gas, for instance, in order to

potentially prevent exposure to an explosion.

The Robin application was divided into two parts: 1) the EntityTracker which was

the logic of the application applying an algorithm which sent feedback to the firefighter and

commanded the robot and, 2) the Robin GUI which visualised the entity’s locations and

states with different coloured dots.

The EntityTracker relied on the situation manager which processed and sent situation

messages to it. The situation management was based on Loke’s logiCAP [Loke, 2004] which

7http://mindstorms.lego.com/Products/Default.aspx
8http://www2s.biglobe.ne.jp/∼ dat/java/project/jvm/index en.html

108 Chapter 6: Prototypes and validation

Figure 6.4: Robin main window tracking the firefighter and the robot

uses predicates to infer on the situation detected by the situation manager and controls the

robot. The students defined four types of situations that were taken into consideration:

� Situation: Danger Awareness

– Actions associated: first encounter with danger. Inform firefighter about potential

danger at location L (no firefighter in place). Proceed with caution. Localise

danger with precision.

– Activities supporting the situation:

(too_hot(L) v too_cold(L) v gas(L) v smoke(L)) ^ NOT_in(L)

NOT in(L) becomes true when the location of the entity (say a firefighter) is

different from L.

� Situation: In Danger Now

– Actions associated: firefighter or robot are in a location L in which a danger is

identified. Warn firefighter about the type of danger, indicating time left before

the situation becomes critical. Backtrack.

– Activities supporting the situation:

(too_hot(L) v too_cold(L) v gas(L) v smoke(L)) ^ (NOT_too_long_in(A,L))

� Situation: Critical Situation

6.3: Robin project: how Ubicomp technologies can help firefighters 109

– Actions associated: firefighter or robot are in a location L in which a danger is

identified. Warn firefighter about the type of danger, backtrack.

– Activities supporting the situation:

(too_hot(L) v too_cold(L) v gas(L) v smoke(L)) ^ (too_long_in(A,L))

This example of situation management shows how from different contextual information,

the Robin application reacts and coordinates the next actions of firefighters. Table 6.2 sum-

marises the logic of the EntityTracker and the correlation between the firefighter activities

and the robot command.

Activity of firefighter Situation of robot Command to robot

Being still (not moving) normal stop

potentially dangerous stop

critical retract

Crouching normal go forward

potentially dangerous go forward

critical retract

Running normal explore backwards

potentially dangerous backtrack

critical backtrack

Walking normal go forward

potentially dangerous go forward

critical backtrack

Table 6.2: Decision rules and robot command

The evaluation of the robot and firefighter’s situations triggered events for the robot

(commands), as we saw above, but also created feedback for the firefighters by means of clear

messages sent to their mobile devices. As shown in figure 6.5 a) and b), the feedback was

either visual with the use of different screen colours (green, orange and red) or, auditive by

means of alarms generated when danger is detected. The goal of this prototype was also

to think about and test different ways of capturing user attention in a targeted manner in

order to keep their focus on the main task (fighting a fire or rescuing people). Of course, the

device was not used in real conditions and the interface was informally evaluated. The global

reaction of the involved students were that colours bring a clear message that we are used to

in different contexts such as traffic lights, and sound allows to get the attention of the user.

But, as there was no other interface to compare with, this was not a significant evaluation,

but more a proof-of-concept and an attempt at an unobtrusive interface.

110 Chapter 6: Prototypes and validation

Figure 6.5: The mobile device carried by the firefighters receiving a) a warning (orange) and

b) a critical alarm (red)

Motion and activity recognition

The second team was responsible for developing the lower level of the middleware which

was the entity motion and activity recognition as well as the NTX programming (the robot)

[Forrer, 2009].

The main tasks realised by the team were:

� The acquisition of sensor data and detection of motions at the sensor layer.

� The classification of activities in the activity manager.

The motion recognition was done by acquiring the data from the SunSPOT device (Fig.

6.6) mounted on the person and processed at the senget level. Four types of motions were

processed:

� single step

� single fast step (high velocity step)

� no movement

� unrecognized, everything else except the preceding motions

Based on the detected motion the team also classified four activities: standing still, run-

ning, walking, unknown. They defined the following characteristics for each activity:

� standing still: last motion is ”no movement”, or the entity keeps the current activity on

standing still (for now) until more motions come in.

� running: out of the last three motions, there are at least two fast steps.

6.3: Robin project: how Ubicomp technologies can help firefighters 111

Figure 6.6: Devices used for the activity recognition: a) sunSPOT, b) Lego Minstorm NTX

� walking: if it is not previously classified as running, this activity needs at least one step.

� unknown: everything else or when the two last motions are unrecognised.

6.3.7 Global results

This project was an important step for research in this thesis because it was the first project

to be developed from the design to the implementation phase using the uMove framework.

There are two aspects that are interesting to discuss.

The first one is the usefulness of the uMove framework. It came out during the different

discussions we had with the students that using a framework which clearly defines the compo-

nents of the system and also the terms to define them is important, and all the students could

speak talking the same ”language” during the development of Robin. The clear definition of

the concepts and the layers allowed the students to rapidly design the architecture and assign

the tasks to the different members of the groups.

It is also the first project where the activity and situation management was implemented

and the fact that algorithms are separated from the uMove system allowed the students to

develop each class (activity detection and situation analysis) without interfering with the rest

of the system.

The uMove API was also tested and several bugs were discovered and corrected. This

project raised an important issue that was taken into consideration in the next version of the

API: the inter-object communication was done at the uMove API level and there was no way

to integrate remote objects such as mobile devices other than passing through the application

level. This was the reason for the development of the coordination API and the separation

of the communication level.

Finally the IWaT method was created and tested during this project because it involved

different teams that were not working together all the time, so it was useful to test the

compatibility of each set of proposed algorithms before implementation began.

112 Chapter 6: Prototypes and validation

6.4 EMS project: Elderly Monitoring System

The EMS project was the second implemented application and was developed in the context

of a Master’s level final project at the University of Applied Sciences of Bern - Switzerland.

There were two goals behind this project. The first goal was to provide an application to a

nursing home for the monitoring of resident’s activities and situations and an alert system

for the appropriate medical staff. The second goal was, like in the Robin project, to perform

a new evaluation of the uMove framework which was proposed with new features. The

main new feature was the implementation of the coordination API and the separation of the

communication between uMove objects allowing remote objects to communicate as if they

were local. The second important change was the implementation of the first version of the

mobile uMove on the Android platform and the use of public services.

6.4.1 General requirement

The project needed to provide not only a monitoring system for people (elderly or impaired)

but also implement a smart system which takes into consideration different parameters for the

choice of the person who is requested to intervene when the situation of a resident becomes

critical. The approach is to:

� assign a person of trust for each resident

� consider the location of the medical staff near the resident

� consider the appropriate qualified staff according to the type of intervention (nurse or

doctor)

At the application level, the following scenario must be implemented and tested: In

case of a medical problem with a resident, the algorithm receives a situation update and

includes the three criteria above to define the most appropriate medical staff to contact for

the intervention. When a request is sent to the medical staff, the application waits for an

”Accept” acknowledgement from the medical staff, or if no answer is sent, it contacts other

members of the medical staff until the resident gets medical care.

A second requirement was the implementation of an adapted ”user to smartphone” inter-

face. The mobile device carried by the resident needed to propose an interface which was

unobtrusive and adapted to elderly people. This meant that the interaction was limited to

receiving advice (e.g voice message) when the person was in a critical situation (e.g person

laying down after a fall). For the devices carried by the medical staff, the interface included

a notification screen indicating all necessary information about the resident requiring an

intervention and the possibility to send an ”accept” message.

6.4: EMS project: Elderly Monitoring System 113

6.4.2 Setup

As shown in figure 6.7, the setup is close to the Robin project. The project is decomposed

into a server-based application and service, and two types of Android mobile applications and

services. In this project, the student used Motorola Milestone9 smartphones running Android

2.0.

Figure 6.7: Elderly People Monitoring system: general diagram

6.4.3 Server application

The server ran a uMove middleware modelling the environment of the nursing home (floors,

rooms, residents, nurses and doctors). The residents and medical staff were created in the

environment when their mobile devices were connected to the server. On top of the uMove

middleware, the main server service (Alarm Service) was attached to an observer and received

the different situation alerts detected by the observer and the situation manager. This service

contained the algorithm which processed any alerts, and sent messages to the concerned

medical staff who carried the Android mobile device. The resident entities were updated in

the server with activities such as walking, falling and resting and were processed in order to

be sent with the resident’s other contexts (e.g. location or body temperature) to the observer

for situation analysis. The activity recognition was done on the mobile device.

There were also an application called the Entity Tracker which received the contexts of

all entities (medical staff and residents) from the uMove middleware and sent them to a GUI

application which represented both the physical environment (building, room, floors) and the

9http://www.motorola.com/Consumers/GB-EN/Consumer-Products-and-Services/Mobile-

Phones/Motorola-MILESTONE-GB-EN

114 Chapter 6: Prototypes and validation

located entities. The GUI allowed to monitor each entity and get information about their

current states.

6.4.4 Mobile application

On the mobile side, the application used different services depending on the type of user. If

the mobile device belonged to a resident, the application sent the contexts (e.g. location,

temperature) and the recognised current activity to the server application. As defined above,

there was no interaction between the resident and their mobile device. The idea was to let

the resident carry out their daily activities without worrying about the mobile device (calm

technology principle). We considered the idea that a resident could use their mobile device

to request some assistance, but this was not implemented in this version of the project.

For the medical staff, the application did the same as for the resident, sending context

and current activities manually selected (e.g. taking care of a person, resting, setting a

room). The mobile uMove running on the medical staff device proposed a more sophisticated

graphical interface as interaction with it is required. It was equipped with an alarm service,

as well as other services.

Alarm service

The alarm service was the core service of the project in the sense that the algorithm was

distributed between the server service which received the situations and generated alerts and

the client service which would receive the intervention request and send back the acknowl-

edgement to the server.

The algorithm took different parameters into consideration to decide who (medical staff)

needed to be notified. First, it assessed the situation and the level of required competencies

(nurse, doctor or both). Second, it checked the available staff around the resident according

to medical staff activities. Once the message was sent to the most suitable persons, one or

more staff needed to confirm the intervention before releasing the alarm. If no one answered

the server request, the server service extended the range of people to be contacted and sent

other messages until a positive answer was received.

6.4.5 Evaluation of uMove

The second goal of the project was to get an evaluation of the uMove framework and the

student was requested to write a report about the use of such a tool for the development

of his project. It should be mentioned that the uMove editor was not available during the

implementation of the EMS project.

The next paragraphs contain quotes of the student’s comments from this report.

6.4: EMS project: Elderly Monitoring System 115

Starting with a base application

”Pervasive computing was absolutely unknown to me, so I needed to be introduced to this

topic first. After the general introduction of this theme we started with the introduction of

the uMove framework including a demo application called Robin. Based on Robin, I started

to implement the Elderly Monitoring System according to the SWRS10[...]”

Flexibility of uMove

”I noticed that the uMove is much more flexible than the implemented GUI could be. Adapt-

ing a new floor in uMove could be done in 10 minutes after understanding how to do that.

But adapting the GUI needs much more time. [...] The connection between server and mobile

application works well and needs not many settings from the programmer.”

Working with a prototype

”But, it is to say that working with this version of uMove, was not the easiest thing because

the basic concept of uMove, that almost the whole application [,] is located in framework

classes, [which] was first a bit unusual for me and needed some time to understand. Also

upgrading and adjustments [of uMove] during this master thesis delayed the work. In fact,

because the framework was not fully finished and tested, I had to invest a lot of time for

knowing how to implement the sensor sengets, entity tracker, service, etc.”

Adapted framework for Ubicomp projects

”But as conclusion I can say, after working more than 300 hours11 with the uMove framework,

that the concept and implementation is really adapted for a project like the elderly monitoring

system. The longer I worked with the uMove Framework, the more I got the estimation that

the uMove framework is a really powerful and serviceable utility which is on a good way. But

it needs also some work to be really usable for larger and really used projects.”

Evaluation summary

Even though the different comments are not a formal evaluation of the framework, they

highlight two major aspects of the uMove framework that need improvement: documentation

and description of the modules, and logic of implementation (for developers). But, it seems

to be a useful tool to develop context-aware applications including activity and situation

management as well as mobile devices.

10The SWRS is the project description that the student must write before the implementation; it contains

all application functionalities, use cases and expected results
11It is the minimum number of hours for Master projects requested by the university to get the ECTS

116 Chapter 6: Prototypes and validation

6.5 SMSService: a concrete use case of a uMove service

Finally, we present a new evolution of the uMove middleware through the first prototype

implementing the concept of service as described in the previous chapter. The main evolution

was the implementation of the service loader [Vonlanthen, 2011] in the uMove editor and the

development of a service as proof-of-concept. The concept of services is defined as applications

with two components: a server and client part, and an interaction with mobile device users.

The difference between this project and the EMS project was the dynamic service loading. In

the EMS, services were loaded only when the uMove middlewares (server and mobile) were

starting, while in this project they were loaded at runtime.

We describe the service in slightly more detail than the other projects in order to also

show the coding side of uMove and the way the concrete implementation of the concepts

described in chapter 5.2.3 works.

The SMS service illustrates this concept and also shows the possibility to implement a

bidirectional communication between server and client. In this project, the SMS service was

a simple chat console allowing a system manager or mobile users to communicate with mobile

users present in the smart environment.

Figure 6.8: Functional diagram of the SMS Service

6.5.1 Server part

The server service was made of a SMSServiceServer class extending AbstractServerService

and implementing the process() and the sendMessage() methods as shown in listing 6.1,

and a GUI console (Fig. 6.8). The process() method was called by the coordination man-

ager when a message was sent to the server service. The sendMessage() was called by the

6.5: SMSService: a concrete use case of a uMove service 117

observer to which the service was attached and which received events from the entities. In

the SMS service case, the events were only used to indicate that the system had changed (e.g.

an entity moved or had a change of context).

1 public void sendMessage(Object pSender , IMessage pMessage) {

2 //if the KUISystem has changed:

3 if (pMessage != null && pSender instanceof Observer && pMessage

instanceof KUIMessage) {

4 KUIMessage pKUIMsg = (KUIMessage) pMessage;

5 smsCon.systemHasChanged ();

6 }

7 //if the User wants to send a Message from the ServerPart to a

certain ClientApp

8 else if(pMessage != null && pSender instanceof Actor && pMessage

instanceof TextMessage){

9 Retval sendRetval = ServiceAPI.sendMessageToClient("SMSService

",(Actor) pSender , pMessage);

10 }

11 }

12

13 public IMessage process(IMessage pMessage , EServiceQueryType

eQueryType) {

14 //if the serverPart receives a Message from a clientApp:

15 if(pMessage != null && pMessage instanceof TextMessage){

16 TextMessage pTextMsg = (TextMessage) pMessage;

17 smsCon.incomingMsg(pTextMsg.getText ());

18 }

19 }

Listing 6.1: Code sample of the SMS server algorithm

The SMSConsole (service user interface), instantiated by the SMSServiceServer, was

made of two text fields (incoming and outgoing message) and a list of active users (Fig. 6.9

a). The GUI was simple and intuitive and did not need particular explanation. The goal

was the testing of the bidirectional communication of the service interface and the easiness

of implementation.

6.5.2 Client part

The SMS service client respected the concept developed and explained in chapter 5.3.4. The

Android application (APK) implemented the intents needed to communicate with the uMove

middleware. As for the server part, the client-user interface was simple and allowed to edit

text messages using the standard text edition tools of Android (Fig. 6.9 b). The button

”send” called the intent for sending the message to the mobile uMove middleware and the

ServiceAPI.

118 Chapter 6: Prototypes and validation

Figure 6.9: SMS service: a) server graphical user interface, b) client graphical user interface

running on Android

6.6 Summary

In this chapter, we have presented concrete prototypes developed with different versions of the

uMove framework proposed at different steps of this research. As summarised in Table 6.3,

these projects allowed to iteratively validate the uMove system model and also contributed

to the evolution of the uMove implementation tools.

The first project was theoretically defined and published, and touches an ecological prob-

lem that concerns, in particular, the northern hemisphere: the greenhouse gas effect. The

Hestia project proposed to use Ubicomp technologies to optimise heating system use in houses

by including user activity on top of usual contexts such as the external temperature or time

of day (for tuning room temperatures). The uMove model was well suited to the type of

architecture needed for this project, but due to lack of time and resources, the project was

not implemented.

The Robin project was the first development that involved different teams of students.

Robin was an application which aimed at supporting firefighters in their duties by controlling

a robot which gathered contextual information sent ahead of the team. The server-based

application analysed the context and informed the firefighters about the situation they might

face. The goals of this project were to propose an interesting case study where a Ubicomp

system might be useful and to test the usability of the uMove framework in multi-team work

and the IWaT method for testing the architecture of a project before the implementation

phase.

6.6: Summary 119

The third project implemented an application monitoring elderly people (residents) in a

nursing home. It involved a server-based application and mobile applications. The server-

based application received contexts and activities from mobile devices and analysed the situa-

tion in which the resident might be. Situations were classified into four categories from normal

to critical and according to their level, alerts were sent to the most appropriate medical staff

(on their mobile device) for an intervention. The choice of the best person to intervene was

made according to criteria such as proximity, the relation with the resident and the level of

competency (nurses versus doctors). The goal of this prototype was again the evaluation of

the uMove framework, and integration of Android mobile devices in terms of usefulness and

easiness of use from a programming point of view. This scenario is probably the most realistic

project that uMove can support and should be developed further.

Finally, we presented a simple service called the SMS service to show how the concept of

a uMove service can be implemented and works between a server based uMove system and

the mobile device running uMove. The SMS service allows simple text message exchange

between the system administrator and the mobile user. This project was also developed to

test the first version of the uMove system editor and the service loader.

In addition to helping to iteratively improve the design of the uMove framework, these

four case studies are an important step in showing that the framework can be used to im-

plement context-aware systems including mobile devices, user activities and situations. The

next chapter will summarise the different aspects of the research and also draw future and

interesting perspectives for the uMove framework.

120 Chapter 6: Prototypes and validation

Table 6.3: Summary of the uMove evolution through the four projects

Chapter 7

Conclusions and Perspectives

Contents

7.1 Thesis orientation . 122

7.2 uMove framework: a promising wholistic tool 122

7.3 Perspectives . 127

7.4 Epilogue . 131

Ubiquitous computing (Ubicomp) has become a very popular academic field of research in

the last two decades. Furthermore, with the rapid development of mobile computing, WIFI

communication, miniaturisation of sensors and all applications related to these technologies,

Ubicomp is very present in our daily life. Smarter applications using sensors embedded

in smartphones are used daily by a considerable number of users, making context-aware

computing a popular computing paradigm.

In this thesis, we focused on two aspects that are often missing in the development of

Ubicomp systems. The first aspect concerns the lack of tools to help developers define and

implement Ubicomp systems in a wholistic manner and the second aspect is the possibility to

integrate user’s kinetic properties (motions, activity) and situational information in Ubicomp

systems in order to enrich the concept of context-aware computing. We proposed a com-

prehensive framework, called uMove, as a solution for the development of Ubicomp systems

running context-aware applications, possibly enriched with a user’s kinetic and situational

information. The uMove framework proposes both theoretical foundations and implementa-

tion tools for system designers and developers and is divided into three facets: a conceptual

model, a system architecture and implementation tools.

121

122 Chapter 7: Conclusions and Perspectives

7.1 Thesis orientation

The original research plan of this thesis had a different focus and first proposed to explore a

new interaction paradigm for Ubicomp systems where user’s motions are taken as a primary

input modality. The idea was to complement or to replace traditional user-computer inter-

action using GUI, mouse, keyboard or voice with commands based on detected motions of

devices carried by people or embedded in everyday objects. One goal was to make a shift from

an explicit interaction with computing systems to a more implicit one. To reach this goal, we

proposed the concept of Kinetic User Interface (KUI), considered as a natural extension of

the Graphical User Interface. The KUI concept was not limited to a single user but involved

other users and objects in the physical and logical space at different scales (tabletop, room,

building or city) and implied relations between all entities (users and objects) performing

actions in the environment.

This concept was to be tested using the uMove middleware and different scenarios. We

quickly realised that focusing on the KUI concept first, and then developing the uMove model

and the tools needed to implement a KUI enabled middleware would not be feasible in one

thesis and would have certainly resulted in only a concept. A review of existing tools to

develop Ubicomp systems based on the KUI requirements showed the needs were partially

met, but that there was a lack of generic system modelling tools that included entities,

relations between them and applications which take into consideration entity motions and

activity.

A decision was therefore made to concentrate first on the development of a solid model

which could be used to build context-aware Ubicomp systems from the theoretical aspects

to the implementation and would be ready to integrate kinetic properties. Based on this

model, and as a result of the contributions of this thesis, further research is now possible to

develop kinetic-aware systems based on user’s motions, activity and situation, and therefore

to possibly reach the goal of the KUI concept.

Given the results obtained in this thesis, we believe that the decision was the right one

and allowed to present, through the uMove framework, strong foundations to continue in the

initially planned direction in future work.

7.2 uMove framework: a promising wholistic tool

The version of the uMove framework presented in this dissertation is the result of different

development efforts. The first conceptual model was not based on the systemic concept but

already included the concept of a multi-layer architecture and KUI enabled objects called

Kuidgets. The first API was tested with small prototypes not presented here. A major

change occured when we changed the approach of the conceptual model. We found that

the way in which Ubicomp systems work (with environments made of different interacting

entities) corresponded to a concept that was already largely used in several domains and got

7.2: uMove framework: a promising wholistic tool 123

its own theory: General System Theory [von Bertalanffy, 1969]. After the redefinition of

our model, the uMove middleware was adapted and used in different validation prototypes

described in chapter 6. The obtained results supported the appropriateness of the model and

the implementation.

Finally, the consolidation of all the uMove components under a single framework made of

three facets (the conceptual modelling, the architecture and the implementation tools) meant

that it became a wholistic and encapsulated tool. However, each of the facets can be used

separately and shows a certain level of maturity, but also offers interesting future perspectives

that we will describe now.

7.2.1 Conceptual model

The first facet of the framework is the uMove conceptual model, and the approach chosen

to make a clear separation of the (user) environment and its logical representation from

Ubicomp applications. To achieve this goal, we based our model on the General System

Theory and considered that everything from atoms to galaxies can be seen as a system.

In our definition of system, we included two elements: the observer and the viewer. An

environment, made of different interacting entities and observed through a viewer (the point

of view) becomes a system. An application gets information from the system through an

observer. With this model we obtained a clear separation of concerns with, at one level,

the observed environment which evolves independently and, at the other level, applications

which process observed information and possibly provide adapted feedback to the user. We

also considered the activity and the situation management at the level of the entity and the

observer respectively.

A generic model

The conceptual model revealed an interesting side effect of such an approach. This model

is generic enough to be used to model systems in different domains more or less distant

from Ubicomp or even computer science. We discuss three cases that we find particularly

interesting.

Computer games and virtual worlds The first case concerns the modelling of virtual

worlds usually represented in computer games such as Second Life, World of Warcraft, Lara

Croft, and many others. The representation of these virtual worlds is often based on or

derived from real ones (even if they are imaginary), thus they could be modelled in a uMove

system. Our model represents entities, whether they are physical or virtual. If the game

object (character, place or object) has properties and relations with its environment, it can

be modelled as a uMove entity and can be observed.

For example, an Internet game representing a virtual world made of places, buildings,

lands, objects and creatures can be set as the server-based environment. The game itself can

124 Chapter 7: Conclusions and Perspectives

be a service which has a server and a client part. The characters (avatars) populating the

virtual world of the game are the entities represented by mobile uMove systems. The mobile

uMove middleware, being a simple uMove system, can run on a computer or a smartphone

connected to the Internet and interfaces the client part of the service (the user game).

Distributed computer systems The second case concerns the modelling of computer

systems made of a network of applications or agents processing inputs for a global application

connected on top of the system. Such an architecture, similar to grid computing, could be

used to process large amounts of (possibly different types of) data at the same time by

distributing the computational power across several applications. To illustrate this concept,

we can imagine a scenario where meteorologists need to draw a weather forecast map of a city

taking into account different contextual values (e.g. temperature or humidity level) locally

gathered and processed on mobile devices moving around the city. The mobile devices send

their processed values to the server-based application which merges them in order to create

the weather forecast map of the city. The more mobile devices connected to the environment,

the more accurate the weather forecast map will be.

The uMove model as a tool for ecosystem modelling The third case is probably

the most distant from Ubicomp and concerns an important domain in biology: ecology and

ecosystems. An ecosystem is the sum of all organisms living within boundaries and all the

abiotic factors with which they interact [Campbell et al., 2008]. This means that a forest,

a lake or a region are ecosystems in which an equilibrium exists and makes these bounded

areas ”living”. We can imagine an application which models a specific ecosystem and monitors

the complex interactions between the species taking into account the trophic levels and the

balance between the number of individuals. The goal is to raise alarms when an equilibrium

is broken within the ecosystem. Each individual can be represented by an entity which has

relationship with its environment (other individuals, location). Rules can be set for each

type of individual or group of individuals (called population) and observers can be set with

different points of view. This example is theoretical and probably realistic only for simple

ecosystems.

7.2.2 uMove system architecture

The system architecture represents the second facet of the framework and is the link between

the conceptual model and the implementation tools. It proposes a way to represent a system

developed with the conceptual model and which needs to be implemented. The architecture is

divided into three different layers representing 1) the sensors gathering the entity data, 2) the

environment with all entities and 3) the observers and viewers which relay the processed entity

information to the application. This layered architecture is called the uMove middleware and

allows to represent the physical environment and to connect the physical sensors and the

7.2: uMove framework: a promising wholistic tool 125

applications or services to the uMove system. The system architecture was derived from

the conceptual model and has contributed to its validation. We noticed that the conceptual

model was adequate when we built a clear and accurate architecture following the model and

its components.

Another interesting result was the development of IWaT (Interactive Walk-Through),

a methodology to test the architecture of the system before starting the implementation.

The IWaT evaluation methodology was conceived to fill the functional evaluation gap and

was inspired by the family of walkthrough methods from User Centered Design (UCD). The

method can be used to ensure that the various chosen algorithms, strategies, inferences (of

activities or context) and measurements (e.g. from sensors) operate together smoothly, satisfy

user requirements, take into account technical and infrastructure limitations and form a

coherent and comprehensive system.

7.2.3 Integration of a mobile server-based uMove

There are cases where server-based uMove systems (smart environments) can be mobile. For

example, a cruise boat can offer a smart environment with different services for passengers

on board. At the same time, harbours can also run a uMove system offering other services.

The interesting problem is when the cruise boat enters the harbour and the two smart envi-

ronments are visible for the passengers. Currently, the mobile middleware is able to manage

multiple smart environments, meaning that the connection is made at the mobile uMove level.

It could be interesting to further explore the possibility for a mobile and complex uMove sys-

tem (the cruise boat) to be integrated in another uMove system (the harbour) and let the

users of the integrated uMove system benefit from the services offered by the harbour smart

environment in a transparent manner. This implies a proper and complex management of the

entity trees and the services, especially when the integrated uMove leaves the ”parent” smart

environment. But, the uMove model and the way entities are managed already (theoretically)

allows the integration of one entity structure into another entity structure.

7.2.4 Implementation tools

The implementation tools are the third facet of the framework and they represent an impor-

tant part of this work. Three generations of APIs were developed during this thesis and they

followed the changes of the conceptual model. At the software engineering level, the main

change was the separation of uMove object coordination and communication (Cordination

API) from the uMove system (uMove API). This change result in greater flexibility in terms

of communication with remote systems or objects and also the possibility to use different

communication protocols. The APIs have also allowed the development of the mobile uMove

middleware running on Android mobile devices. This mobile middleware, based on the stan-

dard server uMove middleware, offers different functionalities for managing the connections

between mobile and server (the smart environment) and the public services available in the

126 Chapter 7: Conclusions and Perspectives

smart environment. But, it has the disadvantage of creating a more complex set of classes

and packages and makes maintenance and extension more complicated. The uMove, Coor-

dination and Monitoring APIs with which developers build the uMove middleware are not

separable anymore.

During the last part of the research, we found that it could be interesting to offer develop-

ers and system managers a uMove system visual editor which aims at hiding the programming

complexity of the three APIs but also allows to easily maintain a running system. The first

prototype of the uMove System Editor offers a visual tool to manage (create, edit, load and

save) a uMove system, and a service manager allowing to load user services on the server and

make them available for Android mobile devices running a mobile uMove middleware.

The different uMove development tools were greatly improved through different projects

made by students and they have contributed to a fairly stable version of the APIs, the uMove

mobile middleware and the editor. This successful first step in the development of these tools

has opened the door to many motivating perspectives discussed in 7.3.

7.2.5 Validation projects

The validation of the framework would have not been possible without the projects developed

during the different stage of this thesis. We fixed goals for each of these projects which were:

the validation of the uMove model and the pertinence of the systemic approach, and the

evaluation of the uMove middleware (including the communication) and the tools to develop

uMove enabled systems.

The first project was oriented toward the integration of a user’s activity and situation as

main contexts for the application behaviour. The Hestia project aimed at providing smart

heating system management for family homes. The application regulated the radiators ac-

cording to people’s activity and other contexts such time of the day, the season or a family

member’s profile. This project, published in a conference and a journal, was theoretically

defined and the architecture was ready to be implemented, but it was not implemented. The

goal of this project was to see how the uMove middleware could help domestic applications

be more reactive and invisible to users.

The second project, called Robin, was done in the context of a master’s course. The

goal of this project was essentially to see how different teams were able to work in parallel

on a project using the uMove framework, and to test the IWaT methodology. The scenario

was based on a system helping firefighters to carry out their activity by providing contextual

information about the surrounding environment through a robot sent ahead of the firefighter.

The third project was developed by a master’s student in the context of his final project

work. The EMS (Elderly people Monitoring System) aimed at helping medical staff in a

nursing home to carry out their activities and be alerted in case of health problems of residents

not under direct supervision. The idea was to increase the privacy of elderly people in a

nursing home by having a non-intrusive monitoring system. For this thesis, the main goal of

7.3: Perspectives 127

the project was to get feedback on the uMove implementation tools and their usability.

The fourth validation project was the SMS service developed during the implementation of

the mobile uMove middleware and the integration of the service management. The objectives

of this simple chat service were to validate the concept of loadable services on mobile devices

and to test the bi-directional communication between a server and a mobile client.

Generally, the goals of each project were reached at the level of the uMove framework

evaluation. But, not all expected features were implemented especially at the application

level. However, the components of the framework were tested and they are ready to be used

in future projects.

7.3 Perspectives

Based on the encouraging results of this research, there are several issues that are worth de-

veloping further. Among them, we have identified modification of the uMove API, the uMove

Editor and the concept of service, and the development of activity and situation management.

But, the most important issue is to carry out a detailed evaluation of the uMove middleware

through a real project involving a significant amount of users, applications, services and types

of sensors in order to more strongly validate the usefulness of the framework.

7.3.1 uMove API

The uMove API has reached a satisfactory level of stability and usability and was used in

several projects with different levels of complexity. It should now pass a new step in order to

become a public API.

Generalisation of the uMove objects

The entity, observer, viewer and senget are based on the same concept, which consists of

1) being able to be listened to or being a listener of other uMove objects and 2) using a

message processor which implements the specific logic of the object. It would be interesting to

generalise the concept of uMove objects and finally come to the point where the uMove system

is made of uMove objects with different properties and it is through these properties that the

components are defined within the system. This idea came during the second development

phase of the uMove API. The Java inheritance concept showed that the mentioned objects

were similar and could implement almost the same interface. However, there are important

differences between an entity and an observer, and for example, the generalisation might bring

more complexity than actual simplicity. Additionally, the implementation of this concept

could be relatively distant from the current conceptual model. In either case it is a track to

explore further.

128 Chapter 7: Conclusions and Perspectives

Better integration of sensors

We worked with different types of sensors during the development of the validation projects

and we saw that the integration of new types of sensors should be facilitated. We discovered

at the end of this thesis that Android allows to easily integrate the sensors available on a

smartphone into an application and we think that we could work on a similar solution for

the integration of server-based sensor technologies, keeping the concept of sengets. The first

step would be to propose, with the uMove API, a ”ready to use” solution integrating indoor

location technologies using Bluetooth or WiFi in addition to the RFID already proposed.

Plugin for IDEs

To complete the uMove framework, it could be suitable to develop Java plugins for IDEs such

as NetBeans1 or Eclipse2 in order to facilitate the implementation of applications and services

on the server and client side. The goal would be to facilitate the packing of all needed classes

of the developed application, ready to be loaded (with the Java class loader) on the server

using the uMove System Editor.

7.3.2 uMove System Editor

The first prototype of the uMove System Editor has already shown promising results in terms

of stability and seems to be a useful tool to setup and manage a server-based system. There

are still aspects that were not developed during this thesis and among them are the proper

management of sensors and applications.

Sensor management

Sensors are essential components of context-aware systems and they must be easily integrated

or removed from a running system. In our model, which is based on a clear separation between

the applications, services, sensors and the uMove system, sensors should be dynamically

loadable and attached to entities, and enabled as new context providers for applications and

services. Usually, loaded applications and services use specific sensors which are loaded in the

system at the same time as the applications. In a future version, the uMove System Editor

could offer a sensor management independent of the applications and services. This means

that sensors could be available for different applications through available entity contexts. In

the current version of the editor, sensors are loaded when the service using them is loaded.

Application management

In the current version, the editor proposes only the management of services and this function-

ality should be extended to applications. Some preliminary tests of application management

1http://netbeans.org/
2http://eclipse.org

7.3: Perspectives 129

functionalities were carried out but not integrated in the thesis because there exist problems at

the level of software requirements and software engineering (class loading and dependencies).

Multi-uMove system manager

The current version of the uMove System Editor manages one uMove system at a time but

is programmed so that it can manage several uMove systems or smart environments at the

same time. For the time being, the smart environment would need to be on the same network

but with different port numbers (smartEnv1:9900 and smartEnv2:9910).

A real improvement would be to have a complete separation between the uMove System

Editor and the uMove middleware objects. The uMove System Editor could even be a web-

based service which could be accessed from anywhere with the necessary access control. This

is another interesting project to be developed.

7.3.3 Mobile uMove middleware

The Mobile uMove middleware is already the second prototype and has been considerably

improved. However, there is still room for improvement and testing and we have identified

at least three aspects which should be considered in the future.

Mobile uMove configuration

One aspect is the easiness of the mobile uMove middleware configuration. The user should

have an easy way to set their own information and profile (e.g. name, address, phone number

or the icon which represents him/her) and be able to store it, or to take information already

stored in their smartphone and used by other applications (e.g. a mailer or electronic agenda).

In this version of the mobile uMove, the minimum information about the user can be modified

with a very basic menu, but it is not as rich as we could expect from such a system.

7.3.4 Development of services

The examples of the SMS service and Alarm services (EMS project) developed during the

thesis were used to validate our model of service, but there are many other services that can

be implemented on uMove and we list some examples bellow.

Train stations are good examples of environments which should provide contextualised

services. For instance, travellers coming by train to an unfamiliar city could benefit from a

local service providing a local transportation timetable enriched with city-specific information

in order to continue their journey. Another service could help people in airports or any public

places by offering the possibility to locate two (or more) people in real time who need to meet

without a precise meeting point. This is a typical situation for travellers arriving in an

unknown place (train station hall or airport terminal). The service loaded on both mobile

devices locates the other person and in parallel guides the users in the direction of each other.

130 Chapter 7: Conclusions and Perspectives

This service, called the M2M (mobile to mobile) finder service, was an idea that we wanted

to develop for the university campus.

Shopping malls are also environments where contextualised services may be useful. For

instance, sale information that appears in the phone could be contextualised according to the

user profile and shopping list. It could also be interesting to apply the concept of service in

scenarios such as UbiCicero [Ghiani et al., 2008] or GUIDE [Cheverst et al., 2000] projects.

These applications could be reimplemented and extended with uMove services in the context

of a uMove enabled smart environment managing a museum and a city.

Finally, services are interesting tools in situations such as conferences/conventions or trade

shows which are by nature time framed and contextual. Different services, such as proposing

the session content and/or presented papers when passing in front of a room, or a people

locator, could be provided to the participants. This list is of course not exhaustive but shows

that a local and contextualised service model can be useful in several situations.

7.3.5 Activity and situation management

As already mentioned, activity management is an aspect which can be a self-contained PhD

thesis and we could not include it in this research. We believe that the uMove framework

provides an interesting platform to test different approaches in activity recognition algorithms.

As soon as the algorithm gathers data by any motion sensors such as accelerometers or

cameras and a combination of other contexts, the uMove middleware can be used as a testing

platform.

For the situation analysis, the uMove middleware also allows to attach different algo-

rithms implementing different approaches. Our model proposes a generic approach where the

activity and the contexts are taken into consideration for the situation analysis, however the

middleware does not constrain researchers to follow this model in particular.

7.3.6 Full evaluation

The evaluation of uMove essentially concerns the middleware and its scalability when it is

used in a full setup like the management of a university campus with thousands of students

and several monitoring applications and user services.

Scalability of the uMove middleware

The inter-object communication within the server-based uMove middleware needs to be tested

in order to verify the efficiency of the message passing mechanism and the capacity of the co-

ordination manager to receive the messages, find the concerned entities and send all messages

without loss. This operation can be critical if we have a few hundred users sending acceler-

ation data each millisecond, which needs to be forwarded from the senget to the observers

7.4: Epilogue 131

through the entities and viewers. In the first step, these tests could be simulated because it

is not realistic to get a few hundred Android phones for real condition testing.

As for the uMove middleware performance test discussed earlier, the mobile uMove should

be tested with several services using heavy communication traffic with the server to check if

the concept of Intents is an acceptable solution to local communication between the mobile

uMove and services (APK to APK communication).

Mobile monitoring

Another important issue is the management of devices running a mobile uMove joining and

leaving the smart environment. Also, it would be interesting to monitor the traffic generated

by all mobile devices sending the embedded sensor data (e.g. acceleration) and get figures

on the network load and the network infrastructure needed to support a few hundred users

moving around the smart environment.

User evaluation

From an HCI point of view, another next step would be to carry out a user evaluation on the

middleware user interface. During the thesis, a few informal tests were done with colleagues

in order to have a simple interface usable during the development phase.

7.4 Epilogue

To conclude, we can say that the development of the complete framework iteratively obtained

in this thesis as shown that the approach and the model proposed were wisely chosen and

have given interesting and promising results. Even if there are still limitations in the current

version of the framework and many questions remain at all levels (model, architecture and

implementation), it opens many opportunity for other interesting projects both in the future

development of the framework itself and/or in other academic research which could use and

benefit of the framework to develop, for instance, smart environments and implement activity

recognition algorithms. It is interesting to notice that software solution companies as well

as other universities have already shown interest and asked the author to present the uMove

framework for a potential partnership in order to further develop the framework or to program

concrete applications. It is always encouraging when other people and colleagues express their

interest in your work.

132 Chapter 7: Conclusions and Perspectives

Appendices

133

Bibliography

M. Abdallah, C. Fred, and A. Farah. An authentication architecture dedicated to dependent

people in smart environments. In ICOST’07: International Conference on Smart Homes

and Health Telematics, pages 90–98, Nara, Japan, 2007. Springer-Verlag. [cited at p. 22]

G. D. Abowd and E. D. Mynatt. Charting past, present, and future research in ubiquitous

computing. ACM Transactions on Computer-Human Interaction, 7:29–58, March 2000.

[cited at p. 11]

G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and M. Pinkerton. Cyberguide:

a mobile context-aware tour guide. Wireless Network, 3:421–433, October 1997, Kluwer

Academic Publishers. ISSN 1022-0038. [cited at p. 3, 19]

G. D. Abowd, E. D. Mynatt, and T. Rodden. The human experience. IEEE Pervasive

Computing, January-March 2002. [cited at p. 11]

The Android Developers. Guide dev. http://developer.android.com/intl/zh-

CN/guide/index.html, January 2011. Last accessed: 25.01.2011. [cited at p. 88, 89]

M. Baldauf, S. Dustdar, and F. Rosenberg. A survey on context-aware systems. Interna-

tional Journal of Ad Hoc and Ubiquitous Computing, 2:263–277, June 2007, Inderscience

Publishers. [cited at p. 13]

L. Bannon and S. Bødker. Beyond the interface: Encountering artifacts in use. In J.Carroll,

editor, Designing Interaction: Psychology at the Human-Computer Interface, pages 227–

253. Cambridge, Cambridge University Press, 1991. [cited at p. 27]

J. E. Bardram. Applications of context-aware computing in hospital work: examples and

design principles. In Proceedings of the 2004 ACM symposium on Applied computing, SAC

’04, pages 1574–1579, New York, NY, USA, 2004. ACM. [cited at p. 19]

J. E. Bardram. Activity-based computing: support for mobility and collaboration in ubiq-

uitous computing. Personal Ubiquitous Computing, 9:312–322, September 2005, Springer-

Verlag. [cited at p. 28]

135

http://developer.android.com/intl/zh-CN/guide/index.html
http://developer.android.com/intl/zh-CN/guide/index.html

J. Barwise, J-M. Gawron, G. Plotkin, and S. Tutiya. Situation Theory and its Applications,

volume 2. Center for the study of language and information - Stanford, 1991. [cited at p. 30,

31]

M. Beigl, H. Gellersen, and A. Schmidt. Mediacups: Experience with design and use of

computer-augmented everyday artefacts. Computer Networks: The International Journal

of Computer and Telecommunications Networking - pervasive computing, 35(4):401–409,

2001, Elsevier. [cited at p. 13]

G. Bell and P. Dourish. Yesterday’s tomorrows: notes on ubiquitous computing’s dominant

vision. Personal Ubiquitous Computing, 11:133–143, January 2007, Springer-Verlag. ISSN

1617-4909. [cited at p. 2, 12]

V. Bellotti, M. Back, W. K. Edwards, R. E. Grinter, A. Henderson, and C. Lopes. Making

sense of sensing systems: five questions for designers and researchers. In Proceedings of the

SIGCHI conference on Human factors in computing systems: Changing our world, changing

ourselves, CHI ’02, pages 415–422, New York, NY, USA, 2002. ACM. [cited at p. 11, 25]

S. Benford, H. Schnädelbach, B. Koleva, R. Anastasi, C. Greenhalgh, T. Rodden, J. Green,

A. Ghali, T. Pridmore, B. Gaver, A. Boucher, B. Walker, S. Pennington, A. Schmidt,

H. Gellersen, and A. Steed. Expected, sensed, and desired: A framework for designing

sensing-based interaction. ACM Transactions on Computer-Human Interaction, 12:3–30,

March 2005, ACM. ISSN 1073-0516. [cited at p. 20]

A. W. Black. ASTL: A language for computational situation semantics. PhD thesis, Depart-

ment of Artificial Intelligence, University of Edinburgh, 1992. PhD Thesis. [cited at p. 31]

S. Bødker. Through the Interface - A Human Activity Approach to User Interface Design.

Hillsdale, 1990. [cited at p. 26]

P. Bolliger. Redpin - adaptive, zero-configuration indoor localization through user collabora-

tion. In Proceedings of the first ACM international workshop on Mobile entity localization

and tracking in GPS-less environments, MELT ’08 - San Francisco, California, USA, pages

55–60, New York, NY, USA, 2008. ACM. [cited at p. 21]

K. Boulding. General systems theory - the skeleton of science. Management Science, 2(3):

197–208, 1956, University of Michigan. [cited at p. 38, 39]

A. Bouvier. Management et projet, former, organiser pour enseigner. Hachette, Paris, 1994.

[cited at p. 38, 41]

P. J. Brown, J. D. Bovey, and X. Chen. Context-aware applications: from the laboratory to

the marketplace. IEEE Personal Communications, 4(5):58–64, 1997. [cited at p. 13]

136

P. Bruegger. ubiglide, an application for gliding activities based on a motion-aware

middleware architecture. Master’s thesis, Department of Informatics - University

of Fribourg, Switzerland, June 2007. URL http://diuf.unifr.ch/pai/education/

studentProjects/PascalBruegger/mscubiglide.pdf. [cited at p. 82]

P. Bruegger, V. Pallotta, and B. Hirsbrunner. ubiglide: a motion-aware personal flight assis-

tant. In Thomas Strang, editor, Adjunct Proceedings, pages 155–158, Innsbruck, Austria,

Sept. 2007. UBICOMP. [cited at p. 82]

P. Bruegger, D. Lalanne, A. Lisowska, and B. Hirsbrunner. Tools for designing and pro-

totyping activity-based pervasive applications. In MoMM2009. MoMM-IWAS 09, Kuala

Lumpur, Malaysia, ACM, December 2009a. [cited at p. 74]

P. Bruegger, V. Pallotta, and B. Hirsbrunner. Optimizing heating systems management using

an activity-based pervasive application. JDIM - Journal of Digital Information Manage-

ment, 7(6):327–335, 2009b. ISSN 0972-7272. [cited at p. 101]

P. Bruegger, A. Lisowska, D. Lalanne, and B. Hirsbrunner. Enriching the design and proto-

typing loop: A set of tools to support the creation of activity-based pervasive applications.

JMM - Journal of Mobile Multimedia, March 2010. [cited at p. 71, 74]

B. Brumitt, B. Meyers, J. Krumm, A. Kern, and S. A. Shafer. Easyliving: Technologies for

intelligent environments. In HUC ’00: Handheld and Ubiquitous Computing, pages 12–29,

London, UK, 2000. Springer-Verlag. ISBN 3-540-41093-7. [cited at p. 17, 21, 36]

S. Burbeck. Applications programming in smalltalk-80�: How to use model-view-controller

(mvc). http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html, 1992. Accessed:

Feb. 2011. [cited at p. 37]

J. L. Burke, R. R. Murphy, M. D. Coovert, and D. L. Riddle. Moonlight in miami: Field study

of human-robot interaction in the context of an urban search and rescue disaster response

training exercise. Human-Computer Interaction, 19(1):85–116, 2004. [cited at p. 103]

H. W. Calkins. Entity-relationship modeling of spatial data for geographic information

systems. http://www.geog.buffalo.edu/ calkins/Enitity.pdf. Accessed: March 2011.

[cited at p. 46]

N. Campbell, J. Reece, L. Urry, M. Cain, S. Wasserman, P. Minorky, and R. Jackson. Biology,

chapter 55. 8th Ed. Pearson, Benjamin Cummings, 2008. [cited at p. 124]

L. Catarinucci, R. Colella, A. Esposito, L. Tarricone, and M. Zappatore. A context-aware

smart infrastructure based on rfid sensor-tags and its application to the health-care domain.

In Proceedings of the 14th IEEE international conference on Emerging technologies & fac-

tory automation, ETFA’09, pages 1356–1363, Piscataway, NJ, USA, 2009. IEEE Press.

[cited at p. 19]

137

http://diuf.unifr.ch/pai/education/studentProjects/PascalBruegger/mscubiglide.pdf
http://diuf.unifr.ch/pai/education/studentProjects/PascalBruegger/mscubiglide.pdf
http://st-www.cs.illinois.edu/users/smarch/st-docs/mvc.html
http://www.geog.bu�alo.edu/

G. Chen and D. Kotz. A survey of context-aware mobile computing research. Tech. Report

TR2000-381, Dept. of Computer Science, Dartmouth College, 2000. [cited at p. 13]

K. Cheverst, N. Davies, K. Mitchell, A. Friday, and C. Efstratiou. Developing a context-

aware electronic tourist guide: some issues and experiences. In CHI ’00: Proceedings of

the SIGCHI conference on Human factors in computing systems, pages 17–24, New York,

NY, USA, 2000. ACM. [cited at p. 3, 19, 68, 130]

K. Cheverst, K. Mitchell, and N. Davies. Exploring context-aware information push. Per-

sonal Ubiquitous Computing, 6:276–281, January 2002, Springer-Verlag. ISSN 1617-4909.

[cited at p. 36]

N. Cipriani, M. Wieland, M. Gróımann, and D. Nicklas. Tool support for the design and

management of context models. Inf. Syst., 36:99–114, March 2011, Elsevier. ISSN 0306-

4379. [cited at p. 16]

Cisco. The cisco context-aware healthcare solution, 2009. URL http://www.cisco.com/

web/strategy/docs/healthcare/CLA_HealthcareSolution.pdf. Accessed: March 2011.

[cited at p. 20]

M. Coen, B. Phillips, N. Warshawsky, L. Weisman, S. Peters, and P. Finin. Meeting the

computational needs of intelligent environments: The metaglue system. In Proceedings of

MANSE’99, Dublin, Ireland, 1999. [cited at p. 22]

R. Cooper and H. Kamp. Negation in situation semantics and discourse representation theory.

In J. Barwise, J.M. Gawron, G. Plotkin, and S. Tutiya, editors, Situation Theory and Its

Applications, vol.2. Stanford University, 1991. [cited at p. 30]

G. Coulouris, J. Dollimore, and T. Kindberg. Distributed Systems: concepts and design.

Pearson Education. Addison Wesley, 3rd edition, 2001. [cited at p. 3, 60]

S. K. Das and D. J. Cook. Designing and modeling smart environments (invited paper). In

WOWMOM ’06, pages 490–494, Washington, DC, USA, 2006. IEEE Computer Society.

ISBN 0-7695-2593-8. [cited at p. 21]

K. Devlin. Logic and Information. Cambridge University Press, 1991. [cited at p. 30, 31, 55]

K. Devlin. Situation theory and social structure. In M. Masuch and L. Polos, editors,

Knowledge Representation and Reasoning under Uncertainty: Logic at Work, pages 197–

237. Springer-Verlag, Berlin, Heidelberg, 1994. [cited at p. 31]

K. Devlin. Situation theory and situation semantics. In D. Gabbay and J. Woods, editors,

Handbook of the History of Logic, pages 601–664. Elsevier, 2006. [cited at p. 30, 55]

A. K. Dey. Context-aware computing. In J. Krumm, editor, Ubiquitous Computing Funda-

mentals, pages 321–352. CRC Press, Taylor & Francis Group, 2010. [cited at p. 18]

138

http://www.cisco.com/web/strategy/docs/healthcare/CLA_HealthcareSolution.pdf
http://www.cisco.com/web/strategy/docs/healthcare/CLA_HealthcareSolution.pdf

A. K. Dey and G. D. Abowd. Towards a better understanding of context and context-

awareness. In In HUC ’99: Proceedings of the 1st international symposium on Handheld

and Ubiquitous Computing, pages 304–307. Springer-Verlag, 1999. [cited at p. 15, 17, 30, 47, 55]

A. K. Dey, G. D. Abowd, and D. Salber. A conceptual framework and a toolkit for supporting

the rapid prototyping of context-aware applications. Human Computer Interaction Journal,

Vol 16:97–166, 2001. [cited at p. 3, 11, 17, 26, 36, 62]

A. Dix. Beyond intention - pushing boundaries with incidental interaction. In Proceed-

ings of Building Bridges: Interdisciplinary Context-Sensitive Computing. Glasgow Uni-

versity, September 2002. http://www.hcibook.com/alan/papers/beyond-intention-2002/.

[cited at p. 4, 25, 26]

A. Dix, T. Rodden, N. Davies, J. Trevor, A. Friday, and K. Palfreyman. Exploiting space

and location as a design framework for interactive mobile systems. ACM Transactions on

Computer-Human Interaction, 7:285–321, September 2000, ACM. [cited at p. 14]

A. Dix, J. Finlay, G. D. Abowd, and R. Beale. Human-Computer Interaction. Pearson,

Prentice Hall, third edition, 2004. [cited at p. 23]

P. Dourish. Where the Action Is: The Foundations of Embodied Interaction. MIT Press,

Cambridge, 2001. [cited at p. 24]

P. Dourish. What we talk about when we talk about context. Personal Ubiquitous Computing,

8:19–30, February 2004, Springer-Verlag. [cited at p. 15, 26, 29]

S. Draper. Activity theory: The new direction for hci? International Journal of Man-Machine

Studies, 37(6):812–821, 1993. [cited at p. 26]

F. Driewer, M. Sauer, and K. Schilling. Discussion of challenges for user interfaces in human-

robot teams. In ECMR ’07 - 3rd European Conference on Mobile Robots, pages 1–6,

Freiburg, Germany, Sept. 2007. [cited at p. 103]

C. Endres, A. Butz, and A. MacWilliams. A survey of software infrastructures and frameworks

for ubiquitous computing. Mobile Information Systems, 1:41–80, January 2005, IOS Press.

[cited at p. 21]

J. Ensing. Software architecture for the support of context aware applica-

tions. Delft University of Technology and Philips Research, February 2002.

http://www.extra.research.philips.com/publ/rep/nl-ur/NL-UR2002-841.pdf. [cited at p. 25]

J. Favela, M. Tentori, L. A. Castro, V. M. Gonzalez, E. B. Moran, and A. I. Martnez-Garcia.

Activity recognition for context-aware hospital applications: issues and opportunities for

the deployment of pervasive networks. Mobile Networks and Applications, 12:155–171,

March 2007, Kluwer Academic Publishers. [cited at p. 20, 28]

139

http://www.hcibook.com/alan/papers/beyond-intention-2002/
http://www.extra.research.philips.com/publ/rep/nl-ur/NL-UR2002-841.pdf

G. W. Fitzmaurice. Graspable User Interface. PhD thesis, Department of Computer Science,

University of Toronto, 1996. [cited at p. 24]

T. Forrer. Robin: Activity management. http://diuf.unifr.ch/pai/wiki/lib/exe/fetch.php /e-

ducation:robin activity forrert.pdf, June 2009. Master Course Project Report - University

of Fribourg. [cited at p. 110]

M. Fowler. UML Distilled. Addison-Wesley, 3rd edition, 2004. [cited at p. 18]

E. Freeman, S. Hupfer, and K. Arnold. JavaSpace Principles, Patterns, and Practice. Sun

Microsystems. Addison-Wesley, first edition, November 1999. [cited at p. 83]

E. Gamma, H. Richard, R. Johnson, and J. Vlissides. Design Patterns - Elements of Reusable

Object-Oriented Software. Addison-Wesley, 1995. [cited at p. 82, 93]

D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project aura: Toward distraction-

free pervasive computing. IEEE Pervasive Computing, 1:22–31, 2002, IEEE Computer

Society. [cited at p. 3]

H. W. Gellersen, A. Schmidt, and M. Beigl. Multi-sensor context-awareness in mobile de-

vices and smart artifacts. Mobile Network Application, 7:341–351, October 2002, Kluwer

Academic Publishers. ISSN 1383-469X. [cited at p. 20]

G. Ghiani, F. Patterno, C. Santoro, and D. Spano. A location-aware guide based on active

rfids in multi-device environments. In CADUI ’08, Spain, 2008. [cited at p. 3, 19, 36, 68, 130]

P. Gong, D. Feng, and Y. S. Lim. An intelligent middleware for dynamic integration of

heterogeneous health care applications. In Proceedings of the 11th International Multime-

dia Modelling Conference, MMM ’05, pages 198–205, Washington, DC, USA, 2005. IEEE

Computer Society. [cited at p. 19]

A. Greenfield. Everyware: the dawning age of ubiquitous computing. New Riders publishers,

Berkeley, 2006. [cited at p. 4, 11, 24]

W. G. Griswold, R. Boyer, S. W. Brown, and T. M. Truong. A component architecture for

an extensible, highly integrated context-aware computing infrastructure. In Proceedings

of the 25th International Conference on Software Engineering, ICSE ’03, pages 363–372,

Washington, DC, USA, 2003. IEEE Computer Society. [cited at p. 3]

B. Hadorn. Coordination model for pervasive computing: a model

to create and design applications using a pervasive middleware.

http://diuf.unifr.ch/pai/wiki/doku.php/education:student master projects, March 2010.

MSc Thesis. [cited at p. 68, 83]

140

http://diuf.unifr.ch/pai/wiki/lib/exe/fetch.php
http://diuf.unifr.ch/pai/wiki/doku.php/education:student

B. Hadorn and A. Wilde. Robin: Activity based robot management sys-

tem. http://diuf.unifr.ch/pai/wiki/lib/exe/fetch.php/education:robin report hadorn-

wilde.pdf, June 2009. Master Course Project Report - University of Fribourg. [cited at p. 107]

J. Hightower and G. Borriello. Location systems for ubiquitous computing. Computer, 34(8):

57–66, August 2001, IEEE Computer Society. [cited at p. 18]

E. Holmquist, A. Schmidt, and B. Ullmer. Tangible interfaces in perspective: Guest editors’

introduction. Personal and Ubiquitous Computing, 8(5):291–293, 2004, Springer-Verlag.

[cited at p. 24]

J.-Y. Hong, E.-H. Suh, and S.-J. Kim. Context-aware systems: A literature review and

classification. Expert System Application, 36:8509–8522, May 2009, Pergamon Press, Inc.

ISSN 0957-4174. [cited at p. 13]

Q. N. Hung, S. Anjum, L. K. Saad, R. Maria, and L. Sungyoung. Developing context-aware

ubiquitous computing systems with a unified middleware framework. In Embedded and

Ubiquitous Computing, pages 672–681. Springer-Verlag, 2004. [cited at p. 3, 20]

S. Hussain, S. Z. Erdogen, and J. H. Park. Monitoring user activities in smart home environ-

ments. Information Systems Frontiers, 11(5):539–549, 2009, Kluwer Academic Publishers.

[cited at p. 22]

W. Ju, B. A. Lee, and S. R. Klemmer. Range: exploring implicit interaction through electronic

whiteboard design. In CSCW ’08: Proceedings of the 2008 ACM conference on Computer

supported cooperative work, pages 17–26, New York, NY, USA, 2008. ACM. [cited at p. 25]

V. Kaptelinin. Human computer interaction in context: The activity theory perspective. In

J. Gornostaev, editor, Proceedings of EWHCI’92 Conference, Moscow, 1992. [cited at p. 26]

V. Kaptelinin. Activity theory: Implications for human-computer interaction. In B.A. Nardi,

editor, Context and Consciousness: Activity Theory and Human Computer Interaction,

pages 103–116. MIT Press, 1996. ch. 2. [cited at p. 26]

T. Kindberg and J. Barton. A web-based nomadic computing system. Computer Networks:

The International Journal of Computer and Telecommunications Networking, 35(4):443–

456, March 2001, Elsevier. [cited at p. 3]

L. Kleinrock. Nomadic computing. Telecommunication Systems, 7:5–15, 1997. [cited at p. 11]

M. M. Kokar, C. J. Matheus, and K. Baclawski. Ontology-based situation awareness. Infor-

mation Fusion, 10:83–98, January 2009, Elsevier. [cited at p. 32]

M. Korkea-Aho. Context-aware applications survey. Context, pages 1–20, April 2000, Mende-

ley. [cited at p. 14, 26]

141

http://diuf.unifr.ch/pai/wiki/lib/exe/fetch.php/education:robin

S. Krakowiak. Middleware architecture with patterns and frameworks.

http://proton.inrialpes.fr/ krakowia/MW-Book/main-onebib.pdf, 2007. Accessed:

March 2011. [cited at p. 61]

J. Krumm. Ubiquitous Computing Fundamentals. CRC Press, Taylor & Francis Group, 2010.

[cited at p. 4, 10, 16, 151]

K. Kuutti. Activity theory as a potential framework for human-computer interaction research.

In B.A. Nardi, editor, Context and Consciousness: Activity Theory and Human Computer

Interaction, pages 17–44. MIT Press, 1996. ch. 2. [cited at p. 27, 54]

K. Kuutti and L. Bannon. Searching for unity among diversity: exploring the interface

concept. In Proceedings of the INTERACT ’93 and CHI ’93 conference on Human factors in

computing systems, CHI ’93, pages 263–268, New York, NY, USA, 1993. ACM. [cited at p. 26]

V. Lesser, M. Atighetchi, B. Benyo, B. Horling, A Raja, R. Vincent, P. Xuan, S. XQ. Zhang,

and T. Wagner. The intelligent home testbed. In Proceedings of the Autonomy Control

Software Workshop, Seattle, USA, 1999. [cited at p. 21]

Y. Li and J. Landay. Exploring activity-based ubiquitous computing: Interaction styles,

models and tool support. In CHI ’06, Montreal, Canada, 2006. [cited at p. 30, 31, 55]

Y. Li and J. Landay. Activity-based prototyping of ubicomp applications for long-lived,

everyday human activities. In CHI ’08: SIGCHI conference, pages 1303–1312, New York,

NY, USA, 2008. ACM. [cited at p. 28, 30, 55]

H. Lieberman and T. Selker. Out of context: computer systems that adapt to, and learn

from, context. IBM System Journal, 39:617–632, July 2000, IBM Corp. [cited at p. 14, 15, 151]

S. Loke. Representing and reasoning with situations for context-aware pervasive computing:

a logic programming perspective. The Knowledge Engineering Review, pages 213 – 233,

2004, Cambridge. [cited at p. 15, 30, 32, 54, 55, 107]

S. Loke. Context-Aware Pervasive Systems: Architectures for a New Breed of Applications.

Auerbach Publications, December 2007. [cited at p. 11, 30, 32, 55]

X. Long, B. Yin, and R. M. Aarts. Single-accelerometer-based daily physical activity classica-

tion. In 31st Annual International Engineering in Medicine and Biology Society Conference,

Minneapolis, USA, 2009. IEEE. [cited at p. 21]

M. J. Mathie, A. C. F. Coster, N. H. Lovell, and B. G. Celler. Detection of daily physical ac-

tivities using a triaxial accelerometer. Medical and Biological Engineering and Computing,

41(3):296–301, 2003, Springer-Verlag. [cited at p. 21]

McGraw-Hill. McGraw-Hill Dictionary of Scientific and Technical Terms. The McGraw-Hill

Companies, Inc, 6th edition, Sept 2002. [cited at p. 42]

142

http://proton.inrialpes.fr/

E. Morin. Introduction à la pensée complexe. Points. Edition du Seuil, Paris, April 1995.

[cited at p. 39]

H. Nakashima, H. Suzuki, P.-K. Halvorsen, and S. Peters. Towards a computational inter-

pretation of situation theory. In International Conference on Fifth Generation Computer

Systems, pages 489–498, Tokyo, Japan, 1988. Institute for New Generation Computer Tech-

nology. [cited at p. 31]

B. A. Nardi. Studying context: A comparison of activity theory, situated action models

and distributed cognition. In Proceedings East-West HCI Conference, pages 352–359, St.

Petersburg, Russia, August 1992. [cited at p. 26]

B. A. Nardi. Context and Consciousness: Activity Theory and Human-Computer Interaction.

MIT press, 1995. [cited at p. 27]

J. Newmarch. Foundations of Jini�2 Programming. Apress, 2006. [cited at p. 83]

J. Nivre. Feedback and situation theory. Theoretical Linguistics, (62), 1991. Dept of Linguis-

tics, University of Göteborg, Sweden. [cited at p. 31]

D. Norman. Cognitive artifacts. In J. Carroll, editor, Designing Interaction: Psychology at

the Human-Computer Interface. Cambridge University Press, 1991. [cited at p. 26]

OWL. Web ontology language. http://www.w3.org/TR/owl-features/. Accessed: March

2011. [cited at p. 18]

B. Phillips. Metaglue: A programming language for multi-agent systems. Master’s thesis,

MIT, Boston, 1999. [cited at p. 22]

J. Preece, Y. Rogers, and H. Sharp. Interaction Design. John Wiley & Sons, Inc., New York,

NY, USA, 2007. [cited at p. 26]

P. Prekop and M. Burnett. Activities, context and ubiquitous computing. In Proceedings of

Computer Communications, 26(11):1168–1176, 2003. [cited at p. 29]

A. Quigley. From gui to uui: Interfaces for ubiquitous computing. In J. Krumm, editor,

Ubiquitous Computing Fundamentals, pages 237–284. CRC Press, Taylor & Francis Group,

2010. [cited at p. 24]

N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman. Activity recognition from accelerometer

data. In National Conference on Artificial Intelligence, Menlo Park, CA, 2005. MIT Press.

[cited at p. 21]

R. Reichle, M. Wagner, M. U. Khan, K. Geihs, J. Lorenzo, M. Valla, C. Fra, N. Paspallis,

and G. A. Papadopoulos. A comprehensive context modeling framework for pervasive

143

http://www.w3.org/TR/owl-features/

computing systems. In Proceedings of the 8th IFIP WG 6.1 international conference on

Distributed applications and interoperable systems, DAIS’08, pages 281–295, Oslo, Norway,

2008. Springer-Verlag. [cited at p. 3, 18]

J. Rekimoto. Pick-and-drop: A direct manipulation technique for multiple computer envi-

ronments. In ACM Symposium on User Interface Software and Technology, pages 31–39,

Banff, Alberta, Canada, October 1997. [cited at p. 24]

J. Rekimoto, B. Ullmer, and H. Oba. Datatiles: a modular platform for mixed physical

and graphical interactions. In Proceedings of the SIGCHI conference on Human factors in

computing systems, CHI ’01, pages 269–276, New York, NY, USA, 2001. ACM. [cited at p. 24]

Y. Rogers. Moving on from weiser’s vision of calm computing: Engaging ubicomp experiences.

In P. Dourish and A. Friday, editors, Ubicomp 2006, pages 404–421, Orange County, CA,

USA, 2006. Springer-Verlag. [cited at p. 2, 11]

Y. Rogers and H. Muller. A framework for designing sensor-based interactions to promote

exploration and reflection in play. International Journal of Human-Computer Studies, 64:

1–14, January 2006, Academic Press, Inc. [cited at p. 25]

M. Roman, C. Hess, R. Cerqueira, R. H. Campbell, and K. Nahrstedt. Gaia: A middle-

ware infrastructure to enable active spaces. IEEE Pervasive Computing, 1:74–83, 2002.

[cited at p. 3, 17, 36]

N. S. Ryan, J. Pascoe, and D. R. Morse. Enhanced reality fieldwork: the context-aware

archaeological assistant. In V. Gaffney, M. van Leusen, and S. Exxon, editors, Computer

Applications in Archaeology 1997, British Archaeological Reports, Oxford, October 1998.

[cited at p. 13, 15]

A. Schmidt. Ubiquitous Computing –Computing in Context. PhD thesis, Lancaster University,

UK, November 2002. [cited at p. 2]

A. Schmidt, M. Beigl, and H. Gellersen. There is more to context than location. Computers

and Graphics, 23:893–901, 1998, Elsevier. [cited at p. 13]

A. Schmidt, M. Kranz, and P. Holleis. Interacting with the ubiquitous computer: towards em-

bedding interaction. In Proceedings of the 2005 joint conference on Smart objects and am-

bient intelligence: innovative context-aware services, usages and technologies, sOc-EUSAI

’05, pages 147–152, New York, NY, USA, 2005. ACM. [cited at p. 25]

J. Scholtz, J. Young, J. Drury, and H. Yanco. Evaluation of human-robot interaction aware-

ness in search and rescue. In IEEE International Conference on Robotics and Automation,

pages 2327–2332. IEEE, 2004. [cited at p. 103]

144

D. Schon. The Reflective Practioner: How Professionals Think in Action. Basic Book, New

York, 1983. [cited at p. 72]

B. Shilit and M. Theimer. Disseminating active map information to mobile hosts. IEEE

Network, 8(5):22–32, 1994. [cited at p. 3, 13, 15, 16]

B. Shneiderman. Designing the User Interface: Strategies for Effective Human-Computer

Interaction. Addison-Wesley, Reading, MA, third edition, 1998. [cited at p. 25]

J. P. Sousa and D. Garlan. Aura: an architectural framework for user mobility in ubiquitous

computing environments. In J. Bosch, M. Gentleman, C. Hofmeister, and J. Kuusela, ed-

itors, Software Architecture: System Design, Development, and Maintenance (Proceedings

of the 3rd Working IEEE/IFIP Conference on Software Architecture), pages 29–43. Kluwer

Academic Publishers, 25-31 August 2002. [cited at p. 21]

F. Sparacino. Intelligent architecture: Embedding spaces with a mind for augmented inter-

action. In INTERACT 2005, pages 2–3, Rome, Italy, September 2005. Springer-Verlag.

[cited at p. 4]

E. Tin and V. Akman. Computational situation theory. SIGART Bulletin, 5:4–17, October

1994, ACM. ISSN 0163-5719. [cited at p. 31]

B. Ullmer and H. Ishii. Emerging frameworks for tangible user interfaces. IBM Systems

Journal, 9(3,4):915–931, 2000. [cited at p. 24]

A. Vallg̊arda. A framework of place as a tool for designing location-based applications. Issue

from the Master Thesis, 2005. [cited at p. 44]

J. Viterbo, M. Endler, and V. Sacramento. Discovering services with restricted location

scope in ubiquitous environments. In MPAC ’07: 5th international workshop on Middle-

ware for pervasive and ad-hoc computing, pages 55–60, New York, NY, USA, 2007. ACM.

[cited at p. 22, 90]

L. von Bertalanffy. General System Theory. Foundations, Development, applications. (Ed.)

George Braziller, 1969. [cited at p. 6, 38, 39, 123]

S. Vonlanthen. Kuiservicemanager: A service management system for kui-based android mo-

bile applications, January 2011. URL http://diuf.unifr.ch/pai/wiki/lib/exe/fetch.

php/education:bscreport.pdf. Bachelor project. [cited at p. 90, 97, 116]

R. Want. An introduction to ubiquitous computing. In J. Krumm, editor, Ubiquitous Com-

puting Fundamentals, pages 1–35. CRC Press, Taylor & Francis Group, 2010. [cited at p. 10,

12]

145

http://diuf.unifr.ch/pai/wiki/lib/exe/fetch.php/education:bscreport.pdf
http://diuf.unifr.ch/pai/wiki/lib/exe/fetch.php/education:bscreport.pdf

R. Want, A. Hopper, V. Falcão, and J. Gibbons. The active badge location system. ACM

Transactions on Information Systems, 10:91–102, January 1992, ACM. [cited at p. 13, 18, 42,

95]

M. Weiser. The computer for the 21st century. Scientific American 265, Vol 3:94–104,

September 1991. [cited at p. 1, 10, 11]

M. Weiser and J. S. Brown. The coming age of calm technology.

http://www.ubiq.com/hypertext/weiser/acmfuture2endnote.htm, 1996. Accessed:

March 2011. [cited at p. 4, 11, 12, 23]

146

http://www.ubiq.com/hypertext/weiser/acmfuture2endnote.htm

Terms and definitions

Terms Definitions

uMove framework : Set of tools that allow to design, evaluate and implement

context-aware computing systems including the possibility to

manage user activities and situation.

uMove conceptual model : Semantic model defining all components that constitute a sys-

tem in uMove.

System : A system is an observed environment.

Environment : A environment is an set of observable, interacting and inter-

dependent entities, physical or virtual, forming an integrated

whole.

Entity : Main component of an environment. It can be physical (hu-

man, object) or virtual (artifact, concept or idea). It is observ-

able and has relations with other entities.

Observer : Active element which observers the entities in an environment.

It collects information (activities and contexts) about actors

and places it watches, and can analyse and determine their

situations.

Viewer : Object representing a multidimensional filter placed between

an observer and the entities. Gives a point of view on an

environment.

Senget : Object representing a logical abstraction of the sensor(s) con-

nected to the system. Stands for sensor gadget similar to the

concept of widget (Windows gadget) or phidget (physical gad-

get).

Kinetic User Interface

(KUI)

: Concept which promotes human-computer interaction based

on the kinetic properties of a user.

Smart environment : Physical environment such as a campus, a train station or a

shopping mall which is equipped with a uMove middleware.

147

148

List of Tables

3.1 Examples of statuses and types of entities in a uMove model 42

3.2 A taxonomy of place . 44

3.3 Example of aspects limiting place affordances 45

6.1 User activity classification . 102

6.2 Decision rules and robot command . 109

6.3 Summary of the uMove evolution through the four projects 120

149

150

List of Figures

1.1 Panel of the different computing domains that are included in the concept of

Ubicomp . 2

1.2 The three facets of the uMove development framework: semantic modelling,

architecture of the system and the implementation. 5

1.3 Structure of the thesis: the three facets and the integration of the kinetic

properties . 8

2.1 The three modern computing eras (source: [Krumm, 2010, ch.1]) 10

2.2 Context is an implicit input that influences the computation and the output

of a context-aware application, [Lieberman and Selker, 2000] 15

2.3 Types of context characterising the situation of an entity 16

2.4 Context Toolkit architecture . 17

2.5 UbiCicero environment: the Museum Mobile Guide (Courtesy Ghiani et al.) . 19

2.6 Hierarchical levels of an activity . 28

3.1 The three facets of the uMove framework . 35

3.2 Example of a UN peacekeeping functional diagram. 37

3.3 System diagram . 40

3.4 Examples of environments observed under different points of view 40

3.5 Example of an entity located by its address 43

3.6 Structure of the entity e1 . 43

3.7 Entity in two places with logical boundaries 45

3.8 Conceptual link between the location, structure, relations and role of an entity 48

3.9 Composition of an entity in a uMove system 49

3.10 a) 1 observer using multiple views to watch 2 boats, b) multi-observers using

one view to watch their respective boat . 50

3.11 Observation of the ocean structure (first level): 2 boats & 1 island 50

3.12 Observation of the third level of the ocean structure 51

3.13 General diagram of the motion-aware model 52

3.14 Activity-based computing: the application processes the input and gives feedback 52

151

3.15 Situation-based computing: the application receives a situation status includ-

ing contexts (e.g. time) and gives feedback if needed 53

3.16 Hierarchical level of an activity in AT and in uMove model 55

3.17 The sensed data are processed before being sent to the entity level where

activity and contexts are stored . 55

3.18 activity and contexts are components of a situation 56

3.19 A complete uMove System: logical representation of a school and students

being observed by the applications . 57

4.1 The three facets of the uMove development framework 59

4.2 General diagram of the uMove middleware . 60

4.3 a uMove middleware connecting the sensors to an application, and connecting

server-based systems and mobile devices . 61

4.4 Example of a sensor layer implementing a location senget and four types of

location sensing technologies . 63

4.5 a) components of an entity; b) entity location principles: physical and logical

parents, and structure . 63

4.6 Entity layer, sensor layer . 64

4.7 Two viewers observing the eSpace with two different roots and levels 65

4.8 Observation layer completing the uMove system architecture 66

4.9 Message processors attached to all uMove system objects 67

4.10 Context change and activity management at the entity level 68

4.11 Coordination: message passing between entities in server-based and mobile

uMove systems . 69

4.12 Difference between an application and a service 70

4.13 Project development phases and tools . 71

4.14 The events are logged on a sequence diagram board 72

5.1 The three facets of the uMove development framework 77

5.2 Sensor and senget classes and message passing 80

5.3 Sequence diagram of a message processor and activity manager 81

5.4 Tasks and management of the coordination manager 83

5.5 Communication between two entities using ports 84

5.6 Model of service connection: 1) request, 2) creation of a session, 3) communi-

cation established between the client and the server 86

5.7 Integration mechanism of a new mobile device by the System Service creating

a System Service Session, and creation of user service connections. This figure

does not represent all details of the uMove such as the observers and viewers 88

5.8 Principle of communication between a client services and the mobile uMove

system on the Android platform . 89

152

5.9 Mobile middleware GUI: a) main screen, b) scanning for a smart environment,

c) connected to an environment . 91

5.10 Local Market installer: a) Available services, b) Download service from the

server, c) Android Installation procedure, d) Android uninstall confirmation . 92

5.11 a) Observer design pattern, b) Message listener pattern 93

5.12 uMove visual editor and entity editor . 94

5.13 System monitoring: uMove object connection 96

5.14 uMove service loader GUI . 97

6.1 Functional diagram of the Hestia project . 101

6.2 Robin project architecture and group task assignment 104

6.3 Students applying their algorithm during the IWaT session 105

6.4 Robin main window tracking the firefighter and the robot 108

6.5 The mobile device carried by the firefighters receiving a) a warning (orange)

and b) a critical alarm (red) . 110

6.6 Devices used for the activity recognition: a) sunSPOT, b) Lego Minstorm NTX111

6.7 Elderly People Monitoring system: general diagram 113

6.8 Functional diagram of the SMS Service . 116

6.9 SMS service: a) server graphical user interface, b) client graphical user interface

running on Android . 118

153

154

Listings

5.1 Code sample of UMoveSystem instantiation 78

5.2 Code sample of entity processMessage() method 84

5.3 Code sample of a configuration file: definition of an entity 95

6.1 Code sample of the SMS server algorithm . 117

155

156

Curriculum Vitae

Pascal Bruegger

Personal Information

Date of birth : January, 6, 1968

Nationality : Swiss

Languages : French (mother tongue), English (fluent), German (basic knowledge)

Education

2007 - 2011 PhD in Computer Science

Faculty of Science, University of Fribourg, Switzerland

2007 - 2008 Diploma in Higher Education and Technology of Education

Centre de Didactique Universitaire, University of Fribourg, Switzerland

Diploma : Cours d’informatique ”Systèmes Distribués”: Analyse, critique

et adaptation du dispositif de formation

2004 - 2007 Master of Science in Computer Science

Faculty of Science, University of Fribourg, Switzerland

Master Thesis: ubiGlide: An Application for gliding activities based on

a motion-aware middleware

1991 - 1992 Diploma of Software Engineer - FDISH

1990 - 1991 Certificate of Analyst Programmer - FDISH

1985 - 1989 Diploma in Electronics

157

Other studies

2008 - 2011 Biology (60 ECTS)

Faculty of Science, University of Fribourg, Switzerland.

2003 - 2005 Physics (30 ECTS)

Faculty of Science, University of Fribourg, Switzerland.

Academical Experience

2007 - 2011 Research and Teaching Assistant

Department for Informatics, University of Fribourg, Switzerland.

2005 - 2007 Teaching Assistant in Distributed System course

Department for Informatics, University of Fribourg, Switzerland.

Given lectures, presentations and workshops

� Presentation of ”uMove: A framework to design and implement ubiquitous computing

systems based on user motion and activities” , Organiser: EJ ”Ed” Zaluska, University

of Southampton, UK, 17 January 2011.

� Presentation of ”An Overview of Human-Computer Interaction Patterns in Pervasive

Systems”, i-User 2010, University Teknologi Mara, Shah Alam, Malaysia, December,

2010.

� Presentation of ”ROBIN : Activity Based Robot Management System”, i-User 2010,

University Teknologi Mara, Shah Alam, Malaysia, December, 2010.

� Presentation of ”SSP: Smart Service Provider - A Smart Environment Providing Con-

textual Services on Android Mobile Devices”, UIC 2010, Xi’an, China, October, 2010.

� Presentation of ”Tools for Designing and Prototyping Activity-based Pervasive Appli-

cations”, MoMM 2009, Kuala Lumpur, Malaysia, December, 2009.

� Pervasive Intelligence Master course: organisation of the course and lecturer on topics

related to ubiquitous computing, Situation and Activity theory, Design principles for

pervasive systems, Interaction patterns for pervasive systems. Spring 09-10, University

of Fribourg, Switzerland.

158

� Kinetic user Interface: presentation of new human-computer interaction paradigm -

Master Course ”Pervasive Intelligence” Spring 09-10, University of Fribourg, University

of Fribourg.

� Context-Awareness: concepts and applications - Master Course ”Pervasive Intelligence”

Spring 09-10, University of Fribourg, Switzerland.

� Workshop on Interaction Patterns for persvasive computing systems - Master Course

”Pervasive Intelligence” Spring 09-10, University of Fribourg, Switzerland.

� Workshop on Pervasive Systems design principles - Master Course ”Pervasive Intelli-

gence” Spring 09-10, University of Fribourg, Switzerland.

� Tests and usability of pervasive systems - Master Course ”Pervasive Intelligence” Spring

09-10, University of Fribourg, Switzerland.

� Weiser’s vision: where do we stand 20 years after? General discussion on Pervasive and

ubiquitous computing - Master Course ”Pervasive Intelligence” Spring 09-10, University

of Fribourg, Switzerland.

� Presentation of ”Smart Heating Systems: optimizing heating systems by kinetic-awareness”,

ICDIM 2008, London, UK, November, 2008.

� MobiKUI 2008, First International Workshop on Mobile and Kinetic User Interfaces -

13-14 October 2008, University of Fribourg, Switzerland, Co-organiser.

Workshops participation

� Context Awareness in Pervasive Environments, CAPE 2010, University of Fribourg,

Switzerland, 24-25 June 2010.

� Winter school in Computer Science on Usability Engineering. 3ème cycle romand

d’informatique, Anzère, Switzerland, January 26-30, 2009.

Reviewing activities

� Reviewer in Ubicomp 2011 conference.

Research Interests

� Pervasive computing

� Mobile computing

� Context-aware computing systems

159

Professional Experience

Aug 99 - Sept 02 International Committee of Red Cross (ICRC) - Nairobi, Kenya Re-

gional Delegation

Information Technology Coordinator

Coordination of the ICRC IT department of 11 countries: Congo Re-

public Brazzaville, Democratic Republic Of Congo, Rwanda, Burundi,

Tanzania, Djibouti, Eritrea, Ethiopia, Uganda, Sudan. Deployment

of institutional projects, recruitment and training of local technicians,

coaching of IT technician expatriates, development, installation and

maintenance of telecommunication, computer and network infrastruc-

tures.

Aug 98 - May 99 International Committee of Red Cross - Kabul, Afghanistan

IT technician

Management of ICRC IT department:

Staff management, installation and maintenance of telecommunica-

tion, computer and network infrastructures.

Apr 97 - May 98 International Committee of Red Cross - Colombo, Sri Lanka

IT Technician

Management of ICRC IT department:

Staff management, installation and maintenance of telecommunica-

tion, computer and network infrastructures.

Nov 95 - Jan 97 International Committee of Red Cross - Kigali, Rwanda

IT technician

Management of the computer department :

Staff management, installation and maintenance of telecommunica-

tion, computer and network infrastructures in the region including

Rwanda - East Zaire - Burundi.

Sept 92 - Aug 94 CPI - centre de perfectionnent et d’informatique, Fribourg

Computer Teacher and Trainer.

Sept 92 - Aug 94 Objectif Concept - Fribourg, Switzerland

Co-director,

Responsible for software development,

Development of software solutions for architect and construction com-

panies.

160

List of Publications

� A. G. Wilde, P. Bruegger and B. Hirsbrunner, An Overview of Human-Computer Inter-

action Patterns in Pervasive Systems, in: Conference i-USER 2010, IEEE, University

Teknologi Mara, Shah Alam, Malaysia, December, 2010.

� A. G. Wilde, P. Bruegger, B. Hadorn and B. Hirsbrunner, ROBIN : Activity Based

Robot Management System, in: Conference i-USER 2010, IEEE, University Teknologi

Mara, Shah Alam, Malaysia, December, 2010.

� P. Bruegger, Hadorn, B. and B. Hirsbrunner, SSP: Smart Service Provider - A Smart En-

vironment Providing Contextual Services on Android Mobile Devices, Springer LNCS,

UIC 2010, Xi’an, China, October, 2010.

� P. Bruegger, Lisowska, A., Lalanne, D. and B. Hirsbrunner, Enriching the Design and

Prototyping Loop: A set of tools to support the creation of activity-based pervasive

applications, in: Journal of Mobile Multimedia (JMM), March, 2010.

� P. Bruegger, Lalanne, D., Lisowska, A. and B. Hirsbrunner, Tools for Designing and

Prototyping Activity-based Pervasive Applications, in: 7th International Conference on

Advances in Mobile Computing & Multimedia (MoMM2009), ACM, MoMM 09, Kuala

Lumpur, December, 2009.

� P. Bruegger and B. Hirsbrunner, Kinetic User Interface: Interaction through Motion for

Pervasive Computing Systems, in: Parallel session ”Designing for Mobile Computing”,

Springer, HCI international conference 2009, San Diego, California, USA, July, 2009.

� P. Bruegger, V. Pallotta and B. Hirsbrunner, Optimizing Heating System Management

Using An Activity-Based Pervasive Application, in: JOURNAL OF DIGITAL INFOR-

MATION MANAGEMENT, ISSN 0972-7272, July, 2009.

� V. Pallotta, P. Bruegger and B. Hirsbrunner, Smart Heating Systems: optimizing heat-

ing systems by kinetic-awareness, in: Proceedings of 3rd ICDIM conference, IEEE Press,

IEEE, London, November, 2008.

� V. Pallotta, P. Bruegger and B. Hirsbrunner, Kinetic User Interfaces: Physical Embod-

ied Interaction with Mobile Pervasive Computing Systems, in: Advances in Ubiquitous

Computing:Future Paradigms and Directions, IGI Publishing, ISBN 978-1-59904-840-6,

February, 2008.

� V. Pallotta, P. Bruegger and B. Hirsbrunner, The road towards unobtrusiveness: Ki-

netic User Interfaces, in: Workshops Proceedings of Attention Management in Ubiqui-

tous Computing Environments, pages 10-15, Bajart, Muller, Strang (Eds.), AMUCE,

Ubicomp, Innsbruck, Austria, September, 2007.

161

� V. Pallotta, P. Bruegger, T. Maret, N. Martenet and B. Hirsbrunner, Kinetic User In-

terfaces for Flexible Mobile Collaboration, in: International Conference and Exhibition

on NEXT GENERATION MOBILE APPLICATIONS, SERVICES and TECHNOLO-

GIES, pages 247-252, IEEE Computer Society, Khalid Al-Begain (ed.), NGMAST,

Cardiff, Wales, UK, September, 2007.

� P. Bruegger, V. Pallotta and B. Hirsbrunner, Smart Heating System: Optimizing house

heating systems by integrating user motions, Technical Report 07-12, University of

Fribourg, Switzerland, December 2007.

� P. Bruegger, V. Pallotta and B. Hirsbrunner, UbiGlide: a motion-aware personal flight

assistant, in: Adjoint Proceedings of the 9th International Conference on Ubiquitous

Computing, pages 155-158, Bardram et al. (eds.), UBICOMP, Innsbruck, Austria,

September, 2007.

� V. Pallotta, A. Brocco, D. Guinard, P. Bruegger and P. De Almeida, RoamBlog: Out-

door and Indoor Geoblogging Enhanced with Contextual Service Provisioning for Mo-

bile Internet Users, in: Proceedings of the 1st International workshop on Distributed

Agent-based Retrieval Tools, pages 103-121, Polimetrica International Scientific Pub-

lisher, DART, ISBN 88-7699-043-7, June, 2006.

162

	Acknowledgments
	Abstract
	Résumé
	Acronyms
	Introduction
	Research challenges
	Tools for developing and deploying Ubicomp systems
	Smart and adaptive applications and services
	User interaction

	Goals
	Focus of the thesis
	Contribution
	System modelling
	System architecture
	Implementation tools
	Validation scenario and applications

	Outline of the thesis

	Background and related work
	Ubiquitous and pervasive computing
	Ubiquitous computing: definition of the paradigm
	Ubiquitous computing is not nomadic computing
	From Weiser's vision to now: where do we stand?

	Context-aware computing
	Context: concept and definitions
	Context-aware architectures and middlewares
	Context-aware applications
	Sensing contexts
	Ambient intelligence and smart environments
	Discussion

	Human-computer interaction in ubiquitous computing
	Post-desktop paradigm of interaction
	From GUI to UUI: a new opportunity for human-ubicomp system interaction

	Activity-based computing
	Activity Theory: concepts and applications
	Models and tools

	Reasoning on situation: an evolution of activity-based computing
	Definition of situation
	Situation theory
	Application of situation theory

	Summary

	Conceptual model
	System modelling
	General System Theory
	System
	uMove system
	Environment and entities
	Observation

	Kinetic dimension
	Separation between activity and situation
	Motion
	Activities
	Contexts
	Situations

	Summary

	System Architecture, Design and Evaluation
	uMove middleware: a multilayer architecture
	Sensor layer
	Entity layer
	Observation layer
	Message processors
	Activity and situation manager

	Mobile uMove system
	Coordination and communication in uMove
	Applications and services
	IWaT: methods and tools to test the uMove system
	Using IWaT with uMove
	How it works
	Advantages and drawbacks of using IWaT

	Summary

	Implementation tools
	uMove API
	UMoveSystem
	Message processor
	Activity and situation managers
	Relation manager

	Coordination and communication
	Coordination manager
	Communication
	Services: definition and monitoring

	Mobile monitoring
	Monitoring mobile devices
	Services list update
	System service
	Public services

	Mobile uMove system
	Type of service: local versus global
	Mobile uMove as a service manager
	Smart environment finder
	Mobile service manager

	uMove-enabled applications
	uMove System Editor
	Entity management
	Saving and loading a system configuration
	System monitoring
	Application and service loader

	Summary

	Prototypes and validation
	Methods of evaluation and validation
	Smart Heating System
	User's activities and contexts
	Software architecture
	Hardware

	Robin project: how Ubicomp technologies can help firefighters
	Context of the project
	Gathering contextual information
	Robin architecture
	IWaT session
	Session results
	The prototype
	Global results

	EMS project: Elderly Monitoring System
	General requirement
	Setup
	Server application
	Mobile application
	Evaluation of uMove

	SMSService: a concrete use case of a uMove service
	Server part
	Client part

	Summary

	Conclusions and Perspectives
	Thesis orientation
	uMove framework: a promising wholistic tool
	Conceptual model
	uMove system architecture
	Integration of a mobile server-based uMove
	Implementation tools
	Validation projects

	Perspectives
	uMove API
	uMove System Editor
	Mobile uMove middleware
	Development of services
	Activity and situation management
	Full evaluation

	Epilogue

	Bibliography
	Terms and definitions
	List of Tables
	List of Figures
	List of Listings
	Curriculum Vitae

