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The contributions of superconducting fluctuations to the specific heat of dirty superconductors are
calculated, including quantum and classical corrections to the ‘usual’ leading Gaussian divergence.
These additional terms modify the Ginzburg criterion, which is based on equating these fluctuation-
generated contributions to the mean-field discontinuity in the specific heat, and set limits on its
applicability for materials with a low transition temperature.
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INTRODUCTION

The superconducting phase transition has been very
well described by the Ginzburg-Landau (GL) theory, [1]
which is equivalent to the BCS theory [2] for tempera-
tures T close to the transition temperature Tc. However,
both theories use mean fields, and therefore miss the ef-
fects of critical fluctuations as T approaches Tc. [3] A
phenomenological way to estimate the region of validity
of these mean-field theories is to calculate a certain ef-
fect of the fluctuations, and to require that this effect
be small compared to the corresponding mean-field pre-
diction. The relative temperature range for which the
mean-field theory breaks down, tG ≡ (TG − Tc)/Tc, is
called the “Ginzburg region”. [3]

Here we discuss dirty superconductors, which contain
non-magnetic impurities. It is well known that such
impurities reduce the superconducting coherence length,
while leaving the transition temperature, as well as the
density of states, largely unchanged. [2, 4] As a re-
sult, although the Ginzburg region is still rather small,
it is significantly larger than for the pure superconduc-
tors. For T > Tc, the superconducting order parameter
vanishes, and the GL contribution to the specific heat
vanishes. This specific heat has a discontinuity ∆C at
Tc. In contrast, the fluctuations in the order param-
eter generate non-zero contributions Cfl to the specific
heat even above Tc. One common way to estimate the
Ginzburg region is then to require that outside of this
regime one has Cfl < ∆C. [5] As T approaches Tc,
Cfl diverges in d < 4 dimensions as |t|(d−4)/2, where
t ≡ ln(T/Tc) ≈ (T − Tc)/Tc. Keeping only this leading
divergent term, one finds |tG| ∼ (∆C/Λd)2/(d−4), where
Λ is the momentum cutoff, which is the inverse of the
relevant size of the fluctuations in space (to be discussed
below).

The above result ignores corrections to the leading di-
vergent term in Cfl. As we discuss below, such corrections
arise both from quantum fluctuations and from correc-

tions to the leading ‘static’ contribution. The aim of the
present paper is to discuss the effects of these corrections,
which become crucial as ∆C becomes small. In order to
derive these corrections, it is important to obtain the full
expression for the leading wave-vector and frequency de-
pendent order-parameter correlation functions, and not
just the ‘static’ Ornstein-Zernike (OZ) [6] approximation
χ(q) ∼ 1/(q2 + ξ−2) which is used in the ‘standard’ GL
theory (ξ is the coherence length). The derivation of this
full expression is reviewed in Sec. II. Section III then
presents the resulting contributions of the fluctuation to
the specific heat, Cfl, including all the corrections, and
Sec. IV discusses the consequences for the Ginzburg re-
gion. The results are summarized and discussed in Sec.
V.

THE PARTITION FUNCTION

We begin by reviewing the microscopic derivation of
the free energy which determines the superconducting
fluctuations. The Hamiltonian is

H =

∫

drH(r) , (1)

with

H(r) =
∑

σ

ψ†
σ(r)H0(r)ψσ(r)

− V (r)ψ†
↑(r)ψ

†
↓(r)ψ↓(r)ψ↑(r) , (2)

where ψ†
σ(r) creates an electron with spin σ at r. The

interaction V (r) depends on the spatial coordinate r,

V (r) = λ(r)/N (r) , (3)

where λ(r) is the effective local (dimensionless) electronic
coupling, while N (r) is the local density of states per unit
volume and unit energy. The single-particle part of the
Hamiltonian (2) reads

H0 = −∇
2/(2m) + u(r)− µ , (4)
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where µ is the chemical potential and the disorder po-
tential u(r) is modeled by point-like non-magnetic scat-
terers. [7]
The following calculation has been given, for quasi-

one dimensional rings, in Refs. 8 and 9. However, we
repeat it here for the general d-dimensional case, in or-
der to highlight the origin of the two Matsubara frequen-
cies which generate the slow momentum and frequency
variation of the quadratic coefficient in our effective GL
theory. The quantum partition function Z is [10]

Z =

∫

D{ψ(r, τ), ψ(r, τ)} exp[−S] , (5)

where the action S is

S =

∫

dr

∫ β

0

dτ
(

∑

σ

ψσ(r, τ)
∂

∂τ
ψσ(r, τ) +H(r, τ)

)

,

(6)

and β = 1/T (we use ~ = kB = 1). Here, the annihilation
and creation field operators in the Hamiltonian (2) (ψ
and ψ†) are replaced by the Grassmann variables ψ(r, τ)
and ψ(r, τ), respectively.
Applying the Hubbard-Stratonovich transformation to

Eq. (5), and integrating the fermionic part of the action,
the partition function is cast into the form [10]

Z =

∫

D{∆(r, τ),∆∗(r, τ)}e−S , (7)

with the action

S =

∫

dr

∫ β

0

dτ
|∆(r, τ)|2

V (r)
− Tr

{

ln
(

βG−1
)}

, (8)

where G−1 is the inverse (2 × 2 matrix) Green function
at equal positions and imaginary times,

G−1 =

[

G−1
p ∆

∆∗ G−1
h

]

, (9)

with

G−1
p = −∂τ −H0 (10)

being the particle inverse Green function, and

G−1
h = −∂τ +H0 (11)

being the inverse Green function of the holes.
The integration over the bosonic fields in Eq. (7) is

carried out using a stationary-phase analysis [10] of the
action S. At temperatures above the transition temper-
ature, this amounts to expanding the second term on the
right-hand side of Eq. (8) to second order in ∆ (the
first-order contribution to the expansion being zero)

Tr{ln(βG−1)}
∣

∣

∣

2nd
= Tr

{

lnβ

[

G−1
p 0

0 G−1
h

]

}

+

∫

drdr′

Ω2

∫ β

0

dτdτ ′

β2
Π(r, r′, τ − τ ′)∆(r′, τ ′)∆∗(r, τ) ,

(12)

where Ω denotes the volume of the system. The first
term on the right-hand side of Eq. (12) gives the parti-
tion function of noninteracting electrons; the second one
represents the contribution of the superconducting fluc-
tuations to that function. Its calculation requires the
correlation

Π(r, r′, τ − τ ′) ≡

− 〈Gp(r, r
′, τ − τ ′)Gh(r

′, r, τ ′ − τ)〉 , (13)

where 〈. . .〉 indicates averaging over the impurity config-
urations (see Ref. 7 for details). For the general case,
when the material contains several different regions (as
e.g. in a double layer [9]), this average depends sepa-
rately on r and on r′, and the calculation becomes dif-
ficult. However, for the purposes of the present discus-
sion, it suffices to consider the simplest case, in which the
material is homogeneous, and therefore the attractive in-
teraction V (r) ≡ V as well as the density of states N
are constant in space. Averaging over the impurities re-
stores homogeneity even in the dirty case, and the spatial
dependence of Π becomes a function of r− r′. Hence,

Tr{ln(βG−1)}
∣

∣

∣

2nd
=

∑

ν

∑

q

Π(q, ν)|∆(q, ν)|2 , (14)

where

Π(q, ν) =
∑

p
1
,p

2

∑

ω

〈G(p1 + q,p2 + q, ω + ν)

×G(−p1,−p2,−ω)〉 , (15)

and both Green functions are the particle ones, [8] i.e.,
G = Gp. We use the notations ω ≡ ωn = πT (2n + 1)
for the fermionic Matsubara frequencies, and ν ≡ νm =
2πTm for the bosonic ones (n and m are integers). Since
the phonon-mediated electron-electron attractive inter-
action is limited to energies within the Debye frequency
ωD from the Fermi energy, both |ω| and |ω+ν| are bound
by ωD.
Inserting these results into the expression for the action

[see Eq. (8)], the Gaussian fluctuation-induced partition
function, Zfl,2, takes the form

Zfl,2 =

∫

D{∆(q, ν),∆∗(q, ν)}e−S
2 , (16)

with

S2 =
∑

q

∑

ν

∆∗(q, ν)
(βΩ

V
−Π(q, ν)

)

∆(q, ν) . (17)

The function Π(q, ν), Eq. (15), is calculated by ex-
tending the method employed in Refs. 11 and 12 to
include the dependence on ν and on the wave-vector
q. The calculation is valid in the diffusive limit, in
which (D/2πT )1/2 is much larger than the mean-free
path l = vF τ of the relevant metal, where D = l2/(dτ)
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is the diffusion coefficient, vF is the Fermi velocity and τ
is the mean free time associated with the scattering from
the non-magnetic impurities. This is equivalent to the
requirement that 2πTτ ≪ 1. Alternatively, we require
that τ be the shortest time in the problem, or that all
the energies (including ωD and T ) be smaller than ~/τ .
Following the derivation given in Ref. 11, we present

the response function Π in the form

Π(q, ν) =
∑

ω

K(q, ν, ω) . (18)

The function K(q, ν, ω) obeys a diffusion equation (with
the diffusion constant D) due to the scattering by the
non-magnetic impurities. It also obeys a Dyson equation,
which yields

K(q, ν, ω) =
2πNΘ[ω(ω + ν)]

|2ω + ν|+Dq2
, (19)

where N ≡ ΩN (0) is the density of states per unit en-
ergy at the Fermi energy. The appearance of two fre-
quencies in the denominator of Eq. (19) is crucial for
the discussion below. These two frequencies result from
the appearance of the two Green functions in Eq. (15).
Finally, we find

S2 = βN
∑

q

∑

ν

a|∆(q, ν)|2 , (20)

where

a(q, ν, T ) =
1

λ
−

1

βN
Π(q, ν, T ) . (21)

Since the Debye frequency ωD serves as a cutoff on the
fermionic Matsubara frequencies ω = πT (2n+ 1) in Eq.
(19), one finds

1

βN
Π(q, ν, T ) = −Ψ

(1

2
+

|ν|+Dq2

4πT

)

+Ψ
(1

2
+

|ν|+Dq2 + 2ωD

4πT

)

, (22)

where Ψ is the digamma function.
Equation (20) represents the first term in an effective

GL-like expansion of the free energy density in powers
of the order parameters ∆(q, ν). The original GL the-
ory [1] was phenomenological, and the coefficient a was
written as a = a′(T − Tc) + cq2, which is equivalent
to the Ornstein-Zernike approximation. [6] This ignored
the quantum fluctuations, and was presumed valid very
close to Tc and for long wave-lengths. An extension
which includes quantum fluctuations had a(q, ν, T ) =
a′(T − Tc) + c|q|2 + e|ν|m/|q|m

′

. [13] Such forms (with
m = 1 and m′ = 0) can also be obtained from the micro-
scopic expression (21), if one expands that expression to
the lowest order in (T − Tc), in q2 and in ν. However, it

is clear that an expansion of Ψ in ν = 2πTm is not justi-
fied for any m 6= 0, and that an expansion in powers of q
may also be allowed only in a limited range of momenta.
Much of the literature restricts itself to the ‘static’ limit,
i.e. ν = 0, and to the expansion of a up to order q2.
[5] Our purpose here is to investigate the full expression
(21), and find deviations from the simpler GL theory.
Within such an effective Ginzburg-Landau theory, the

phase transition occurs when the coefficient a(q, ν, T )
first vanishes as the temperature T is lowered. Using
Eq. (22), this happens for the fluctuation-free “classical”,
Landau or mean-field limit, q = ν = 0. For ωD ≫ T , we
use the asymptotic limit Ψ(z) ∼ ln z for large z and find
the transition temperature

Tc =
2γE
π
ωDe

−1/λ , (23)

where γE = e−Ψ[1/2]/4 is the Euler constant. This result
is consistent with the usual BCS one.
For ωD ≫ T (i.e. for small λ), we replace 1/λ in Eq.

(21) by Eq. (23). For T close to Tc, we also denote
t ≡ ln(T/Tc), and replace T by Tc in the denominator of
Dq2/(4πT ). Substituting also ν = 2πTm we find [5]

a(q, ν, T ) = t+Ψ
[1 + |m|

2
+

D

4πTc
q2

]

−Ψ
[1

2

]

. (24)

This is the expression we shall use in the following calcu-
lations. In some expressions below we change notation,
a(q, ν, T ) → a(q,m, T ).
In the “pure” Landau theory, one keeps only the “clas-

sical” term, with ∆0 ≡ ∆(q = 0, ν = 0), and one adds
the quartic term in the free energy density, of order |∆0|

4,
so that the Landau free energy density has the form

FL = −
T

Ω
T lnZ0 = TS ≈ N

(

a0|∆0|
2 +

1

2
b|∆0|

4
)

,

(25)

where Z0 contains only ∆0 and (for large ωD) a0 =
a(0, 0, T ) = λ−1 − Π(0, 0, T )/(βN) ≈ t. Microscopic
calculations yield b = 7ζ(3)/(8π2T 2) = b0/T

2, with
b0

∼= 0.1. [5, 14] For metals, we write the electron energy
as E = pv/2, and therefore the density of states (per unit
volume and unit energy) at the Fermi level is given by
N (0) = Sdp

d−1
F /vF = Sdp

d
F /(2EF ), where EF and pF

are the Fermi energy and momentum, Sd = Ad/(2π)
d,

and Ad = 2πd/2/Γ(d/2) is the area of the unit sphere in
d dimensions (Γ is the gamma function). Minimizing FL

with respect to ∆0, one finds a non-zero ∆0 below Tc and
a jump in the specific heat (per unit volume), from zero
to

∆C(d) = N (0)/[bTc]
∼= 10N (0)Tc = 5Sdp

d
FTc/EF .

(26)

However, the fluctuations at non-zero wave-vectors and
frequencies give important contributions to the specific
heat even above Tc, as we discuss next.
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SPECIFIC HEAT DUE TO FLUCTUATIONS

Substituting Eq. (20) into Eq. (16) yields a Gaussian
integral, with the result

Zfl,2 ∼
∏

q

∏

ν

1

a(q, ν, T )
, (27)

where unimportant multiplicative factors have been
omitted.
This partition function allows the calculation of the

contribution of the fluctuations to various measurable
quantities. For example, the contribution to the specific
heat (per unit volume) is given in d dimensions by

C
(d)
fl =

β2

Ω

∂2 lnZfl,2

∂β2
= −

β2

Ω

∑

q

∑

ν

∂2 ln a(q, ν, T )

∂β2
.

(28)

Using Eq. (24), with t = ln(T/Tc), we find

C
(d)
fl =

1

Ω

∑

m

∑

q

[ 1

a2
−

1

a

]

=
∑

m

SdΛ
dC(d)

m . (29)

Here,

C(d)
m = Λ−d

∫ Λ

0

qd−1dq
[ 1

a(q,m, t)2
−

1

a(q,m, t)

]

, (30)

where Λ is the wave-length cutoff.
In contrast to the ‘standard’ GL theory, the func-

tion a in Eq. (24) grows only logarithmically at large
|m| and |q|. Therefore, both terms in Eq. (30) di-
verge unless we impose upper cutoffs on the frequen-
cies and on the momenta. As we discuss below, some
physical results may be affected by the resulting cutoff
dependence. Equation (30) already contains the cutoff
|q| < Λ. In the diffusive dirty limit, one certainly re-
quires that |q| < 1/l, hence Λ . 1/l. As discussed in
connection with Eq. (15), we require |ν| < ωD < 1/τ ,
and therefore |m| < M = ωD/(2πTc). Since we work
in a regime where Tc ≪ ωD [i.e. small λ, see Eq.
(23)], M is rather large. Indeed, Ref. 5 proposes us-
ing Λ = 1/l and M = ωD/(2πTc) (but then abandons
the quantum fluctuations altogether). However, since
the phonon-mediated attraction arises only for momenta
within ωD/vF from the Fermi momentum, and since
l = vF τ and ωD ≪ 1/τ , one might argue that we should
use Λ = min{1/l, ωD/vF } = ωD/vF . [15]
It should be noted that in principle we has to in-

clude also fluctuations with larger wave-lengths, up to
the Fermi momentum pF . It has been known for a long
time that the short-range correlations determine the crit-
ical behavior of the internal energy. [16] In the range
Λ < 1/l < q < pF i.e. on distances shorter than the mean
free path, the superconducting fluctuations are those of
a clean superconductor. Decreasing l then yields the

crossover from the clean to the dirty behavior. We are
not aware of such a full calculation, and it certainly goes
beyond the scope of the present paper. It is also not clear
yet how to deal with the fluctuations in the intermedi-
ate range Λ = ωD/vF < q < 1/l. As we show below,
our main result is not very sensitive to the choice of Λ.
In any case, our calculation gives a better description of
the ‘extremely’ dirty supercunductor, when Λ and 1/l
approach pF .
It is now convenient to switch to dimensionless quan-

tities: Q = q/Λ, δ = Λl and

γ = DΛ2/(4πTc) = δ2/(4πdTcτ)

=MωDτ/(2d) =M(ωD/EF )pF l/(4d) . (31)

In total, the problem is described by three dimensionless
numbers, namely δ, γ and M , which depend on ωD/Tc,
ωD/EF and pF l. With these, we write

a(Q,m, t) ≈ t+Ψ
[1 + |m|

2
+ γQ2

]

−Ψ
[1

2

]

(32)

and

C(d)
m =

∫ 1

0

Qd−1dQ
[ 1

a(Q,m, t)2
−

1

a(Q,m, t)

]

. (33)

Note that C
(d)
m depends only on t and on γ.

With upper cutoffs, all the integrals over Q in Eq.
(33) remain finite, except for the ‘static’ terms with m =
0. We therefore start with a detailed discussion of the
‘static’ term, C

(d)
0 . The function a(Q, 0, t) is smallest for

small |t| and |Q|. Defining Q2
1 = 0.001/γ (the prefactor

0.001 is arbitrary, chosen so that γQ2 ≪ 1), we now
divide the integration over Q into two regimes. In the
first, for 0 < |Q| < Q1, we use the GL-like expansion

a(Q, 0, t) ≈ t+ cQ2 , (34)

where

c = Ψ′[1/2]γ ≡ π2γ/2 , (35)

Ψ′(z) being the derivative of Ψ(z). Within this approx-
imation, ξ =

√

c/t/Λ =
√

πξ0l/(8dt), is the correlation
length associated with the fluctuations of the Gaussian
‘static’ dirty mode. Here, ξ0 = vF /Tc is the (T = 0)
coherence length of the pure superconductor, and we as-
sume ξ0 ≫ l. [2]

We next write C
(d)
0 = C

(d)
0,0 −C

(d)
0,c , with C

(d)
0,c = C

(d)
0,1 −

C
(d)
0,2 + C

(d)
0,3 . Here and below, the subscript c stands for

‘correction’. The first term in C(d),

C
(d)
0,0 =

∫ ∞

0

Qd−1dQ

(t+ cQ2)2
= At(d−4)/2 , (36)

represents the leading singular contribution. Here, A =
Id/c

d/2 and

Id =

∫ ∞

0

xd−1dx/(1 + x2)2 = (2− d)π csc(dπ/2)/4

(37)
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is equal to 0.5 at d = 2 and to π/4 for d = 1, 3. The
correction terms include

C
(d)
0,1 =

∫ ∞

Q
1

Qd−1dQ

(t+ cQ2)2
=

Qd−4
1

(4− d)c2
+O(t) , (38)

C
(d)
0,2 =

∫ 1

Q
1

Qd−1dQ

a(Q, 0, t)2
=

∫ 1

Q
1

Qd−1dQ

a(Q, 0, 0)2
+O(t) , (39)

and

C
(d)
0,3 = C

(d)
0,3′ +

∫ 1

Q
1

Qd−1dQ

a(Q, 0, 0)
+O(t) , (40)

where C
(d)
0,3′ =

∫ Q
1

0
Qd−1dQ/(t + cQ2). For d = 3, all

the integrals in C
(3)
0,c converge even at t = 0. For d ≤

2, C
(d)
0,3′ diverges at t = 0: C

(2)
0,3′ = ln[cQ2

1/t]/(2c) and

C
(1)
0,3′ = π/[2(ct)1/2]−1/(cQ1). This term adds a negative

singular correction to C
(d)
0 , causing an increase in C

(d)
0,c

at small |t|. For reasons explained below, we calculate
this term for t = tG = tG,static/2

2/(4−d) [see Eqs. (44)
and (46) below]. This value of t is at the border of the

Ginzburg region, where we need to evaluate C
(d)
0,c . For the

range of parameters used below, C(2)0,3′ turns out to be
negligible compared to the total correction term. Both

C
(3)
0,c and C

(2)
0,c decrease fast from large positive values as

γ increases towards 0.5, and then decrease much more
slowly as γ increases above 0.5. For fixed ωD/EF and
pF l, γ is proportional to M ∼ ωD/Tc [see Eq. (31)], so
that it increases as Tc decreases.
We now turn to the quantum terms, Cm(γ) with m 6=

0. All these terms have finite non-zero values at t = 0.
Furthermore, since Ψ[(1 + |m|)/2] − Ψ[1/2] > 1 for all
m 6= 0, the integrand in Cm is always negative, hence

C
(d)
m < 0. At γ = 0, one has C

(d)
m = {1/(Ψ[(1+ |m|)/2]−

Ψ[1/2]) − 1/(Ψ[(1 + |m|)/2] − Ψ[1/2])2}/d, which stays
between 0.2/d and 0.25/d for 1 ≤ m ≤ 10 and then
decreases very slowly as m increases. As γ increases,

C
(d)
m decreases slowly. In any case, the sum overm grows

as the cutoff M grows (i.e. as Tc decreases), and adds to
the correction term in the specific heat,

C(d)
c = C

(d)
0,c − 2

M
∑

m=1

C(d)
m . (41)

At small Tc, M is large and (unlike C
(d)
0,c ) the total cor-

rection term C
(d)
c increases with decreasing Tc, see Fig.

1.
Writing

C
(d)
fl ≈ SdΛ

d[At(d−4)/2 − C(d)
c ] , (42)

see Eq. (36), the correction C
(d)
c becomes important as

one moves away from Tc and t increases. Equation (42)

0.02 0.04
Tc

200

400

C

0.5 1 1.5
Tc

30

60

C

FIG. 1: The correction term C
(d)
c in the Gaussian specific

heat (thick line) and the discontinuity in the Landau specific

heat ∆C(d)/(SdΛ
d) (thin line) at d = 3 (top) and at d = 2

(bottom), for ωD = 400K, EF = 105K and pF l = 10. For

C
(2)
c we used t = tG = .4/(πpF l) = 0.012.

shows that the calculated C
(d)
fl becomes negative when

t < t0, where

t0 ≡
( A

C
(d)
c

)2/(4−d)

=
[ Id

C
(d)
c

(8d

π

Tc
ωD

1

(ωDτ)

)d/2]2/(4−d)

=
[ Id

C
(d)
c

(8d

π

Tc
ωD

2EF

ωD

1

(pF l)

)d/2]2/(4−d)

. (43)

This threshold decreases rather fast as Tc decreases. For

d ≤ 2, C
(d)
c contains the t−dependent term C

(d)
0,3′ , and

one has to solve for t0 iteratively. Since the specific
heat should always remain positive, we conclude that the
Gaussian approximation becomes questionable at t < t0.
In that regime one should add higher order terms to the
free energy. As we see below, one never reaches this ‘for-
bidden’ regime, since we always have tG & t0.

THE GINZBURG REGION

The fluctuations become dominant when their contri-
bution to the specific heat C

(d)
fl (t) becomes compara-

ble to or larger than the mean-field discontinuity ∆C(d).
[5] Comparing Eq. (42) with ∆C(d) gives the so-called



6

Ginzburg criterion,

tG =
(

[∆C(d)/(SdΛ
d) + C(d)

c ]/A
)−2/(4−d)

. (44)

Since we find that C
(d)
c is mostly positive, it causes a de-

crease in tG, which becomes more and more significant
as more and more quantum fluctuations are added (i.e.
at lower Tc) (although it also contains ‘classical’ correc-

tions from C
(d)
0,c ). Counterintuitively, quantum fluctua-

tions may reduce the Ginzburg regime!

Using Eq. (26), together with Λ = ωD/vF , we find

∆C(d)

SdΛd
= 5

(2EF

ωD

)d Tc
EF

, (45)

which is linear in Tc, with a large slope.
We now consider the dependence of tG on the tran-

sition temperature Tc. Figure 1 shows the dependence

of both terms in the denominator of Eq. (44), C
(d)
c and

∆C(d)/(SdΛ
d), on Tc. At high Tc, the correction term

is small, and one may neglect is and obtain the ‘usual’
‘static’ Ginzburg criterion tG,static, see below. However,
at low Tc the correction term becomes large, and it can-
not be ignored. The two curves in Fig. 1 intercept at
crossover temperature T×. Although both ωD and EF

are much larger than Tc, usually ωD is much smaller than
EF , and therefore the slope 5(2EF /ωD)

d in Eq. (45) be-
comes quite large at d = 3, yielding a relatively small
T×. For example, if we use EF = 105K, ωD = 400K and
pF l = 10, the resulting value for the crossover tempera-
ture is T× ≈ 0.024K (see Fig. 1). However, the crossover
temperature T× becomes significantly larger at lower di-
mensions: At d = 2 we find T× ≈ 1K.
Since the cutoff on the momenta enters only via the

dimensionless parameter γ, and since C
(d)
c varies slowly

with γ at large γ, it turns out that the results for T×
are not very sensitive to the value of the cutoff Λ. This
is true for all pF l > 1 in d = 3, and for pF l > 2 at
d = 2. Therefore, the questions raised above, before Eq.
(31), may not be too severe. For d = 1 the equations
yield Tc ∼ 3K, but they also yield tG ∼ 200, which is
certainly beyond the range of the approximations used
above. However, the latter value is consistent with Ref.
8, which found very large effects of the quantum fluctu-
ations in one dimension.
For Tc ≫ T× we can neglect the second term in the

square brackets in Eq. (44), and reproduce the ‘usual’
static Ginzburg criterion,

tG,static =
[ SdIdΛ

d

cd/2∆C(d)

]2/(4−d)

=
[Id
5

(4d

π

)d/2( Tc
EF

)(d−2)/2 1

(pF l)
d/2

]2/(4−d)

,

(46)

as found in many earlier papers. [5, 15] Interestingly,
tG,static increases with Tc at d = 3, does not depend on

Tc at d = 2 and deacreases with Tc at d = 1. Indeed, this
approximate expression has been adopted in most of the
literature. [5] However, as Tc approaches T× the square
brackets in Eq. (44) increase, and tG decreases relative
to Eq. (46). At Tc = T× we have tG = tG,static/2

2/(4−d),

as used in the plot of C
(2)
c in Fig. 1. Eventually, Eq. (46)

is no longer valid for Tc < T×.

For Tc < T×, the square brackets in Eq. (44) are dom-

inated by C
(d)
c . This means that the difference between

the two terms on the right hand side of Eq. (42), which
is of order ∆C(d), is very small. As a result, the solution

tG to the equation C
(d)
fl = ∆C(d) becomes very close to

t0, where the approach must be abandoned. Since we
still have tG & T×, and we must stay above tG, we never
encounter the regime t < t0. However, for Tc < T× the

higher order terms in C
(d)
fl may be important even above

the calculated tG.

The ‘static’ tG,static and corrected (lower) tG Ginzburg
criteria are plotted in Fig. 2. Unfortunately, for the
parameters used above the value of tG at the crossover
point T× for d = 3 becomes of order 10−10, which is not
realistic experimentally. In contrast, at d = 2 we find
tG ≈ 0.012, which is quite reasonable. These numbers
are proportional to 1/(pF l)

d/(4−d), so they increase with
increasing disorder.

0.05 0.1 0.15 0.2
Tc

1. ´ 10-9

2. ´ 10-9

tG

0.5 1 1.5 2
Tc

0.01

0.02

0.03

tG

FIG. 2: The ‘static’ (upper curve) and the corrected (lower
curve) Ginzburg ranges versus the transition temperature, at
d = 3 (top) and d = 2 (bottom), for the same parameters as
in Fig. 1. The vertical lines show T×.
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SUMMARY AND DISCUSSION

Our main result concerns the crossover temperature
T×, at which the (classical and quantum) corrections
to the leading divergent Gaussian specific heat become
equal to the Landau mean-field discontinuity in the spe-
cific heat. When the superconducting transition tem-
perature Tc is larger than T×, the Gaussian fluctuations
(and especially the quantum ones) cause a (surprising)
decrease in the Ginzburg region, by a factor which can
be as large as 22/(4−d) [see Eq. (44)]. However, when Tc
is smaller than T×, the Landau mean-field discontinuity
becomes smaller than the contribution from the fluctu-
ations, so that the Ginzburg criterion implies an almost
vanishing Gaussian specific heat. Therefore, one should
no longer use the specific heat to deduce the Ginzburg
criterion.
In three dimensions we estimate T× ≈ 0.025K, which

is rather low. However, T× increases at lower dimensions,
which casts doubts on the use of the ‘standard’ Ginzburg
criterion for low transition temperature superconductors
in those dimensions.
It should be noted that we derived the Ginzburg crite-

rion above Tc, based on the specific heat. Other deriva-
tions of the Ginzburg criterion are mainly below Tc, e.g.
comparing the fluctuations in the order parameter to its
average value, [15] or comparing the ordering free energy
in a coherence volume to kBT .[17] In Ref. 9 we compared
the persistent current due to the Gaussian fluctuations
to that generated by the quartic term in the GL free en-
ergy. All of these criteria give the same scaling with the
basic physical parameters of the problem, but yield dif-
ferent prefactors. Future work should consider the effects
of quantum fluctuations on these other criteria.
It should also be noted that similar correction terms

arise in all phase transitions (even without the quantum
fluctuations). We hope that our paper will stimulate
more discussion of such corrections in other cases.
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