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Abstract

The market for structured products in Germany and Switzerland experienced a decade

of rapid growth before the financial crisis. When Lehman Brothers went bankrupt, however,

it became apparent that many private investors had not been aware of the risks involved in

these certificates. There is evidence that the success of some of the most popular products

was due to behavioral biases of investors. There is also concern that the complexity and

diversity of the products was accompanied by low transparency. In practice, the information

provided to investors is still often focused on payoff diagrams. For the future development

of the market, it is important to improve investors’ information and understanding. To this

end, this paper analyzes the information requirements and proposes a risk and return survey

to provide relevant and comprehensive information on market risk. Specifically, we propose

to (1) illustrate the return probability distribution in three different ways, in particular a

rolling dice analogy, (2) apply the Leland model to specify the risk and return tradeoff, and

(3) include a specific measure of active risk. We illustrate these measures and information

tools for a sample of stylized products.
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1 Introduction

The recent financial crisis has led to a critical view of many retail financial instruments and

services. As a consequence, in the United States, a new office—called the Consumer Financial

Protection Bureau—has been created to consolidate and strengthen consumer protection. The

new regulation is primarily directed at the credit and mortgage markets. However, structured

financial products outside loan markets were also caught up in the maelstorm of the financial

crisis when Lehman Brothers went bankrupt in September 2008. Apparently, many investors

had not been aware of the credit risk involved in these instruments. This clearly indicates that

better customer advice and more transparency are required.

Structured products consist of two or more different asset components, one of which is a deriv-

ative (see Stoimenov and Wilkens, 2005). They are issued by banks and may be sold to private

or institutional investors. The products can be traded on an organized exchange or directly

with the issuing bank, which quotes bid and ask prices during the product’s lifetime. In some

European countries, particulary Germany and Switzerland, the market for these products grew

rapidly during the decade before the financial crisis. The issuers work hard to design the products

so that they will be very attractive to investors. In Germany and Switzerland, the regulatory

environment offers the banks sufficient flexibility to quickly react to new market conditions and

to create tailor-made investments. As a result, a number of innovations have been made and a

large diversity of products is now available.

From a theoretical point of view, the market for structured products creates value by offering

risk-return profiles that cannot be easily replicated by traditional financial instruments. On

the one hand, structured products provide exposure to non-traditional asset classes such as

commodities, to which investors might not have direct access. On the other hand, the payoff

functions often have special characteristics, such as a minimum or maximum payoff and a non-

linear profile in between, which allow sophisticated investors to optimize their portfolios with

regard to risk aversion, market expectations, and hedging concerns.

Practically speaking, however, actual product design and investor behavior challenge the view

that structured products are “all good”. In particular, some products appear to be overly

complex. For instance, among the most popular instruments in the Swiss market are multiple

barrier reverse convertibles (MBRC). The buyer of an MBRC is entitled to receive a fixed coupon

payment on its face value, just like the buyer of a straight bond. In contrast to a bondholder,

however, the buyer may receive assets instead of cash repayment of face value at maturity. The

issuer of the MBRC has the right to “pay” with the worst-performing underlying asset, provided

that at least one of the assets has crossed a downside barrier during the contract’s duration.

From an investor’s point of view, this structure is equivalent to buying a straight bond and at

the same time selling a multi-asset barrier put. In general, investors are reluctant to sell such a

put option, as is apparent from the high market prices of out-of-the-money puts (see the typical

“smile” or “skew” pattern of option-implied volatilities). It is also not clear how to integrate
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MBRC into portfolio planning because the buyer does not know in advance which stock will be

delivered if the put is exercised. There is some evidence that investors typically underestimate

the probability of hitting the barrier (see Rieger, 2011; Lindauer and Seiz, 2008). In addition,

they generally seem to focus on the sure coupon and tend to neglect the fact that a high coupon

is just one side of the coin, the other side being engraved high downside risk (see Wallmeier

and Diethelm, 2009). Thus, investor behavioral biases seem important, and may indeed play a

part in the design of structured products such that the products might be customized to take

advantage of these behavioral biases.

There is also concern that the complexity and diversity of the products lead to low transparency.

First, investors might find it difficult to understand all the relevant characteristics of complex

products. Second, it is not always apparent where seemingly attractive returns come from. For

instance, dividends of the underlying stocks are usually retained by the issuer. For this reason,

the product will appear more attractive than a direct stock investment when only the payoff at

maturity is considered. Third, valuing the more complex products is not straightforward. Since

suitable pricing tools are not always publicly available, transparency with respect to fair values

and their determinants might be poor, making it questionable whether competition between

issuers is strong enough to ensure fair pricing. Empirical studies on the pricing of structured

products in the primary market typically find a premium higher than theoretical values (over-

pricing) of about 2-6%.1 For instance, a recent study on MBRC in Switzerland finds an average

overpricing of about 3.5% on an annual basis2 (see Wallmeier and Diethelm, 2009, 2011). This

price premium is highly relevant, but invisible, to investors. According to empirical studies,

overpricing is more pronounced in less developed markets and positively related to the product’s

complexity.

There is broad consensus in financial theory and practice that the market for structured products

requires well-informed investors who understand the product characteristics and the correspond-

ing risk-return profiles. In Switzerland, an important information provider is the Swiss Struc-

tured Products Association (SSPA). Its “Swiss Derivative Map” categorizes available products,

illustrates payoff functions, and provides an overview of the most important product features.

Efforts are made to allow better comparisons between issuers. Detailed descriptions of structured

products are available from most banks, and several institutions offer training on derivatives and

structured products. In addition, the SSPA recently introduced a risk figure based on the value-

at-risk (VaR) approach. Yet, other meaningful risk measures are not well established and rarely

published. More importantly, the information actually provided to potential investors generally

suffers from two main weaknesses: (1) it is typically focused on the payoff profile while neglecting

1 See Burth et al. (2001), Wilkens et al. (2003), Schenk and Wasserfallen (1996), Grünbichler and Wohlwend

(2005), Stoimenov and Wilkens (2005), Hernandez et al. (2007), Szymanowska et al. (2007), Benet et al. (2006),

Grünbichler and Wohlwend (2005), and the literature review in Wallmeier and Diethelm (2009).
2 The analyzed products had a time to maturity of about one year. In this sense, the overpricing of about 3.5%

is a per annum value.
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the payoff probability, although probability information is indispensable for evaluating any prod-

uct, and (2) the relevant risk has to be measured with respect to a well-diversified portfolio, and

the risk-return relationship can be analyzed only in a portfolio setting. Although this portfolio

aspect of investment decisions is of crucial importance, it is typically ignored when presenting

structured products.

Against this background, the objective of this paper is to propose a set of instruments suitable

for illustrating and measuring the risk-return characteristics of derivatives and, in particular,

structured products. These information instruments can be combined in a risk-return survey

that provides different perspectives on product characteristics and captures the risk and return

profile more comprehensively than a single risk measure. The tools should be applicable to a

wide range of structured products, including complex ones such as MBRC.

In Section 2, we briefly review the literature on how mode of presentation affects decisions under

risk. Section 3 develops a conceptual framework for analyzing structured products and derives

requirements for risk and return analyses. Section 4 introduces the set of structured products for

which we illustrate the risk-return analyses. In Section 5, we present our survey of information

tools. Section 6 concludes.

2 Literature on presentation mode and investment decisions

Many studies show that how an investment opportunity is presented can have a strong impact

on investment decisions. For example, Benartzi and Thaler (2001) find that, in experiments,

individuals tend to apply a naive diversification rule known as the “1/N heuristic” when con-

fronted with a set of funds from which to select a portfolio. The 1/N rule is applied regardless of

whether stock or bond funds prevail. As a result, the asset allocation among stocks and bonds

will depend on the set of funds offered. In another study, Benartzi and Thaler (1999) analyze

myopic loss aversion, which is the aversion to short-term losses when the investment horizon is

long-term. An important result of the study is that “this aversion to short-term losses can be

overcome by providing the subjects with the explicit distribution of potential outcomes”3. The

crucial point was to inform the participants about the aggregated, long-term return distribution

instead of showing one-period returns. Klos et al. (2005) confirm and strengthen this finding

in further experiments. They conclude that “computing, showing and discussing aggregated

distributions may have the potential to avoid utility losses in asset allocation decisions”4.

According to the seminal experiments of Kahneman and Tversky (1979), individuals are gen-

erally loss averse in the sense that losses with respect to the current reference point are about

twice as heavily weighted as gains. In view of this finding, the popularity of reverse convertibles

3 Benartzi and Thaler (1999, p. 380).
4 Klos et al. (2005, p. 1788).
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in the Swiss and German market is startling. According to prospect theory, investors should

avoid the downside risk that is so important in these products (see Breuer and Perst, 2007).

A possible explanation for this contradiction is that investors are not fully aware of the risk

(see Hens and Rieger, 2008; Wallmeier and Diethelm, 2009). Thus, it is crucially important to

provide information about the loss probability and other risk characteristics. Several studies

in other areas of risk choices test whether it makes a difference if the underlying probability

distribution is described only, shown graphically or experienced through sampling.5 “Sampling”

means that the test subject repeatedly draws from the relevant distribution to gain some knowl-

edge about its shape. According to some studies, individuals who “experience” the outcome in

this way tend to be more willing to bear the risk of a rare loss event than are individuals who

were simply given a description of the risk (description-experience gap).6 However, Rakow et al.

(2008) report that this observation may be due to biased sampling. When the relative frequency

of the rare event in experience sampling is identical to the probability given in the description

setting, the description-experience gap disappears. Thus, the “results provide no support for the

claim that decisions from description and decisions from experience require separate descriptive

theories”7.

Many studies show that individuals’ risk perception can substantially deviate from objective

risk measures such as loss probability (see, e.g., Klos et al., 2005).8 Not surprisingly, perceived

risk is typically found to be a better predictor for decisions under risk. Risk perceptions might

depend on the way information is provided. The information environment is also known to be

related to biases, such as overconfidence.

Most of the experimental literature concentrates on simple lotteries; few studies examine the

asset allocation between stocks and bonds (e.g., Haisley et al., 2010). There does not seem to

be experimental evidence for investments in derivatives or structured products. Therefore, it is

difficult to draw definite conclusions from this literature. However, previous research does at least

agree on the importance of providing information about loss probabilities. It also supports the

notion that return distributions should be based on the individuals’ investment horizon instead

of shorter periods. Finally, in view of recent research, the gap between description-based and

experience-based decisions does not seem to be substantial. This is important because sampling

is not practical for most structured products. For instance, a huge number of drawings would be

necessary to obtain a useful estimate of the probability of hitting the downside barrier of barrier

reverse convertibles. Our proposed information tools take these general insights into account.

5 See, e.g., Barron and Erev (2003), Hertwig et al. (2004), and Hau et al. (2008).
6 See, e.g., Hertwig et al. (2004), Hau et al. (2008), and the review in Rakow and Newell (2010).
7 Rakow et al. (2008, p. 168). See also Fox and Hadar (2006).
8 This is also true for financial advisors. For example, Eriksen and Kvaloy (2010) find that advisors’ behavior

is characterized by myopic loss aversion (MLA). Their degree of MLA is even stronger than was observed in

a control group of students.
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3 Conceptual framework

3.1 Motivations for using derivatives

The use of derivatives, as opposed to a direct investment in the underlying asset, can be mo-

tivated by three reasons: hedging, optimization with respect to a specific utility function, and

speculation.

When used for hedging purposes, derivatives offset the risk involved in a base portfolio. First,

however, this risk has to be clearly identified before an appropriate hedging instrument can be

chosen. Therefore, in designing an effective hedging strategy, information on the base portfolio

and the specific hedging relationship is more important than a general risk-return classification

of derivatives. This is why we do not concern ourselves with the hedging motive in this paper.

The second motive for using derivatives is to take account of specific characteristics of the

investor’s utility function. In general, the optimal portfolios of heterogeneous investors will not

be equal to simple combinations of the risk-free asset and the market portfolio. For instance,

investors who behave in line with the cumulative prospect theory of Kahneman and Tversky

(1979, 1992) tend to strongly weight the small probability of extremely negative returns and will

therefore be interested in products that provide protection against downside risk.9

For example, investor preferences can be characterized in terms of moments of the return distri-

bution: expected return, volatility, skewness and kurtosis. Blümke (2009) proposes measuring

these moment preferences by means of a questionnaire. The job of financial advisors or port-

folio managers is then to find the optimal return distribution. To simplify matching return

distributions to preferences, Blümke proposes classifying structured products into three cate-

gories: capital guaranteed (low volatility, right skewed, medium kurtosis), yield enhancement

(medium volatility, left skewed, high kurtosis), and participation (high volatility, low skewness,

low kurtosis).

The main weakness of this approach is that it does not take into account how volatility, skewness

and kurtosis are priced in the market. For example, investors might typically prefer right-

skewed return distributions. The overall market, however, provides symmetrical returns. In this

situation, not all investors can realize their preferred return distribution. The competition for

positive skewness will result in a higher price for portfolios with the desired property. Thus, the

expected asset returns contain a skewness-related premium. Similarly, since most investors have

a preference for low kurtosis and low downside risk, these characteristics will also be priced in

9 See Shefrin and Statman (1993). This is why discount certificates and reverse convertibles are not attractive

to investors who apply cumulative prospect theory (see Breuer and Perst, 2007).
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market equilibrium. This means that investors face a tradeoff between high expected portfolio

return and an attractive shape of the return distribution.10

In general, nothing can be said about an investor’s optimal portfolio structure without taking

the return premia into consideration. In the case of homogeneous investors, the premium for

positive skewness would exactly offset the tendency to construct a portfolio with a positively

skewed distribution. Therefore, to draw adequate conclusions for portfolio optimization, either

the risk premium has to be explicitly considered or the investor’s preferences have to be measured

relative to other investors in the market. It is not clear how this could be done in practice.

Hens and Rieger (2008) express investor preferences in terms of utility functions and analyze

the utility gain that can be achieved by deviating from a linear market exposure using struc-

tured products. One important result is that some of the most successful structured products

cannot be optimal for rational investors as long as the utility function is concave. For utility

functions typically used in economic models, the improvement for investors is small. Only when

introducing partially non-concave functions is the utility gain noticeable, but it is still too small

to compensate for transaction costs of structured products. Branger and Breuer (2008) report

similar results for CRRA investors (see also Henderson and Pearson, 2009). This means that the

success of structured products cannot be explained by the attempt to optimize the portfolio’s

payoff profile with respect to individual investor utility functions. Therefore, this motive for

trading derivatives will not play much of a role in our paper.

The third reason for using derivatives is speculation, which means that trading activities are

based on active forecasts. The objective of active management is to gain abnormal returns

by exploiting mispricing in the market. In contrast, passive investors typically do not hold

derivatives but a set of passively managed funds. In line with this view, structured products

and derivatives are often regarded as satellite portfolios within the core satellite approach. This

approach is based on the Treynor and Black (1973) model, which decomposes the optimal

portfolio of an active investor into a passive core part and an active fund containing all assets for

which mispricing has been identified. Within this framework, structured products are convenient

flexible instruments for implementing an active strategy. This motive—speculation—is the main

focus of this paper.

10 An example of this tradeoff is volatility investments. At first sight, investing in volatility appears attractive

since volatility movements are known to be negatively correlated with stock index returns. The return distri-

bution is strongly skewed to the right, which is appealing for most investors. However, a closer look reveals

that the return premium for this investment is strongly negative, more so than can be explained by theoretical

asset pricing models (see Carr and Wu, 2009; Hafner and Wallmeier, 2007, 2008; Alexander and Korovilas,

2011). Thus, contrary to the intuition based on skewness and kurtosis, it would be optimal to sell rather than

buy volatility exposure.
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3.2 Holding period and wealth distribution

We assume that investors follow a buy-and-hold strategy with a time horizon identical to the

time to maturity of the structured product. One reason for this assumption is that structured

products are not appropriate for high-frequency trading: the transaction costs would be too

high, at least for the more complex products for which bid-ask spreads are often significant.

The second reason is that the dynamic trading strategies of individual investors are diverse and

unknown, so that it is impossible to derive a “representative” return distribution.

At the portfolio level, we apply the payoff distribution pricing model (PDPM) of Dybvig (1988a).

This model assumes that investors only care about the distribution of terminal wealth. Their

preferences are state independent, which means that it does not matter in which state of the

world a given return with a given probability is realized. Therefore, if two portfolios depend on

different risk factors but generate the same return distribution, the PDPM holds that investors

attribute the same value to both.

Using the PDPM has important consequences for the characteristics of optimal investment

strategies. Dybvig (1988b) and Cox and Leland (2000) prove that in a complete and frictionless

(Black-Scholes) market, the least costly way to achieve a given terminal wealth distribution

always consists of a path-independent payoff. Path-dependent options such as barrier prod-

ucts are cost inefficient and therefore suboptimal. More generally, Dybvig (1988b) shows that

cost-efficient payoffs are necessarily monotonic in the state price. Consequently, in the Black-

Scholes setting, optimal payoffs are always non-decreasing functions of the underlying stock

price (Bernard and Boyle, 2010). Bernard and Boyle (2010) derive an explicit representation of

cost-efficient strategies.11

These results raise doubts about the benefit of complex, path-dependent structures for investors,

which is why we will consider only path-independent payoff profiles in our illustrations. The

proposed information tools, however, are not restricted to this class of products. Moreover, it is

possible to add an inefficiency measure to our risk and return survey.12 We do not follow this

route because a cost-inefficiency measure should be based on the portfolio payoff of investors

rather than on the payoff of single products.13 For instance, a put option would be classified

inefficient in a separate analysis, while it could be optimal as a hedging instrument.

11 The seminal work by Dybvig (1988b) and Cox and Leland (2000) is based on a market with one underlying

asset. Bernard et al. (2010) show that path-dependent products are not optimal in a multidimensional Black-

Scholes market either. In a further extension, Vanduffel et al. (2009) present cost-inefficiency results in a Lévy

setting.
12 I am grateful to Steven Vanduffel (Vrije Universiteit Brussel) for this remark. In an empirical application,

Amin and Kat (2003) construct a measure of cost inefficiency to evaluate the performance of hedge funds.
13 However, our measure of the degree of active orientation is based on a similar idea as a cost-inefficiency measure

and also considers the portfolio context (see Section 5.3).
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3.3 Risk measurement and risk-return tradeoff

Due to non-normal return distributions, the mean-variance framework of balancing risk and

return is not appropriate for derivatives and structured products. Higher moments of the return

distribution such as skewness and kurtosis are relevant. To cover downside risk, value-at-risk

(VaR) is frequently proposed as a risk measure. However, as is well known, VaR suffers from

serious shortcomings, one of the main ones being that the measure does not consider the size

of losses higher than VaR. It highlights only one feature of the return distribution so that the

same VaR can be obtained from strongly divergent shapes of the return distributions. As the

neglected characteristics of the return distribution are believed to be important determinants of

risk premia in the market, VaR is not an appropriate risk measure for studying the risk-return

tradeoff. In addition, investors are not concerned about the VaR of isolated products but about

a product’s contribution to overall portfolio risk. In addition to these conceptual shortcomings,

estimating VaR is often difficult due to model risk and parameter uncertainty. For these reasons,

a more comprehensive risk assessment is necessary. Such could be a risk-return survey that fulfills

the following requirements.

• Because the survey is not intended only for professional investors, the risk-return profile
should be illustrated in a simple and easily interpretable way.

• The information content of payoff profiles is very limited. Any risk assessment has to
be based on return probability distributions. Thus, these return distributions should be

clearly illustrated.

• Theoretical and empirical studies in the field of behavioral finance show that investors

often do not consider all relevant information in an unbiased way. To avoid the possibility

that investors consider only the “pretty” side of the coin (e.g., coupon or maximal return),

the survey should provide a balanced view of upside and downside potential.

• From a theoretical and practical point of view, the risk-return profile must be analyzed in

market equilibrium. This implies that diversification within a broad portfolio is explicitly

taken into account.

• The survey provides specific information for active investors who use structured products
as a means of profiting from perceived mispricing in the market. This requirement is a

consequence of our focus on active management (see Section 3.1).

It is evident that one single risk measure cannot meet all these requirements.

4 Structured products

To illustrate the different information tools, we choose the following subset of structured products

where the numbers in parantheses refer to product type code according to the SVSP Swiss
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Derivative Map14: uncapped capital protection (1100), capped capital protection (1120), capital

protection with knock-out (1130), reverse convertible (1220), barrier reverse convertible (1230),

bonus certificate (1320), twin-win certificate (1340), bear and bull tracker (1300), and call and

put warrant (2100). Note that the references to the SVSP Swiss Derivative Map are indicative

only: our products are chosen for purposes of illustration and are not meant to exactly replicate

real products. One noteworthy difference between our list of products and those available in

the real market is that we only consider European-type products. For example, the barrier

condition of the barrier reverse convertible is only checked at maturity.15 Another difference

is that we allow for a negative payout in the case of the bear tracker. This means that the

investor has to make a supplemental payment if the underlying asset rises by more than 100%.

The corresponding strategy in practice would be to buy another bear tracker when the first is

canceled before maturity at a value near zero. However, the information tools we propose are

not limited to our illustration sample but can be applied to almost any payoff profile.

The parameters of our example products are given in Table 1.

−−−−− Table 1 about here −−−−−

With the parameters set out in Table 1, the initial fair values are close to but not equal to the

net value of 1. For better comparison, we adjust the number of products such that their initial

fair value is 1.16 All graphs and figures are based on these adjusted values. The familiar payoff

functions of our products are shown in Figure 1.

−−−−− Figure 1 about here −−−−−

5 Proposals

5.1 Return distribution

It is common practice to characterize structured products by their payoff functions as in Figure

1. Payoff functions are shown in the SVSP Swiss Derivative Map as well as in many fact-sheets

and advertisements. Yet, the payoff graphs only illustrate the magnitude of potential payoffs,

without any information as to the probability of this occurrence. The probability information

is important but often not intuitive. Therefore, it should become standard practice to show the

14 See the description in Meier et al. (2010) and the website http://www.svsp-verband.ch.
15 One reason is that products with path-dependent payoffs are difficult to justify theoretically; see Section 3.2.
16 For example, if the fair value is 0.95, we assume that the investor buys 1/0.95 products.
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return distribution in addition to the payoff profile. We present three different ways of doing

this.17

5.1.1 Return histogram and bar chart of ordered returns

The first and most natural way to illustrate the return distribution is to plot a return histogram

(for examples, see Blümke, 2009). The probability density function can be derived by historical

simulation or Monte Carlo simulation (MCS). In historical simulation, the first step is to collect

a sample of past relative changes in variables that determine the value of a structured product.

These sets of movements serve as scenarios for the simulation. In the second step, a valuation

model is used to compute the product’s return for each of the historical scenarios. The frequency

distribution of returns is then regarded as an approximation of the unobserved probability

density function. MCS is different in that it starts from an analytical specification of the return-

generating process for the underlying assets. Based on this model, a large number of price paths

is simulated. For each path, the payoff and return of the structured product can be calculated,

which again results in a simulated return distribution.

The two methods are thoroughly compared in the literature (see, e.g., Jorion, 2007). One

main weakness of historical simulation is that it considers only events that actually occurred

in the past. In the case of MBRC, e.g., the result of historical simulation strongly depends

on whether one of the underlying stocks suffered a sharp price decrease during the estimation

period. Historical simulation is also limited to short horizons of a few days because, for longer

horizons, there are not enough non-overlapping historical periods. To cover typical initial times

to maturity of structured products (of about one to three years), an extrapolation of short-

term returns would be required to build historical scenarios. For these reasons, we do not use

historical simulation.

The crucial point of MCS is to specify a realistic return-generating process. Many theoretical

and empirical studies deal with the estimation of such processes based on historical data. In

modeling stock returns, for instance, GARCH models capture important characteristics of stock

return series, such as volatility clustering, which is why they have become a standard tool

in finance. However, an accurate, fine-tuned return-generating model is far more important

in option valuation than for our purpose of illustrating the shape of the probability density

function. Therefore, in our examples, we apply the standard model of geometric Brownian

motion.18 However, it is possible and straight-forward to generate similar graphs for more

17 In a different approach, Rieger (2009) proposes a risk matrix based on three characteristics of the return

distribution: the loss probability, the maximal loss, and the return potential.
18 This corresponds to the Black-Scholes framework, so that it is straight-forward to determine the initial values

of the structured products.
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sophisticated processes.19

Figures 2 and 3 show the return distributions for our product sample. In Figure 2, the probabil-

ity density functions are shown as return histograms. For means of comparison, the log-normal

density of the underlying asset is included in each graph.20 It is apparent that the return his-

togram often provides interesting information not contained in the payoff diagram. For example,

the downside risk of a barrier reverse convertible is clearly visible as a kind of counterbalance

to the positive scenario of maximum return.

Figure 3 is based on a discretization of the return distribution into 50 equal parts so that each

part represents a probability of 2%. We compute the expected return for each part and plot

these expected returns in ascending order. This form of presentation is sometimes used to show

historical returns of an investment product.21 Its advantage is that each bar represents the same

probability, so that it is not necessary to think in terms of probabilities to interpret the graph.

The range of possible returns is clearly visible, and the profiles meaningfully reflect the specific

characteristics of different products.

−−−−− Figure 2 about here −−−−−

−−−−− Figure 3 about here −−−−−

5.1.2 Rolling dice analogy

The insight that stock prices in informationally efficient markets follow a random walk is at

the core of modern finance. This idea was first published by Louis Bachelier in 1900 and

later formalized and elaborated by Fama (1970). It might still appear counter-intuitive to

many investors that stock prices behave like a random walk when they are “correctly” based on

fundamental data and rational expectations. However, sophisticated investors, financial advisors

and portfolio managers are supposed to be familiar with this idea.

The random walk argument shows that investment products can be compared to lotteries. The

analogy to lotteries makes sense only because the investor faces some inherent risk; it does

not imply that investing is similar to gambling. We use a specific lottery with which every

investor is familiar—playing dice—to present the risk-return profile of structured products. To

19 See, e.g., Wallmeier and Diethelm (2011) for a comparison of the multivariate normal model with the variance

gamma model which is based on a pure jump process. Röder and Wilkens (2003) consider reverse convertibles

and discount certificates in the case of stochastic versus constant volatilities.
20 The horizontal axis in Figure 2 is defined as (1+discrete return). Therefore, the probability density function

for the underlying asset is log-normal under geometric Brownian motion. It would be normal in a graph with

continuously compounded returns on the horizontal axis.
21 See Beshears et al. (2009), Figures 4 and 5.
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this end, we divide the range of possible returns into 16-quantiles and compute the expected

returns conditional on returns within the particular quantile. These expected quantile returns

are ranked in ascending order and assigned the numbers on the dice.22

Formally, let  be the random return of a structured product and  a return realization over the

investment horizon. Denote the probability density function by () and the cumulative dis-

tribution function by (). The -quantile  is defined as the smallest return that represents

a cumulative probability of at least :  = inf{|() ≥ }  ∈ (0 1)  With the definitions
0 = 0 1 =∞ and  = 6,  = 1     6 the number  of the dice is assigned the value:

() = 
£
|−1   ≤ 

¤
= 6

Z 

−1

 · ()

A financial advisor could explain the dice analogy to a client as follows.

An investment in this product involves some market risk. This means that the

return over a one-year period is uncertain. The reason is that we do not know in

advance if new information coming to the market in the future will be favorable or

unfavorable for the asset. To get a better feeling of the risk involved, the following

analogy might be helpful: the risk can be compared to rolling a dice where higher

returns are paid out when the dice shows a higher number. The six possible returns

in our asset dice are as follows: ....

One advantage of this approach is that it promises to countervail the tendency of investors to

focus on the maximal return, e.g. the coupon of a reverse convertible. The return dice offers a

balanced view because it reveals that high returns can be offered only if the investor is willing

to bear an equally high risk of loss. This is apparent from Figure 4, which shows the return dice

for our examples. For instance, in the case of the barrier reverse convertible, there is a good

chance of gaining 8.5%, but the investor can also see that she risks incurring a loss of 16%.

−−−−− Figure 4 about here −−−−−

5.2 Equilibrium risk-return tradeoff

In financial markets, derivatives and structured products are priced as part of well-diversified

portfolios. Therefore, the risk-return characteristics of these instruments can be determined only

with respect to themarket risk-return tradeoff. This tradeoff is often analyzed within the CAPM

pricing model. While the standard version of the CAPM is not compatible with non-linear payoff

profiles and therefore not applicable to options, Leland (1999) presents a modification of the

22 In an analogous manner, the returns shown in Figure 3 can be interpreted as 1/50-quantile returns.
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CAPM that does not require symmetrical return distributions. We propose to use this approach

to analyze the risk-return tradeoff of structured products.

The model is based on research by Rubinstein (1976), Breeden and Litzenberger (1978), Brennan

(1979), and He and Leland (1993). It assumes that the market portfolio follows a geometric

Brownian motion so that market returns are log-normal. However, no assumption is made as

to the return distribution of any risky asset included in the market. The model assumes that

there is a representative investor with constant relative risk aversion. This implies that the

representative investor is characterized by a risk-aversion coefficient equal to the market risk

premium per unit of variance risk (for more detail, see the Appendix).

The main result of the Leland model is that a modified security market line holds for any risky

asset  regardless of its payoff profile:

 [] =  + ( [ ]− ) (1)

where  is the one-period risk-free rate of return,  is the market portfolio return and 

the return of asset .23 The modified beta is defined as:

 =
 [−(1 +)

− ]

 [−(1 +)−  ]


where  is the risk aversion coefficient of the representative investor.

As can be seen from Equation (1), the security market line is still linear as in the standard

CAPM. The only difference is that beta is replaced by a modified measure  which is adapted

to non-linear payout functions. The new beta measures the systematic risk of a product as part

of the overall market and can be interpreted similarly to the standard CAPM.

−−−−− Figure 5 about here −−−−−

Figure 5 shows the Leland security line for the sample of products defined in Section 4. As a

general rule, the bearish products have a low or even negative expected return because of their

inverse relationship to market movements (negative modified beta). The absolute value of beta

is larger the more pronounced the product’s leverage.

The Leland model has several attractive characteristics. First, risk is measured with respect to

a well-diversified portfolio, which is essential but almost never considered in existing proposals

for measuring derivatives’ risk. Second, the risk measure is compatible with non-symmetrical

return distributions and therefore applicable to all kinds of options. Third, the model allows

illustrating the relationship between risk and return in the market and quantifying the specific

23 Returns  are defined as discrete (in contrast to continuously compounded) returns. See the Appendix for

details.
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risk-return combination of each product. Fourth, there is an interesting link to the return dice

proposed in the last section because the expected return is equal to the average of the six quantile

returns. However, the dice presentation did not explain why the average returns differ across

products. With the Leland model, these differences are naturally explained by different levels

of systematic risk.

5.3 Degree of active orientation

The Leland model proposed in the previous section is based on a representative investor who,

by definition, follows a passive strategy. As structured products are usually found in an active

management domain, however, it is important to provide additional risk information for active

investors. The objective is not to help investors generate valuable forecasts, but to make the

degree of active orientation of portfolios more transparent.

Active investors will select structured products that, according to their private information,

provide abnormal returns (alphas). These products serve as “satellites” around the passive

core portfolio. If more weight is given to the satellites, the overall diversification is reduced

and unsystematic risk increased. Therefore, investors face a tradeoff between diversifying (low

specific risk, market-based returns) and aggressively exploiting positive “alphas” (higher specific

risk, positive excess returns).

From the perspective of passive investors who do not have private information, an active portfolio

looks suboptimal. As it deviates from the optimal portfolio structure, it implies a utility loss that

is higher the more aggressive the active portfolio. This is why the utility loss can be interpreted

as a measure of the degree of active orientation: it tells active investors how much, in terms of

utility, they will lose if their superior forecasting ability turns out to be illusory.

To express potential utility loss in a meaningful way, we translate it into an equivalent loss

of a proportion of initial wealth. The interpretation then is, for an investor without private

information, that holding this (suboptimal) portfolio will provide the same expected utility as

paying a one-time fee of % of initial wealth and investing the remaining wealth in the optimal

portfolio. The higher  is, the better the forecasting ability of the active investor must be to

offset the looming utility loss with positive abnormal returns.

Formally, let  () denote the price of a structured product in which the portfolio manager

invests the proportion  of initial wealth  (0). The remaining part (1− ) is invested in the

market portfolio. The expected utility based on the subjective probability measure  of the

active investor is:



∙


µ
 (0)

 (0)
 ( ) +

(1− ) (0)

 (0)
( )

¶¸


A passive investor (without superior forecasting ability) uses a different probability measure,

denoted by . From his perspective, the market portfolio will be optimal: it provides a higher
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expected utility than the active investor’s portfolio:



∙


µ
 (0)

 (0)
( )

¶¸
≥ 

∙


µ
 (0)

 (0)
 ( ) +

(1− ) (0)

 (0)
( )

¶¸


For each , a parameter () can be uniquely determined such that:



∙


µ
(1− ()

100
)
 (0)

 (0)
( )

¶¸
= 

∙


µ
 (0)

 (0)
 ( ) +

(1− ) (0)

 (0)
( )

¶¸


Thus, the utility loss induced by investing in the active investor’s portfolio is equivalent to the

loss of a fraction () (in percent) of initial wealth.

−−−−− Table 2 about here −−−−−

−−−−− Table 3 about here −−−−−

Table 2 shows the ()-values for proportions  ∈ {5% 10% 25% 50% 75% 100%} of initial
wealth invested in one structured product. Clearly,  is increasing in . Its magnitude differs

strongly between the products. Not surprisingly, the put and call option stands out as partic-

ularly risky. The bear tracker is found in third place because it provides an exposure opposite

to the market. In our framework, this can be optimal only if the investor has a strong active

orientation.

Other risk measures can be useful, too. As examples, Table 3 shows the volatility, the loss

probability, and value-at-risk figures for our sample of products.

6 Conclusion

This paper starts from the observation that although transparency in the market for retail deriv-

atives is important, it cannot be assumed. For example, many private investors in structured

products were not aware of credit risk before Lehman Brothers went bankrupt. Detailed con-

tract specifications are always available to investors, but investment decisions are typically made

on the basis of limited information only. Standard practice is to explain the contract design,

illustrate the payoff diagrams, and specify some risk measures typically based on the value-at-

risk framework. Clearly, there is room for improvement. In particular, structured products

should be presented and analyzed as part of a diversified portfolio. Furthermore, a useful risk

and return assessment should be based on a market equilibrium analysis because characteristics

of return distributions such as skewness and kurtosis can be evaluated only when taking the

related risk premia into account. These requirements are typically not met in practice and are

not adequately considered in proposals published to date.
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−−−−− Figure 6 about here −−−−−

In this paper, we propose a risk and return survey for investors who use structured products in

order to actively manage their portfolios. Note that we consider only market risk. Additional

information on credit risk is, of course, required. Figure 6 illustrates the survey for a reverse

convertible. Our main propositions can be summarized as follows.

• A balanced risk and return survey should illustrate the product characteristics from dif-

ferent perspectives. Therefore, it will contain several information tools.

• Experimental studies show that aggregation of returns is not intuitive and investors are
often not able to translate a distribution of short-term returns into a distribution corre-

sponding to their longer investment horizon. As structured products are generally not

suitable for short-term trading, a horizon of 10 trading days as often used in banks’ risk

management does not seem to be a good choice. Risk and return should always be mea-

sured over the product’s lifetime.

• We propose estimating the return distribution by Monte Carlo simulation and illustrate
the result in three different ways: return histograms, bar charts of ordered returns, and an

illustration of quantile expected returns in a rolling dice analogy. All three presentation

modes could help investors avoid focusing only on seemingly attractive coupon payments.

• Risk and return have to be evaluated with respect to market equilibrium. We propose
specifying the risk-return combination on the security market line of the Leland (1999)

model.

• We propose a measure for the degree of active orientation of a portfolio that includes a
structured product. This allows active investors to better assess the disadvantage of losing

diversification when shifting the portfolio toward “positive alpha” instruments.

• Other risk measures such as value-at-risk and higher moments of the return distribution
(skewness, kurtosis) can be appended.

We derive our proposals from a list of requirements that is based on (1) studies of investment

behavior from the field of behavioral finance, (2) theoretical and empirical studies on structured

products and (3) portfolio theory. However, for more specific recommendations, evidence is

needed on how the proposed information tools would actually be used and interpreted by in-

vestors. For example, it is an open question how representation biases play out in this market

segment. Experimental studies can help clarify how the perceived attractiveness of structured

products depends on how the products’ characteristics are presented. Haisley et al. emphasize

this aspect for asset allocation decisions when they state that “[f]uture research should further

explore different graphical presentation formats” (2010, p. 20). The proposals made in this

paper could be a basis for such experiments.
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Appendix: Leland model

Assumptions

The modified CAPM proposed by Leland (1999) is based on the following assumptions:

1. Markets are frictionless and allow for continuous trading.

2. Uncertainty is modeled by a probability space (ΩF P) with state space Ω, filtration
{F 0 ≤  ≤ } and physical probability measure P Under this probability measure, the
price  of the market portfolio follows a geometric Brownian motion:

()

()
= + ()

where {()  ≥ 0} is a standard Brownian motion. Note that no assumption is made on
the return generating process of the risky assets that are contained in the market portfolio.

3. The risk free rate of return  (continuously compounded) is constant.

4. There exists a representative investor such that prices are determined as if every investor

had the same (representative) preferences. This assumption implies that in equilibrium,

the representative investor holds the market portfolio. Therefore, the market price of risk

 is equal to:

 =
− 




5. The representative investor exhibits constant relative risk aversion (CRRA), i.e. the utility

function is given by

() =

(
1−
1−    0  6= 1
ln()   = 1

where  is a risk aversion coefficient. It follows that marginal utility is given by 0() =
−.

General optimality condition

Due to the Black-Scholes setting of assumptions 1. to 3., the market is complete. Thus, each

payoff function of a European path-independent option with the market portfolio as underlying

asset can be replicated by following a self-financing trading strategy in the riskless bond and the

market portfolio. Formally, there exists a unique state price process {(  )} such that the price
of an asset with payoff  ( ) is given by  () =  [(  ) ( )],  ≤  , where  [·] is the
expectation under the physical measure based on the information set available at time . The

value (0 0) is equal to 1. We use () as shortform for (0 ) The expected value 0 [()] is

equal to the price of a riskless asset with a time  payout of 1 thus: 0 [()] = − In the
following we write  [·] without subscript  for  = 0
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Let  () be wealth at time  Given initial wealth  (0) the representative investor maximizes

expected utility:

max
 ( )

 [ ( ( ))] s.t.  (0) =  [( ) · ( )]  (2)

The solution of this optimization problem is well known. The investor chooses optimal wealth

 ∗( ) such that the marginal utility per unit of state price is constant (Ingersoll (1987), p.
189):

 =
0 ( ∗( ))

( )
 (3)

and initial wealth is fully invested:

 (0) =  [( ) · ∗( )]  (4)

The optimality condition (3) with budget constraint (4) characterizes the general solution of the

optimization problem. The next step is to insert a more specific expression for ( ) which is

valid under geometric Brownian motion (Black-Scholes model).

State price density and optimality condition in the Black-Scholes setting

In the Black-Scholes setting, the state price density is known to be:

() = −
Q
P = −−

1
2
2−  (5)

where QP is the Radon-Nikodym derivative with the unique equivalent martingale measure

Q. According to geometric Brownian motion, we have:

()

(0)
= (−

1
2
2)+ 

and thus: µ
()

(0)

¶− 


= −

 (− 1

2
2)−  (6)

Using (6), the state price density (5) can be rewritten as:

() =  · ()−

  (7)

where  is the constant  = −−
1
2
2+ 

 (− 1
2
2)(0)


 . Thus, we can finally reformulate (3)

as:

 =
0 ( ∗( ))

( )
− 


(8)
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with  an appropriately scaled constant. Using assumption 5. (CRRA utility), we obtain:

 =
 ∗( )−

( )
− 


⇐⇒ ∗( ) = −
1
( )

1


  (9)

The optimal payoff profile according to (9) can be interpreted as the payoff of a European

power call option on the market portfolio with zero strike (Bernard et al. (2010), p. 13). In

equilibrium, the market portfolio itself must be optimal, which means that the representative

investor exhibits risk aversion of degree ∗:24

1

∗



= 1⇐⇒ ∗ =




 (10)

Inserting (10) into (9), we obtain:

 ∗( ) ∝ ( )

Thus, terminal wealth is proportional to terminal market value, which means that the optimal

portfolio of the representative investor is indeed equal to the market portfolio.

Implications for asset pricing

The last step consists of deriving the implications of this result for asset pricing. For any asset

 with payoff ( ) we have:

(0) =  [( ) ·( )]

=  [( )] · [( )] +  [( )( )]

= − [( )] +  [( )( )] 

In returns notation, this corresponds to:

 [1 +] ≡  [( )]

(0)
= (1−  [( ) ]) 

 

Thus:

 []− ( − 1) = − [( ) ] 
 

Rewriting (7) as () = (1 + )
− 
  where  is a constant and 1 +  is defined as

()(0), we obtain:

 []− ( − 1) = 
h
−(1 +)

− 
  

i
 (11)

24 This was already shown by Merton (1969).
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This equation also holds for the market portfolio:

 [ ]− ( − 1) = 
h
−(1 +)

− 
  

i
 (12)

Thus, combining (11) with (12) and defining  =  − 1 we obtain the modified security
market line of the Leland model:

 [] =  + ( [ ]− )


h
−(1 +)

− 
  

i


h
−(1 +)

− 
  

i
=  + ( [ ]− )
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The graphs show the
payoff atmaturity (y‐axis) 
with respect to the price
of the underlying stock at
maturity (x‐axis). The 
investment amount is
standardized to 1. The 
parameters aregiven in 
Table 1.

Figure 1: Payoff functions. This form of presentation was inspired by and is similar to the

SVSP Swiss Derivative Map. However, we emphasize that the SVSP Swiss Derivative Map is

more elaborate and contains further information. The parameters of our exemplary products

are given in Table 1.
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Cap. Protect. with Knock‐outCapital Protect. with CapCapital Protection Reverse Convertible

TwinWin CertificateBonus CertificateBarrier Reverse Convertible Bull Tracker

PutCallBear Tracker The graphs illustrate the
probability density functions
(y‐axis) of (1+rate of return) 
(x‐axis) over the 1 year
product lifetime. The 
parameters aregiven in 
Table 1. Somebars in the
histogramsare truncated. In 
these cases, the y‐value is
shownnext to the bar.

Figure 2: Return distributions. The probability density functions of returns from investing in

a structured product are shown as return histograms (red bars). For means of comparison, the

log-normal density of returns of the underlying asset is included (black lines).
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Cap. Protect. with Knock‐outCapital Protect. with CapCapital Protection Reverse Convertible

TwinWin CertificateBonus CertificateBarrier Reverse Convertible Bull Tracker

PutCallBear Tracker The graphs illustrate 50 
returnswith equal
probability from investing in 
the corresponding product. 
The returns are ordered by
magnitude. The parameters
underyling the calculations
aregiven in Table 1. 
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Figure 3: Ordered returns with equal probability. The charts are based on a discretization

of the return distribution into 50 equal segments so that each segment represents a probability

of 2%. We compute the expected return for each segment and plot these expected returns in

ascending order.
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Cap. Protect. with Knock‐outCapital Protect. with CapCapital Protection Reverse Convertible

TwinWin CertificateBonus CertificateBarrier Reverse Convertible Bull Tracker

CallBear Tracker
The illustrations show the 
expected returns within 
1/6‐return quantiles.  
Returns are measured 
over the 1 year product 
lifetime. The product 
parameters are given in 
Table 1. 
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Figure 4: Return dices. We divide the range of possible returns into 16-quantiles and compute

the expected returns conditional on returns falling within the particular quantile. These expected

quantile returns are ranked in ascending order and assigned to the numbers on the dice.
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Figure 6: Risk return survey for a reverse convertible. Important note: This map only covers

market risk. Credit risk has to be analyzed separately.
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General parameters:

Nominal value:  = 1

Initial price of the underlying stock: 0 = 1

Instantaneous rate of return of the underlying stock:  = 10%

Stock return volatility:  = 30%

Risk-free rate of return (continuously compounded):  = 2%

Time to maturity:  = 1

Strike price:  = 1

Product specific parameters:

Uncapped capital protection (1100) Protection level 90% of nominal

Participation rate 60%

Capped capital protection (1120) Protection level 100% of nominal

Cap 1.2 (maximal payout)

Participation rate 60% in between

Capital protection with knock-out (1130) Protection level 100% of nominal

Knock-out (stock price level) 1.3333

Participation rate 60%

Reverse convertible (1220) Coupon 10%

Barrier reverse convertible (1230) Barrier 0.75

Bonus certificate (1320) Barrier 0.75

Twin-win certificate (1340) Barrier 0.8

Table 1: Parameters of products used for illustration. Figures 1 to 6 and Tables 2 and 3 are

based on these parameters.
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5% 10% 25% 50% 75% 100%

Capital Protection 0.08% 0.16% 0.38% 0.72% 1.04% 1.34%

Capital Protection with Cap 0.14% 0.27% 0.66% 1.28% 1.88% 2.49%

Capital Protection with Knock-out 0.18% 0.37% 0.90% 1.78% 2.67% 3.61%

Reverse Convertible 0.07% 0.15% 0.38% 0.78% 1.21% 1.69%

Barrier Reverse Convertible 0.11% 0.22% 0.55% 1.12% 1.72% 2.37%

Bonus Certificate 0.01% 0.03% 0.07% 0.13% 0.19% 0.25%

Twin Win Certificate 0.07% 0.06% 0.14% 0.27% 0.39% 0.50%

Bull Tracker 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

Bear Tracker 0.82% 1.62% 3.95% 7.84% NA NA

Call 3.00% 5.84% 13.75% 26.53% 41.70% 98.93%

Put 6.62% 12.05% 24.84% 41.67% 58.46% 99.95%

Table 2: Measure of degree of active orientation. From the perspective of passive investors

without private information, an active portfolio looks suboptimal. As it deviates from the

optimal portfolio structure, it implies a utility loss which is higher the more aggressive the

active portfolio is. We translate this utility loss into an equivalent loss of a proportion of initial

wealth. The first row specifies the weight of the structured product in the overall portfolio. The

remaining amount is invested into the market index.
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Volatility Loss prob. 1%.VaR 5%-VaR 10%-VaR

Capital Protection 17.71% 49.14% 9.15% 9.15% 9.15%

Capital Protection with Cap 8.10% 50.25% 3.50% 3.50% 3.50%

Capital Protection with Knock-out 5.45% 66.01% 0.72% 0.72% 0.72%

Reverse Convertible 12.85% 25.73% 35.68% 23.33% 15.68%

Barrier Reverse Convertible 11.80% 12.68% 38.31% 26.47% 19.13%

Bonus Certificate 30.45% 48.02% 49.70% 38.21% 31.08%

Twin Win Certificate 30.31% 31.76% 50.36% 39.02% 31.99%

Bull Tracker 33.92% 42.48% 47.62% 35.65% 28.22%

Bear Tracker 33.92% 51.98% 108.98% 70.08% 52.07%

Call 206.33% 58.56% 100.00% 100.00% 100.00%

Put 114.96% 71.49% 100.00% 100.00% 100.00%

Table 3: Further risk measures: annual volatility, loss probability, and value at risk over a one

year horizon for different pre-specified probabilities.


