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Abstract

Background: The oxidative DNA demethylase ALKBH3 targets single-stranded DNA (ssDNA) in order to perform
DNA alkylation damage repair. ALKBH3 becomes upregulated during tumorigenesis and is necessary for proliferation.
However, the underlying molecular mechanism remains to be understood.

Methods: To further elucidate the function of ALKBH3 in cancer, we performed ChIP-seq to investigate the genomic
binding pattern of endogenous ALKBH3 in PC3 prostate cancer cells coupled with microarray experiments to examine
the expression effects of ALKBH3 depletion.

Results: We demonstrate that ALKBH3 binds to transcription associated locations, such as places of promoter-proximal
paused RNA polymerase II and enhancers. Strikingly, ALKBH3 strongly binds to the transcription initiation sites of a small
number of highly active gene promoters. These promoters are characterized by high levels of transcriptional regulators,
including transcription factors, the Mediator complex, cohesin, histone modifiers, and active histone marks. Gene
expression analysis showed that ALKBH3 does not directly influence the transcription of its target genes, but its
depletion induces an upregulation of ALKBH3 non-bound inflammatory genes.

Conclusions: The genomic binding pattern of ALKBH3 revealed a putative novel hyperactive promoter type.
Further, we propose that ALKBH3 is an intrinsic DNA repair protein that suppresses transcription associated DNA
damage at highly expressed genes and thereby plays a role to maintain genomic integrity in ALKBH3-overexpressing
cancer cells. These results raise the possibility that ALKBH3 may be a potential target for inhibiting cancer progression.
Background
Genomic DNA is continuously subjected to various
harmful insults, such as UV light, ionizing radiation, or
nucleic-acid modifying compounds, resulting in thou-
sands of DNA alterations in each cell every day [1]. Such
lesions can lead to DNA damage, which in turn favors
mutagenesis, carcinogenesis, inflammation, and aging
[2–5]. Accordingly, cells have multiple mechanisms to
reverse damaging DNA modifications. In particular,
DNA alkylation, a process of methylating specific nucleic
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acids, often requires repair to maintain genomic integ-
rity. Alkylating agents are found ubiquitously in the en-
vironment, but DNA can also be alkylated as a natural
by-product of cellular metabolism [6, 7]. For example,
the universal methyl donor S-adenosylmethionine non-
enzymatically methylates DNA [8, 9]. Alkylating agents
preferentially attack single-stranded DNA (ssDNA) in
the genome due to its higher accessibility [10–13], and
some DNA modifications such as 1-methyladenine
(1-meA) and 3-methylcytosine (3-meC) are primarily
generated in ssDNA, because these positions are
shielded in double-stranded DNA (dsDNA) [6].
DNA alkylation can be removed by base-excision

repair (BER), direct reversal by methylguanine meth-
yltransferase (MGMT), and dealkylation via the AlkB
family [6, 7]. The AlkB enzymes belong to a large
family of non-heme Fe(II) and 2-oxoglutarate-dependent
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dioxygenases, which catalyze numerous biological reac-
tions, such as proline hydroxylation and histone demeth-
ylation [14]. AlkB was original discovered in E. coli,
where it demethylates 1-methyladenine (1meA) and 3-
methylcytosine (3meC) by oxidation of the N-linked
methyl moiety. This reaction creates an unstable
methyl-iminium intermediate that spontaneously hy-
drolyzes into formaldehyde and the non-alkylated base
[15–17]. In mammalians, at least nine ALKB family
members are known (ALKBH1-8 and FTO). DNA damage
dealkylation reactions are mainly catalyzed by ALKBH2
and ALKBH3 [16]. Notably, ALKBH2 preferentially
demethylates dsDNA while ALKBH3 demethylates
ssDNA and RNA substrates, modified by 3-meC or 1-meA
[16, 18, 19]. Since these modifications are predominantly
generated in ssDNA and RNA, it has been proposed that
the ALKBH3 repair function could be linked to transcrip-
tion [6, 20]. Incomplete removal of DNA alkylation leads
to DNA damage, resulting in cell cycle arrest, inflammation
and apoptosis [3–5, 21]. Induction of DNA alkylation by
chemotherapeutic agents is a common strategy in cancer
treatment to prevent cancer cells from dividing and prolif-
erating [22]. Enzymes that facilitate DNA alkylation dam-
age repair, such as ALKBH2 and ALKBH3, can contribute
to resistance to this treatment and insights into their mo-
lecular function could provide the basis for developing
more efficient cancer therapies [23].
Recently, we described the cooperativity of ALKBH3

and the ASCC3 DNA helicase complex to promote
DNA alkylation damage repair in various cancer cells.
ALKBH3 knockdown causes elevated levels of 3-meC ac-
companied by increased DNA damage response (DDR)
and reduced cell proliferation [24]. However, the mecha-
nisms of in vivo genomic targeting of ALKBH3 are not yet
fully understood.
Herein, using chromatin immunoprecipitation experi-

ments followed by massively parallel sequencing analysis
(ChIP-seq) we find that in PC3 prostate cancer cells
ALKBH3 binding is enriched at transcription associated
genomic loci, where ssDNA is accessible. Specifically, we
find ALKBH3 bound at active gene promoters, en-
hancers, and regions with putative quadruplex DNA.
Unexpectedly, ALKBH3 binds strongly to the initiation
sites of some particularly highly expressed gene pro-
moters. Interestingly, these promoters are bound by an
unusually large number of transcriptional regulators, in-
dicating a highly regulated ‘hyperactive’ promoter class.
However, we find that loss of ALKBH3 does not directly
affect expression of ALKBH3 occupied genes, suggesting
a transcription unrelated function of ALKBH3. Instead,
upon ALKBH3 knockdown we observe an increased ex-
pression of genes involved in inflammatory pathways,
which could be a downstream effect of elevated DNA
damage after ALKBH3 depletion [24, 25]. The genomic
localization of ALKBH3 at transcription-related loci
raises the possibility that ALKBH3 could have a role in
suppressing transcription-associated DNA damage to
preserve the genomic integrity.

Methods
Cell culture and viral transduction
U2OS, 293 T, NCI-H23, and PC3 cells were obtained
from the American Type Culture Collection (ATCC)
and maintained as previously described [24]. ShRNAs
constructs, preparation of viruses and cell transduction
have been described previously [24]. Cells infected with
lentiviral shRNAs were selected after infection with
puromycin (1 μg/mL) for at least 48 h.

Antibodies
Rabbit anti-ALKBH3 antibodies were obtained from
Millipore (Catalog #09-882).

Immunofluorescence (IF)
U2OS and PC3 cells were used for IF and were main-
tained as described previously [24]. The cells were in-
fected with the indicated lentiviral shRNAs and plated
onto coverslips. Cells were then fixed with PBS (ph 7.4)
containing 3.2 % paraform for 20 min, washed exten-
sively with IF wash buffer (1X PBS containing 0.5 % NP-
40 and 0.02 % NaN3), then incubated with blocking
buffer (IF wash buffer with 10 % fetal bovine serum),
and finally stained with anti-rabbit-ALKBH3 (Millipore)
diluted in blocking buffer. Secondary antibodies (goat
anti-rabbit Alexa Fluor 488) were from Millipore.

RNAi experiments, microarray analysis, and qRT-PCR
Lentiviral shRNA against ALKBH3, ALKBH2, and GFP
as control were used as described before [24]. Briefly,
lentiviral production was carried out in 293 T cells and
target cells were infected for 48 h followed by selection
with puromycin for 48 h or 96 h. RNA extracted from
ALKBH3 knockdown and control cells were sent to
Transcriptome Analysis Laboratory (TAL, University
Medical Center, Göttingen) for expression analysis.
Microarrays were done using the ‘Low RNA Input linear
Amplification Kit Plus, One Color’ protocol (Agilent
Technologies, Cat. No.: 5188–5339) and the Agilent
RNA Spike-In Kit for One color (Agilent Technologies,
Cat. No.: 5188–5282) following the manufacturer’s
standard protocol. Global gene expression analysis was
applied using the Human Gene Expression 4x44K v2
Microarray Kit (Agilent Technologies, Cat. No.: G4845A).
200 ng of total RNA from each sample from PC3 cells
were used as a starting material to prepare cDNA. The hy-
bridizations were performed for 17 h at 10 rpm and 65 °C
in the Hybridization Oven (Agilent). Washing and staining
of the arrays were done according to the manufacturer’s
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recommendation. Cy3 intensities were detected by one-
color scanning using an Agilent DNA microarray scanner
(G2505B). Intensity data were extracted using Agilent’s
Feature Extraction (FE) software (version 10.5.3.1) includ-
ing a quality control based on internal controls using
Agilent’s protocol GE1_107_Sep09. A subset of genes from
microarray results was verified by qRT-PCR (Fig. 3d). For
RT-PCR, cells were infected with lentivirus shRNA against
ALKBH3 or GFP and selected with puromycin. qRT-PCR
was performed using the One-Step Sybr No Rox Kit from
Bioline on a CFX384 Real-Time System (Bio-Rad). Primers
are shown in Table S1 (Additional file 1).

ChIP and ChIP-Seq
Chromatin was prepared from PC3 cells as previously
described [26], except that it was sonicated to 200 base
pairs (bp). Chromatin was incubated with total of 6 μg
specific antibodies against ALKBH3 (Millipore) or IgG
(Abcam) overnight at 4 °C and then mixed with 50 %
slurry protein A beads (Millipore) for 1 h at 4 °C. The
beads were washed extensively, de-cross-linked at 65 °C,
and treated with RNase A and proteinase K. Samples
were next subjected to phenol-chloroform extraction
and precipitated with ice-cold ethanol. Libraries were con-
structed of 50 ng of ChIP’d DNA following Illumina’s®
protocol and sequenced using an Illumina Genome
Analyzer before being further analyzed bioinformatically.
Analysis of DNA via qRT-PCR was performed as described
above, with gene-specific primers (Additional file 1:
Table S2).

Bioinformatic analysis
Microarrays were normalized and analyzed using the
limma package for Bioconductor [27, 28]. ChIP-Seq data
(Additional file 1: Table S3) were mapped to human gen-
ome hg19 using bowtie version 1.0 [29], allowing one
mismatch (n = 1) and maximal three possible alignments
(m = 3). All subsequent analyses of ChIP-Seq data were
performed using the Cistrome platform [30, 31] (Galaxy
Code 2014.5.5). If possible, data were also directly
uploaded into Cistrome from the GEO database. For
Promoter definition, RefSeq genes were downloaded
from the UCSC Genome Browser. After removal of du-
plicates with identical transcription start site, 31,296
promoters, including genes with alternative transcription
start sites, were used for analysis. Promoters with weakly
bound ALKBH3 were identified using the k-means clus-
tering function within the heatmap feature in Cistrome.
Enhancers were defined as overlapping peaks (called by
MACS with P value 1e-05) of H3K4me1 and H3K27ac
(from LNCaP cells), which do not overlap with pro-
moters (−1,000/+1,000). ETS transcription factor bind-
ings sites were called using MACS with a cutoff P value
of 1e-05. Promoters overlapping with an ETS binding
site were considered as ETS factor bound promoters.
Predicted G4 DNA sites were downloaded from [32] and
converted to hg19. Only sites that are not at promoter
or enhancers sites were used for analysis. CpG islands
and Transcription factor binding sites (TfbsClusteredV3)
were downloaded from the UCSC table browser. A pro-
moter transcription factor binding event has been de-
fined as an overlap of a clustered transcription factor
binding site with a promoter site. For TATA-box
analysis, conserved transcription factor binding sites
(tfbsConsSites) were downloaded from UCSC browser.
Conserved TBP bindings sites (V$TBP_01) overlapping
with promoter sites were considered as TATA-Box. The
counting of the ChIP-Seq tags at each promoter was
done using a custom R script for Bioconductor.

Accession numbers
ChIP-Seq and Microarray data are available at the GEO
repository with the accession numbers GSE57568 and
GSE57591.

Statistical analyses
The significance of the data was either calculated by
Cistrome, via unpaired Student’s t-tests, or has been
evaluated using hypergeometric probability tests.

Results
ALKBH3 occupies ubiquitously expressed promoters in
PC3 cells
Our previous work showed that ALKBH3 depletion in
PC3 prostate cancer cells increases global 3-meC levels
and induces H2A.X phosphorylation as well as 53BP1
foci formation [24], demonstrating the occurrence of
systemic DNA damage. To gain further genome-wide
insights into the DNA repair function of ALKBH3, we
performed ChIP-seq experiments in PC3 cells using
specific anti-ALKBH3 antibodies. First, we performed
Model-based Analysis for ChIP-Seq (MACS) (cutoff
P value: 1e-04) within the Cistrome platform [30, 31] to
identify 423 high confidence ALKBH3 binding sites.
ALKBH3 predominantly occupies promoters and re-
gions downstream of the transcription start site (TSS)
(5′-UTR), but is excluded from introns and other gen-
omic regions (Fig. 1a). Out of the 423 peaks, 354 are
present at known promoters. Further analysis using
Cistrome revealed that ALKBH3 is weakly bound but
enriched at more than 4,000 additional promoters. We
segregated ALKBH3 bound promoters into two groups
(I and II) depending on the ALKBH3 binding strength
(Figs. 1b, 4a). At these promoters ALKBH3 localizes
around the TSS (Fig. 1c). We confirmed the specificity
of the antibody via immunofluorescence and ChIP
experiments in ALKBH3 knockdown cells (Fig. 1d-f, and
Additional file 1: Figure S1a and b). Interestingly, the



A

1.1% 54.6% 9.2e-317Promoters
5’-UTR 0.4%

Genome ALKBH3 p-value

23.4% 3.6e-176
Introns 42.4% 7.8% 2.6e-45

B

-1500 TSS 1500

Genome ALKBH3
Promoters

Others 

5’-UTR
Introns

n 
=

 4
71

5

ALKBH3
Group I

Group II

DAPI ALKBH3

sh
R

N
A

 C
on

tr
ol

sh
R

N
A

 A
LK

B
H

3 
#1

C

Actin

ALKBH3

sh
R

N
A

 C
on

tr
ol

sh
R

N
A

 A
LK

B
H

3 
#1

D

0.5

1.0

1.5

2.0

A
ve

ra
ge

 P
ro

fil
e

Relative Distance from the TSS (bp)

−1500 1500TSS

ALKBH3
IgG

ALKBH3

E
21 _

1 _

ALKBH3

1 2

0

4

8

12

ALKBH3
Upstream (1)

ALKBH3
Promoter (2)

CpG Islands

PPIP5K2

39 _

GIN1

1 _

0

10

20

30

0

2

4

6

8

P
er

ce
nt

 In
pu

t

PRRG2

31 _

1 _

NOSIP

* * *

GIN1/PPIP5K2
Promoter

NOSIP
Promoter

F

sh
R

N
A

 C
on

tr
ol

 Ig
G

-A
b

sh
R

N
A

 C
on

tr
ol

 A
LK

B
H

3-
A

b 

sh
R

N
A

 A
LK

B
H

3 
#1

 Ig
G

-A
b 

sh
R

N
A

 A
LK

B
H

3 
#1

 A
LK

B
H

3-
A

b 
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ALKBH3 gene promoter is bound by the ALKBH3 pro-
tein (Fig. 1f, left panel) and belongs to the promoter
group I with strong ALKBH3 enrichment.
In order to examine the general properties of ALKBH3

bound promoters, we compared ALKBH3 binding with
publicly available datasets for histone marks, bound pro-
teins, and other features (Additional file 1: Table S3). To
examine ALKBH3’s role in cancer we preferentially used
data from prostate (for example, LNCaP) or other hu-
man cancer cell lines. ALKBH3 bound promoters have
elevated gene expression (Fig. 2a), are enriched for CpG
islands (Fig. 2b), are bound by multiple transcription fac-
tors (TFs) (Fig. 2c), and are enriched for the active his-
tone mark H3K4me3 (Fig. 2e) and RNA Polymerase II
(Fig. 2f ). In addition, ALKBH3 bound promoters are
depleted for the TATA-Box and have highly ordered
nucleosome positioning (Fig. 2d and g). These prop-
erties are typically found at ubiquitously expressed,
house-keeping promoters [33] and gene ontology analysis
using DAVID [34] confirmed a strong enrichment of
genes involved in general cellular processes, such as
translation, RNA processing, and cell metabolism
(Fig. 2h). A motif search identified the ETS transcription
factor binding motif to be most significantly enriched
(Fig. 2i), suggesting that genes occupied by ALKBH3
are possibly activated by one or several ETS factors
(Additional file 1: Figure S2), which are often over-
expressed in prostate cancer [35, 36]. However, other TFs
binding motifs are highly enriched as well (Fig. 2i), sup-
porting the general conclusion that ALKBH3 bound pro-
moters are strongly regulated and transcriptionally active.

Depletion of ALKBH3 induces an inflammatory response
Previous work for ALKBH1, ALKBH2, and ALKBH4
suggested that oxidative DNA demethylases could be
directly involved in gene regulation [37–39]. To address
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if ALKBH3 affects target gene transcription, we knocked
down ALKBH3 and extracted mRNA for microarray
analysis at two different time points after selection (48 h
and 96 h). We consistently identified 150 upregulated
and 58 downregulated genes (Fig. 3a). However, unlike
ALKBH1 [39] or ALKBH2 [38] depletion, genes bound
by ALKBH3 did not show any significant expression
level changes upon ALKBH3 knockdown (Fig. 3b).
To gain deeper insight into which genes are affected

by ALKBH3 knockdown, we performed gene ontology
(GO) analysis of the upregulated genes and found that
many genes are involved in the innate/inflammatory im-
mune response (Fig. 3a, c, and e). We confirmed, by
qRT-PCR, the specific upregulation of several inflamma-
tory genes after ALKBH3 but not ALKBH2 knockdown
(Fig. 3d). Interferon stimulated genes (ISGs) are stron-
gest induced at 48 h, but their expression declines at
96 h after ALKBH3 knockdown, indicating a negative
feedback loop could exist (Fig. 3e).
Since most inflammatory genes are not directly bound

by ALKBH3, we speculate that the inflammatory re-
sponse may be an indirect consequence of DNA damage
accumulation in the ALKBH3 deficient cells [24],
because DNA damage triggers the activation of in-
flammatory and other pathways [3–5, 25, 40]. Inter-
estingly, a similar phenomenon has been described in
HeLa cells for the knockdown of the ALKBH3 interacting
[24] ASCC3 DNA helicase [41]. ALKBH3 knockdown
also causes an upregulation of inflammatory genes in the
non-small cell lung adenocarcinoma cell line NCI-H23
(Additional file 1: Figure S1c), suggesting that ablation of
ALKBH3-dependent DNA repair mechanisms induces
inflammatory pathways in multiple cancer cell lines.
Together these data suggest that ALKBH3 does not

function to regulate transcriptional activity. Instead, the
induction of inflammatory genes supports a potential role
of ALKBH3 at its genomic targets to remove DNA alkyl-
ation adducts, such as 3-meC or 1-meA [16, 18, 19, 24], in
order to prevent DNA damage.

ALKBH3 occupies places with ssDNA
Next we wished to determine if ALKBH3 was bound to
specific DNA regions. Previous work showed that for
DNA demethylation ALKBH3 prefers to demethylate
ssDNA over dsDNA substrates [16, 18, 19]. This raises
the possibility that for its DNA repair function, ALKBH3
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is recruited to genomic places with ssDNA. At pro-
moters, ssDNA is created during transcription initiation
and at paused RNA polymerases II complexes. We asked
whether ALKBH3 occupancy could be associated with
those features. The ALKBH3 binding profile of group I
promoters is characterized by a very strong enrichment
slightly upstream of the transcription start site, while the
group II promoter profile peaks mainly downstream of
the TSS and shows only a moderate ALKBH3 binding
level (Fig. 4a). Since the two distinct positions and bind-
ing strengths might reflect different ALKBH3 targets, we
analyzed these two groups further separately. Interest-
ingly, group I promoters have higher transcriptional ac-
tivity compared to group II promoters (Additional file 1:
Figure S3e and f).
The group II promoter profile is similar to the RNA

polymerase II profile - both peak at +60 bp and possess
a ‘shoulder’ upstream of the transcription start site
(Fig. 4a and b). This correlation suggests that ALKBH3
recruitment could be dependent on the formation of
single-stranded transcription bubbles at places with
paused RNA polymerase II. To investigate this possibil-
ity, we divided all promoters (excluding group I pro-
moters) into five different classes according their
transcription levels. RNA polymerase II occupancy and
ALKBH3 binding showed an almost linear correlation
(Fig. 4b). These findings are consistent with the idea that
ALKBH3 might get recruited to the transcription bubble
of paused RNA polymerase II, analogous to what has
been hypothesized before for AID (Activation Induced
Cytidine Deaminase) [42].
Interestingly, the ALKBH3 group I promoter profile

does not overlap significantly with RNA polymerase II.
Instead, the ALKBH3 binding profile culminates slightly
upstream of the TSS, at the site of transcription initi-
ation (Fig. 4a). We speculated that at group I promoters
ALKBH3 might target the single stranded DNA bubble
established upon transcription initiation. DNA unwinding
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and formation of ssDNA during initiation depends on the
DNA helicase XPB [43]. Investigation of published ChIP-
Seq data for XPB from HT1080 cells [44] revealed that
XPB also has stronger binding at group I relative to group
II promoters. Furthermore, XPB is enriched upstream of
the TSS at group I but not at group II promoters, similar
to ALKBH3 (Fig. 4c). These observations imply a stronger
activity of XPB at the initiation site of group I promoters,
which may lead to an elevated occurrence of ssDNA. We
hypothesize that this increased ssDNA level might be the
basis for the increased ALKBH3 recruitment. Notably,
HT1080 cells are fibrosarcoma cells, but despite the
different origin of PC3 and HT1080 cells, we still see
this correlation of ALKBH3 and XPB binding. We
reasoned that this promoter type may be present in a
broad range of cell types, and we therefore analyzed
these promoters bioinformatically using additional datasets
(see below).
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Single-stranded DNA occurs not only at promoters,
but also at other places in the genome. During transcrip-
tion elongation, the transcription bubble moves along
the gene. Interestingly, highly expressed genes, which
have elevated transcription elongation, have elevated
ALKBH3 levels in the gene body (Additional file 1:
Figure S4a). We also observed a mild ALKBH3 enrich-
ment at enhancers where RNA polymerase II transcrip-
tion has been reported [45] (Additional file 1: Figure S4b
and d). Recently the role of G-quadruplex DNA (G4
DNA) during genome-wide regulatory processes was de-
scribed [46]. G4 DNA contains an accumulation of gua-
nines that leads to the formation of a stable DNA
quadruplex and the occurrence of ssDNA, in particular
on the reverse strand [46]. We found ALKBH3 is mildly
enriched at places with potential G4 DNA (Additional
file 1: Figure S4c and d).
Together these findings support the hypothesis that

ALKBH3 is recruited to places in the genome with ac-
cessible ssDNA (summarized in Fig. 4d), in agreement
with ALKBH3’s repair function at ssDNA [6, 16, 18, 19].

Group I promoters are a putative novel hyperactive
promoter class
The binding of ALKBH3 at the transcription initiation
site of group I promoters (Fig. 4a) prompted us to exam-
ine this promoter group in more detail. Interestingly,
comparison of group I and group II promoters revealed
differences in TF binding frequency (Additional file 1:
Figure S3h). We found that group II promoters have on
average 75 TF binding events while group I promoters
have on average 112 TF binding events (50 % more).
ETS transcription factors display a more pronounced
difference (80 % more) (Additional file 1: Figure S2c).
This indicates a clustering of transcription factors at
these promoters, which is commonly associated with
cohesin, the Mediator complex and other features [47, 48].
To further characterize the group I promoters, we
performed a comprehensive analysis of numerous tran-
scription associated features (Fig. 5a, Additional file 1:
Figure S5). A large proportion of the investigated features
are enriched at group I relative to group II promoters, in-
dicating non-typical regulation (Fig. 5a). TAF1, a major
subunit of TFIID, is one the most enriched factor (50 %
more). In contrast, TBP (TATA-Box binding protein), an-
other subunit of TFIID, is not significantly enriched, sug-
gesting that at those promoters a TBP-independent
recruitment of TFIID may occur more often than on other
promoters [49]. Further, the helicase CHD7, but not
CHD1, CHD2, and CHD4, is strongly enriched (30 %
more), raising the possibility that CHD7 could play a role
in unwinding the DNA, in addition to XPB. Most active
histone marks are mildly enriched, while the repressive
histone mark H3K27me3 and its methyltransferase EZH2
are depleted. Interestingly, the histone modification with
the strongest increase at group I promoters is H3K122
acetylation (40 % more), which has been demonstrated to
enhance nucleosome eviction (Fig. 5a and b) [50]. Since
H3K122 acetylation is mediated by the histone acetyl-
transferase p300, and we also found a significant increase
of p300, we speculate that acetylation of H3K122 by p300
and subsequent histone eviction could be of particular im-
portance at these promoters [50]. This idea is further sup-
ported by a reduced nucleosome occupancy and increased
DNase I hypersensitivity at the initiation site of group I
promoters (Additional file 1: Figure S3c and d). In
addition to histone acetyltransferases, enzymes that regu-
late histone methylation, such as KMT2D (deposits
H3K4me3) and PHF8 (removes H3K9me1/2, H3K27me2,
and H4K20me1) are enriched as well (Fig. 5a and b).
Taken together, these data suggest that numerous acti-

vating factors are highly enriched at group I promoters,
indicating a massive regulation, which consequently
leads to higher transcriptional activity (‘hyperactive’)
(Fig. 5c and d; Additional file 1: Figure S3e and f). A list
of genes with this promoter type in PC3 cells is pre-
sented in Table S4 (Additional file 1). The presence of
ALKBH3 at some of those gene promoters was con-
firmed in NCI-H23 lung cancer cells (Additional file 1:
Figure S1d), suggesting that the genomic binding pattern
of ALKBH3 as well as the occurrence of hyperactive
promoters is similar in ALKBH3 over-expressing cancer
cells.

Discussion
Previous work suggested a pivotal role of ALKBH3 in
multiple cancer types, such as prostate [24, 51], pancre-
atic [52], urothelial [53], non-small-cell lung [54], papil-
lary thyroid [55], and brain [56] cancer. However, the
cellular role of ALKBH3 is not yet fully understood. In
order to gain further insights into the function of
ALKBH3 particular in cancer, we applied genome wide
approaches using PC3 prostate cancer cells as a model.
We initially performed genome localization studies to

identify genomic regions bound by ALKBH3. We found
that ALKBH3 preferentially occupies locations where
ssDNA is occurring, such as promoters, enhancers, and
G4 DNA (Fig. 4). This finding suggests that ALKBH3 is
directed to ssDNA regions. In the future it will be excit-
ing to determine whether this correlation is reflective of
a regulated process and what the precise mechanism for
ALKBH3 recruitment could be. Does this recruitment
depend on ssDNA formation?
ALKBH3 was most enriched at the initiation site of a

small number of highly expressed genes (Fig. 4a). Fur-
ther investigation of these promoters led to the hypoth-
esis that they are a putative novel ‘hyperactive’ subgroup
of ubiquitously expressed gene promoters (Fig. 5).
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Characterization of the ALKBH3 bound promoters
was carried out using publicly available data from differ-
ent research groups and different cell types. Despite use
of this relatively heterogeneous dataset, we were still
able to detect a correlation between strong ALKBH3
binding at group I promoters and enrichment of factors
involved in gene activation. This study highlights how
publicly available datasets can be utilized to develop
novel hypotheses, while creating these data ab initio
would neither be timely nor financially feasible.
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Since we see this correlation of highest ALKBH3 bind-
ing with enriched binding of other factors across
multiple cancer cell types we conclude that these hyper-
active promoters exist in a relatively cell type independ-
ent manner. However, we cannot exclude that a
transition between group I and group II promoters can
occur and that a group II promoter might get promoted
to a hyperactive promoter, and vice versa, once the level
of activating factors at the promoter exceeds or falls
below a certain threshold, respectively. Since we hardly
see promoters where the ALKBH3 binding is in an inter-
mediate state between group I and group II promoters,
we hypothesize that these transitions – if they take
place – are rare. It also remains to be determined
whether these hyperactive promoters are restricted to
highly proliferative cancer cells or if they occur in all
cell types.
ALKBH3 binding to group I promoters is about eight-

fold stronger than to group II promoters. We
hypothesize that an elevated formation or an increased
accessibility of ssDNA at the initiation site of group I
promoters is the source for the increased ALKBH3 bind-
ing (Fig. 4d, left panel). We speculate that an enhanced
presence of DNA helicases, such as the TFIIH heli-
cases XPB and XPD, CHD7, or the ALKBH3 interact-
ing ASCC3 helicase could lead to increased exposed
ssDNA and therefore facilitate ALKBH3 recruitment
[24, 57, 58]. The formation of ssDNA could also rely
on bending of DNA upon binding of transcription fac-
tors, such as ETS factors and YY1 [59, 60]. It is also
possible that group I promoters do not have increased
accessible ssDNA and that the recruitment of ALKBH3 is
Normal cell
Highly proliferative cell

with no DNA damage control

Transcription asso
DNA Damag

w

AL

Fig. 6 Model of potential role of ALKBH3 in cancer. A normal cell might al
upregulation of ETS transcription factors [36] (Additional file 1: Figure S2b))
increased transcription level elevates the global amount of accessible ssDN
to accumulation of DNA damage and apoptosis. After upregulation of ALK
(Additional file 1: Figure S2d) and its potential transition to a hyperactive p
control and the cells can continuously sustain a high proliferation rate
facilitated by some unknown mechanism that does not de-
pend on ssDNA.
We performed microarray analysis to elucidate

whether ALKBH3 affects transcription of its target genes
(Fig. 3). We observed no significant changes of the tran-
scription of the ALKBH3 bound genes, suggesting that
ALKBH3 binding does not directly regulate transcrip-
tion. However, since ALKBH3 bound genes are highly
expressed, subtle changes caused by ALKBH3 depletion
might not be detected via microarray. Thus, our results
do not explicitly exclude the possibility that ALKBH3
plays a similar expression regulating role as described
for ALKBH1 and ALKBH2 [38, 39].
Knockdown of ALKBH3 in PC3 cells leads to an in-

duction of inflammatory response gene expression
(Fig. 3), which might be a consequence of elevated 3-
meC levels and DNA damage after ALKBH3 depletion
[3, 4, 24, 25, 61]. Most cancer cells, including PC3 cells,
have rapid proliferation and accordingly elevated tran-
scriptional activity [62]. One consequence of elevated
transcription is increased sensitivity of DNA for DNA
alkylation damage, including 3-meC [6, 63–65]. The
ALKBH3 genomic binding profile suggests that ALKBH3
is an intrinsic DNA repair protein that removes DNA al-
kylation that might occur naturally during transcription
[63, 66]. ALKBH3 upregulation in cancer could be an
important step during cancerogenesis to achieve an in-
creased proliferation rate while maintaining genomic in-
tegrity (Fig. 6). If true, this would suggest that ALKBH3
inhibition could potentially slow cancer progression [67].
Since ALKBH3 demethylates RNA in addition to

ssDNA [16, 18], it is possible that ALKBH3 could also
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have a role in the demethylation of primary RNA tran-
scripts at its genomic targets [6]. Whether this could be
of physiological relevance will be of interest to be deter-
mined in the future.

Conclusions
Alkylating agents that methylate DNA and disrupt gen-
omic integrity of fast proliferating cells are widely used
in cancer treatment [22]. Due to its localization at
transcription-associated loci, we suggest that ALKBH3 is
an intrinsic DNA repair protein that suppresses tran-
scription associated DNA alkylation damage at highly
expressed genes. The over-expression of ALKBH3 in
cancer cells might facilitate alkylation damage resistance
during cancer treatment and therefore raises the possi-
bility of ALKBH3 as a potential anticancer target in the
future [23, 67].
The genome-wide binding pattern of ALKBH3 re-

vealed a strong binding to the initiation sites of a small
number of highly active promoters. We hypothesize
that these promoters are a new class of ubiquitously
expressed promoters, which may have a specific initi-
ation process, allowing ALKBH3 to ‘mark’ these pro-
moters. Follow-up investigation of those hyperactive
promoters in vitro, in vivo, and via bioinformatics will
help to better understand their mechanisms as well as
their role in transcription regulation and during cancer
progression.
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