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We address the lattice deformation of 1T-TiSe2 within the exciton condensate phase. We show that, at

low temperature, condensed excitons influence the lattice through electron-phonon interaction. It is found

that at zero temperature, in the exciton condensate phase of 1T-TiSe2, this exciton condensate exerts a

force on the lattice generating ionic displacements comparable in amplitude to what is measured in

experiment. This is thus the first quantitative estimation of the amplitude of the periodic lattice distortion

observed in 1T-TiSe2 as a consequence of the exciton condensate phase.

In a semimetallic or semiconducting system exhibiting
a small electronic band overlap or gap, the Coulomb
interaction, when poorly screened, leads to the formation
of bound states of holes and electrons, called excitons. If
their binding energy EB is larger than the gap, they may
spontaneously condense at low temperature and drive the
system into a new ground state with exotic properties.
This new ground state, called the excitonic insulator
phase, has been theoretically predicted in the 1960s [1].
Recently, we investigated the charge density wave (CDW)
system 1T-TiSe2 with angle-resolved photoemission spec-
troscopy (ARPES), favoring the excitonic insulator phase
scenario as the origin of the CDW phase [2,3], as sug-
gested earlier [4,5]. Furthermore, a superconducting phase
has been discovered in this material upon copper interca-
lation [6] and pressure [7]. This produces a very interest-
ing phase diagram reminiscent of the one of the iron
pnictides, in the sense that a density wave phase gives
way to a superconducting dome upon chemical intercala-
tion. The nature of the competition between the ordered
(CDW) phase and the superconducting dome is of central
interest.

The quasi two-dimensional material 1T-TiSe2 under-
goes a phase transition towards a commensurate 2� 2�
2 CDW phase below the critical temperature Tc ’ 200 K.
Aweak periodic lattice distortion (PLD) accompanying the
CDW (which requires only electronic degrees of freedom)
has been measured, involving small ionic displacements

<0:1 �A [8]. The occurrence of this PLD lead Hughes to
suggest a band Jahn-Teller effect as the driving force of
the CDW in 1T-TiSe2 [9]. In this respect, Motizuki and
coworkers, based on a tight-binding (TB) fit to the band
structure calculated by Zunger and Freeman [10] found
that, by optimizing electronic vs elastic energy, the ob-
served CDW is realized for an ionic displacement
very close to the measured one [11]. However, the small

ionic displacements in comparison with the high spectral
weight carried by the backfolded bands as observed
by ARPES supports rather an electronic origin of the
CDW [2].
In this perspective, it is crucial to know whether ionic

displacements of a reasonable amplitude may appear at all
as a consequence of exciton condensation in the low tem-
perature phase. Here, we address this question and study
the influence of an exciton condensate on the lattice.
First, we derive the electron-phonon coupling in the

framework of the TB formalism. We derive a formula
relating the ionic displacements to the presence of an
exciton condensate, the amplitude of which is directly
related to the order parameter characterizing the low tem-
perature phase. Applying this formula to the case of
1T-TiSe2, we calculate the amplitude of ionic displace-
ments. We find values similar to those obtained from
experiment. This demonstrates that the exciton condensate
phase, as a possible origin of the CDW phase of 1T-TiSe2,
can also account for the PLD.
The TB formalism for the electronic band structure and

the coupling to the lattice described below is similar to that
developed by Yoshida and Motizuki [11,12]. It is applied to
the structure of 1T-TiSe2, which consists of planes of Ti
atoms forming a triangular lattice. Each of these Ti atoms
is in octahedral coordination with its six neighboring Se
atoms. Then the crystal consists of a regular stacking of
such Se-Ti-Se layers along the c direction. For the TB
calculations of the present study, a cluster of atoms cen-
tered around one Ti atom will be considered, similar to the
cluster of Ref. [13] . In our calculations, for the Ti atoms,
we include the five 3d-orbitals of xy, yz, xz, x2 � y2 and
3z2 � r2 symmetry and the three 4p orbitals for each of the
two Se atoms (Se1 and Se2), of x, y and z symmetry. In
total we have 11 orbitals. The TB electronic Hamiltonian
then reads
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Hel ¼
X

ll0

X

��

X

��

J��ð ~Rl � ~Rl0 þ ~�� � ~��Þ

� X
~k ~k0nn0

e�i ~k� ~RlT���;nð ~kÞei ~k0� ~Rl0T��;n0 ð ~k0Þcyn ð ~kÞcn0 ð ~k0Þ:

(1)

Here, ~Rl, ~Rl0 are vectors of the Bravais lattice and ~��, ~��
are the positions of the ions (Ti, Se1, or Se2) labeled �, �
inside the unit cell. The indices �, � label the 11 orbitals

and n is the index of the bands in which the operators cyn
create electrons. The transfer matrix J, with the eigenvec-
tors T, consists here only of two-center integrals for
simplicity.

We now introduce ionic displacements of the form

~ul� ¼ 1
ffiffiffiffiffiffiffiffi
M�

p
X

~q;�

ei ~q� ~Rl ~eð�; ~q; �ÞQð ~q; �Þ

¼X
~q;�

ei ~q� ~Rl ~u�ð ~q; �Þ; (2)

whereM� is the mass of the ion labeled�, ~e a polarization

vector and Q the normal coordinate of the phonons. Here,
~u�ð ~q; �Þ is the ionic displacement for the atom labeled �

(Ti, Se1, or Se2) and associated to a particular mode ~q, �.
Equation (2) provides us with a direct way to compute the
amplitude of the displacement of each ion, once we get a
value for Q. This is our goal in the next paragraphs. After
introducing the small ionic displacements ~ul� in the argu-

ment of the transfer matrix J in Eq. (1), we expand J to first
order in ~ul� to deduce the electron-phonon interaction

Hel�ph ¼
X

nn0

X

~k ~q;�

gnn0 ð ~k; ~q; �Þcyn ð ~kÞcn0 ð ~k� ~qÞQð ~q; �Þ; (3)

where the electron-phonon coupling constant

gnn0 ð ~k; ~q; �Þ ¼
X

~�

X

��

X

��

T���;nð ~kÞ
dJ��
d~x

�������� ~x¼ ~�þ ~��� ~��

� T��;n0 ð ~k� ~qÞe�i ~k� ~� � ½ ~eð�; ~q; �Þei ~q� ~�
� ~eð�; ~q; �Þ�; (4)

with ~� ¼ ~Rl � ~Rl0 , involves the derivatives of the transfer
matrix dJ��=d~x.

In what follows, we focus on the influence of excitons.
In our simplified model of the band structure of 1T-TiSe2,
we essentially consider the topmost valence band having
its maximum at the center of the Brillouin zone (� point)
and the three symmetry equivalent conduction bands
having their maximum at the border of the Brillouin zone
(L points), whose extrema are separated from � by the
wave vectors ~wi (i ¼ 1, 2, 3) [3]. These excitons are

composed of holes created by að ~kÞ in the valence band

(near its maximum) with a wave vector ~k and electrons

created by byi ð ~kÞ in the conduction band i (near its mini-

mum) with wave vector ~kþ ~wi. Thus the sum over the

band indices n, n0 in Eq. (3) is restricted to terms mixing a
and b operators only, so that

Hel-ph ¼
X

i

X

~k ~q;�

Qð ~q; �Þgabið ~k; ~q; �Þayð ~kÞbið ~k� ~wi � ~qÞ

þQð ~q; �Þgbiað ~k; ~q; �Þbyi ð ~k� ~wiÞað ~k� ~qÞ
¼X

i

X

~p;�

Qð� ~wi; �Þgabið ~p;� ~wi; �Þayð ~pÞbið ~pÞ

þQð ~wi; �Þgbiað ~pþ ~wi; ~wi; �Þbyi ð ~pÞað ~pÞ:
We considered only ~q ¼ � ~wi in the term involving gabi
and ~q ¼ ~wi in that involving gbia (together with the sub-

stitution ~p ¼ ~k� ~wi), restricting ourselves to the scatter-
ing between the extrema of the bands. Then, averaging
hHel-phiel to lowest order over the electronic degrees of

freedom yields the contribution of condensed excitons to
the phonon Hamiltonian

hHel-phiel ¼
X

i

X

~p;�

Qð� ~wi; �Þgabið ~p;� ~wi; �Þhayð ~pÞbið ~pÞi

þQð ~wi; �Þgbiað ~pþ ~wi; ~wi; �Þhbyi ð ~pÞað ~pÞi:
In analogy to the BCS-theory, the averages hbyi ai are

related to anomalous Green’s functions Fið ~p; �Þ ¼ ð�iÞ�
hTbyi ð ~p; �Það ~pÞi (introduced in Ref. [3]), so that the pre-
vious equation becomes

hHel-phiel ¼ i
X

i

X

~p;�

Qð� ~wi; �Þgabið ~p;� ~wi; �ÞFyi ð ~p; 0Þi

þQð ~wi; �Þgbiað ~pþ ~wi; ~wi; �ÞFið ~p; 0Þ
¼ Hph-x:

This exciton-phonon Hamiltonian Hph-x can be further

simplified using the inversion symmetry of the system to

replace � ~wi by ~wi and using also the property Fið ~p; 0Þ ¼
Fyi ð ~p; 0Þ, giving

Hph-x ¼ i
X

i;�

Qð ~wi; �Þ
X

~p

Fið ~p; 0Þ½gabið ~p; ~wi; �Þ

þ gbiað ~pþ ~wi; ~wi; �Þ�:
From this last equation, the equilibrium condition for the
lattice in the presence of a condensate of excitons,
@ðHph;0 þHph�xÞ=@Qð ~wi; �Þ ¼ 0, leads to an expression

for the normal coordinate of the phonons Q caused by the
exciton condensate

Qð ~wi; �Þ ¼
i
P
~p

Fið ~p; 0Þ½gabi þ gbia�

!2ð ~wi; �Þ
; (5)

whereHph;0 ¼ ð1=2Þ
P

i;�!
2ð ~wi; �ÞQ�ð ~wi; �ÞQð ~wi; �Þ is the

bare Hamiltonian of the lattice (in the absence of the
exciton condensate). By using Eq. (2) we can relate Q to
the resulting ionic displacements.
We now look for the necessary numerical parameters for

the final computation. We start with the transfer matrix
J��. According to Slater and Koster [14], its elements are
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computed as a combination of direction cosines and trans-
fer integrals. In our case, these transfer integrals are de-
termined by fitting a band structure computed with density
functional theory (DFT). This first-principles band struc-
ture has been calculated using the full potential augmented
plane wave plus local orbitals (APWþ lo) method with the
generalized gradient approximation in the parametrization
of Perdew, Burke, and Ernzerhof [15], in the local density
approximation [16]. The numerical and unit cell parame-
ters [17,18] are similar to those used in Ref. [19].

The resulting DFT band structure is plotted in Fig. 1.
The goal of this DFT calculation (such a DFT band struc-
ture is discussed in detail in Refs. [19]) is to offer a basis
for the TB fit we perform for determining the transfer
integrals. A least-square fit method was used on our DFT
band structure along the high symmetry directions
�MK�A and the obtained transfer integrals are summa-
rized in Table I [21]. The TB fit of the DFT band structure
is good for states below the Fermi energy EF but becomes
poor for states above EF. This TB parametrization allows
us to build an effective Hamiltonian which can be diago-

nalized (at each ~k point) to provide the eigenvectors

T��;nð ~kÞ. The derivatives of the transfer matrix dJ��=d~x,

appearing in the electron-phonon coupling gnn0 ð ~k; ~q; �Þ,
lead to derivatives of the direction cosines and derivatives
of the transfer integrals. The latter are evaluated as in
Ref. [12] and are also listed in Table I. They have a strong
influence on the final result.

According to the experimental result of Di Salvo et al.
[8], we fix the phonon polarization vectors ~eð�; ~q; �Þ in-
volved in the CDW to the direction perpendicular to their
respective ~q vector, lying in the ab basal plane. This way,
only the transverse phonon mode �tr will be considered in
the following calculations.

The anomalous Green’s function Fið ~p; � ¼ 0Þ appearing
in Eq. (5) is calculated as the Fourier transform of Fið ~p; zÞ
given by (see Ref. [3])

Fið ~p; zÞ ¼ ��½z� "iþ1
c ð ~pþ ~wiþ1Þ�½z� "iþ2

c ð ~pþ ~wiþ2Þ�
Dð ~p; zÞ

(the index i runs cyclically over i ¼ 1, 2, 3) with the
denominator being

D ð ~p; zÞ ¼ ½z� 	vð ~pÞ�
Y

i

½z� 	icð ~pþ ~wiÞ�

�X
i

j�j2Y
j�i

½z� 	jcð ~pþ ~wjÞ�:

Here, the order parameter � describes the intensity of the
exciton condensate in the low temperature phase. The
functions "v and "

i
c describe the dispersions of the valence

band and of the three conduction bands (i ¼ 1, 2, 3),
respectively. The anomalous Green’s function Fi is sensi-
tive to the energies appearing in these dispersions near
their extrema. We therefore cannot use the TB dispersions,
which are too rough with this respect (however they are
essential for the more global treatment needed to obtain the
transfer integrals), but we need the formulas for "v and "ic
determined in a previous study from fits to ARPES data [2].
Finally, combining Eqs. (2) and (5), the amplitude of the

ionic displacement for a single ~wi (and for transverse
phonons) gets the following form

u�ð ~wi; �trÞ ¼ 1
ffiffiffiffiffiffiffiffi
M�

p
jP
~p

Fið ~p; 0Þ½gabi þ gbia�j

!2ð ~wi; �trÞ
: (6)

We now focus to the particular case of the Ti atoms, so that
MTi describes the Ti atom mass. For the order parameter
appearing in the anomalous Green’s function, we consider
a mean-field like temperature dependence of the form

�ðTÞ ¼ �0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðT=TcÞ2
p

with Tc ¼ 200 K, where the
zero value �0 ¼ 115 meV has been determined in our
recent temperature dependent ARPES study [23]. In for-
mula (6), we use a value of!ð ~wi; �trÞ ¼ 6:3 THz. In fact, it
is the value estimated by Holt et al. at T ’ 150 K for the
transverse phonon mode, which softens at L at the tran-
sition [24]. This corresponds to a situation where the ionic
displacement ~ul� is not too large, such that our first order

TABLE I. Transfer integrals (in eV) for 1T-TiSe2, obtained
from TB fits to first-principles band structure [20]. Their deriva-
tives (in eV= �A) are also shown in parenthesis. "p ¼ �2:0 eV,

"d" ¼ 0:74 eV, "d
 ¼ 1:2 eV are the orbital energies. The same

notation as in Ref. [12] is used. Indices 2 and 3 refer to Se-Se
transfer integrals across the van der Waals gap and for second
nearest neighbors in the same TiSe2 layer, respectively.

Transf. Int. (Deriv.) Transf. Int. (Deriv.)

tðpp�Þ 0.77 (� 2:0) tðpd�Þ 0.70 (� 1:5)
tðpp�Þ �0:054 (0.21) tðpp�Þ2 0.63 (� 1:6)
tðdd�Þ �0:35 (0.40) tðpp�Þ2 �0:028 (0.11)

tðdd�Þ 0.074 (� 0:17) tðpp�Þ3 0.61 (� 1:5)
tðddÞ �0:049 (0.18) tðpp�Þ3 �0:096 (0.37)

tðpd�Þ 1.3 (0.83)
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FIG. 1 (color online). Comparison of the band structure of
1T-TiSe2 calculated with density functional theory and its fit
within a TB approach.
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development of the electron-phonon coupling remains
valid. Furthermore, the region close to Tc is avoided, where
anharmonicities cannot be neglected in the bare
Hamiltonian for the lattice Hph;0.

Now all the necessary quantities to compute the ampli-
tude of the ionic displacements in Eq. (6) are known.
Figure 2 summarizes our numerical results. It shows a
clear temperature dependence, following closely the be-
havior of the order parameter. Extrapolated to the lowest

temperature, it reaches the value of utheoTi ð ~wi; �trÞ ¼
0:025 �A. Di Salvo et al. inferred from neutron diffraction
experiments a displacement (also for a single- ~wi) of about

u
exp
Ti ð ~wi; �trÞ ¼ 0:04 �A at 77 K [8]. Therefore our value,

although being about 60% of the experimental one, repro-
duces the measured ionic displacement for Ti atoms within
the correct order of magnitude, which is a substantial
result, considering the approximations made in this
calculation. The uncertainty on !ð ~wi; �trÞ used in Eq. (6)
may enhance or reduce this value by a factor of 2–3, but it
still remains within the correct order of magnitude, in
agreement with the main message of this letter.

In conclusion, we addressed the question of the appear-
ance of a periodic lattice distortion in 1T-TiSe2. Previously
we gave strong support for the exciton condensation as a
purely electronic mechanism responsible for the CDW
phase in this material [2,3]. In this work, we elaborate in
a tight-binding formalism a formula for estimating the
ionic displacements produced by the presence of this ex-
citon condensate through the electron-phonon coupling.
The calculated amplitude of these ionic displacements is,
at low temperature, of the same order of magnitude as what
is experimentally found. This is thus the first quantitative
estimation of the amplitude of the PLD observed in
1T-TiSe2 as a consequence of the exciton condensate
phase. More generally, this result describes quantitatively
how an excitonic insulator phase can give rise to a PLD
through electron-phonon interaction.
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