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PRODUCT FORMULAS AND CONVOLUTIONS FOR
ANGULAR AND RADIAL SPHEROIDAL WAVE FUNCTIONS

WILLIAM C. CONNETT, CLEMENS MARKETT, AND ALAN L. SCHWARTZ

Abstract. Product formulas for angular spheroidal wave functions on [0, n\

and for radial spheroidal wave functions on [0, oo) are presented, which gen-

eralize results for the ultraspherical polynomials and functions as well as for

the Mathieu functions. Although these functions cannot be given in closed

form, the kernels of the product formulas are represented in an explicit, and

surprisingly simple way in terms of Bessel functions so that the exact range of

positivity can easily be read off. The formulas are used to introduce two families

of convolution structures on [0, n\ and [0, oo), many of which provide new

hypergroups. We proceed from the fact that the spheroidal wave functions are

eigenfunctions of Sturm-Liouville equations of confluent Heun type and em-

ploy a partial differential equation technique based on Riemann's integration

method.

1. Introduction

One of the richest families of special functions arise in a natural way when

the three dimensional Helmholtz equation ((A2 + k2)W = 0, also called the

reduced wave equation) is solved by separation of variables in a coordinate

system with concentric families of spheroids and hyperboloids as level surfaces

[E, Chapter 16, AS, Chapter 21, Mi, 3.1, MSp] (the last reference contains some

excellent figures). If W(x, 6, <p) = U(x)V(Q)exxi(±im<p), then the Helmholtz

equation separates into one of the following systems of two ordinary differential

equations:

If" + (ctnhx)U' - [h - (fccsinhx)2 + (m cschx)2]I7 = 0

(0 < x < oo),
(1.1a)

(1.1b)
V" + (ctn 6)V + [h + (kcsind)2 - (m ese 6)2]V = 0

(0<8 <n),
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696 W. C. CONNETT, CLEMENS MARKETT, AND A. L. SCHWARTZ

;i.2a)

(1.2b)

If" + (tanhx)U' -[h- (kc coshx)2 - (m sechx)2]U = 0

(0 < X < oo),

V" + (ctn 6) V + [h - (kc sin 6)2 - (m csc 6)2] V = 0

(0<9 <n),

where c is a parameter of the coordinate system and h and m axe separation

constants. The first system arises from using the prolate spheroidal coordinates,

the second from using the oblate spheroidal coordinates. Solutions to the first

equation in each pair are referred to as radial solutions; solutions to the sec-

ond equation in each pair are called angular (or periodic) solutions. The two

equations inside each pair are related to each other by the imaginary change of

variables, x —* id , x —» /(6 - n/2), respectively.
By a transformation of the dependent variable V(6) = sinm ÔS(8) the two

equations (1.1b) and (1.2b) can be written in the normalized form

(1.3) S" + ^-^-S' + [X-ysin29]S = 0       (0 < 6 < n)

where a = m and y = ^(kc)2 (y < 0 for prolate, y > 0 for oblate). With the

addition of the boundary conditions S'(0) = S'(n) = 0 and the normalizing

condition S(0) = 1 this becomes a Sturm-Liouville problem with a discrete

spectrum of eigenvalues. The corresponding eigenfunctions are called the an-

gular spheroidal wave functions {S^'y(6)}nem0 (No = {0,1,2,...}) and are

dealt with in this paper for all a > -1/2 and y £ R, each choice of (a, y)

leading to a different family of orthogonal functions. Moreover, we will con-

sider the radial prolate spheroidal wave functions {^f'y(x)}x>o for a > -1/2,

y < 0, which are eigenfunctions of the Sturm-Liouville equation

(1.4) 5e"' + 2a*l<9" + [A2 + (a+ l/2)2-)>sinh2xL^ = 0       (0 < x < oo)
tanhx

satisfying the initial conditions ZZ"(0) = 1, Z?"(0) = 0. Equation (1.4) is
obtained from (1.1a) by the transformation U(x) = sinhm xZ?(x) (with m =

a,   -A = A2+1/4).
There are some well-known particular cases covered by equations (1.3) and

(1.4). If y = 0 then (1.3) has as its eigenvalues X = n(n + 2a + 1) with

corresponding eigenfunctions P^+i/2)(cos6)/Pt+U2)(l), where P{na+l/2) is the

ultraspherical polynomial of order a + 1/2 and degree n. In this case, the

eigenfunctions of (1.4) reduce to the ultraspherical functions on the positive

half-line. When a = v- 1/2 and y / 0, (1.3) is called the Mathieu equation
if v = 0 and the associated Mathieu equation if v £ N. The counterparts

associated with (1.4) are sometimes referred to as the respective "modified"

equations (cf. Mclachlain [M]).

A great deal of work has been done with spheroidal wave functions; some

standard references are Abramowitz and Stegun [AS], Arscott [AI], Erdelyi [E],

Flammer [F], Meixner and Schäfke [MS], and Meixner, Schäfke, and Wolf

[MSW], where the extensive literature up to 1979 is cited, and Stratton, et

al. [SM]. Nevertheless, one of the most useful and far-reaching identities in the

study of orthogonal functions and expansions, the product formula, had not

been found for the spheroidal wave functions except in the cases a = -112 or
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SPHEROIDAL WAVE FUNCTIONS 697

y = 0. It is the main purpose of this paper to establish the product formula for
the angular case in the form

(1.5) Sn"y(d)Sn*'y(<f>) = Í San>?(cl)doe^(S)       (0<6,ct><n)
Jo

where for each (6, </>), og^ = Og 'Ï is an explicitly given Borel measure which

does not depend on n £ No (see Theorem 1 below). For later discussion we

also include the result in the limiting Mathieu case y = 0 which was first

stated by Meixner [Mei] and also treated by Volkmer [VI] in a different context.

In particular we will show that for each pair (a, y), the measure o^'l has

uniformly bounded total variation for 0 < 6, c¡> < n . Moreover, the exact range

of (a, y) will be given for which the measures are nonnegative. Finally, it turns

out that they are absolutely continuous with respect to Lebesgue measure if and

only if a > -1/2. The method of proof employs a partial differential equation

technique based on Riemann's integration method for solving Cauchy problems.

These ideas were used in a recent paper [CMS] to give, among other things, a

new proof of the product formula for the ultraspherical polynomials; see also the

previous work by one of us, where the techniques are extended to various other

situations (cf. [Ml, M2, M3], and for further references, [CMS]). The product

formula (1.5) can be used to define a two-parameter family of convolution

structures for expansions in spheroidal wave functions via the introduction of

appropriate generalized translation operators in the sense of Levitan [Le] (cf.

§4). Hence many standard tools from harmonic analysis on locally compact

abelian groups become available for the explication of the harmonic structure

here. The product formula leads in a natural way to a convolution for the Borel

measures on [0, %], M([0, n]). When the measure oe^ in (1.5) is positive,

it is possible to equip [0, n] with a hypergroup structure.

Along the same lines, we will also derive the product formula for the radial

prolate spheroidal functions in the form

/»OO

(1.6) 5f'y(x)5f'y(y) =        f?'v(Ç)d<jx,y(Ç)       (0<x,v<oo),
7o

the measures ox<y = ax]yy being independent of X £ [0, oo). (This is not the

same o as in (1.5), but context removes any danger of ambiguity.) It should

be remarked here, that unlike the angular prolate and oblate cases, the product

formula in the radial oblate case behaves somewhat differently from that in the

radial prolate case, (1.6). We have some interesting results here too, which will

be given elsewhere. The remarks about generalized translation, convolution,

and hypergroups apply here also.

In [CMS] the convolution structures associated with the eigenfunctions of the

perturbed ultraspherical equation, w"-r-(2a-l- l)(ctn 6)u' + [X-q(6)]u = 0 (a >

-1/2) are studied. Since the potential function q(Q) = ysin20 is symmetric

and real analytic on [0, n] as required in [CMS, Theorem 1.2] the existence and

uniqueness of the product formula (1.5) as well as its positivity in the prolate

case y < 0 follow. In this article we obtain explicit and simple representations

for the measures a g ' I from which the positivity for certain y > 0 can also be

determined, and which furnish additional hypergroup structures of the Jacobi

type beyond those described in [CS3]. The availability of a hypergroup structure
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698 W. C. CONNETT, CLEMENS MARKETT, AND A. L. SCHWARTZ

allows a more refined study of various questions of harmonic analysis as, e.g.,

multiplier criteria or maximal functions (cf. [CS1, CS2]).
In addition to being useful in the harmonic analysis of eigenfunction expan-

sions, the product formulas of Theorems 1 and 2 give interesting information

about the eigenfunctions themselves. This "special functions" aspect becomes

apparent when observing that the equations (1.3) and (1.4) are singular differ-

ential equations not belonging to the hypergeometric class. In fact, if they are

thought of as equations in the complex plane (after substituting z = cos2(f7/2)

and z = cosh2(x/2), respectively), then according to the Klein-Bôcher-Ince

classification [I, Chapter XX] they have two finite regular singular points at

z = 0 and z = 1 and an irregular singular point of second species at z = oo .

Actually, the two equations are the same, but the product formulas range over

different intervals, namely (0, 1) and (1, oo), respectively. This is an equation

of the confluent Heun type [0,2, 12] (which may be reduced by a quadratic

transformation to the type [1, 1, 1], the singularities being elementary, regu-

lar, and irregular of the first species respectively). Hence the solutions lie in

the "land beyond Bessel" [A2] and cannot, in general, be represented in closed

form.
The remarkable fact is that it is still possible to write down the product

formula in closed form because of the Riemann function techniques even in

cases where there is no explicit representation of the eigenfunctions. So one way

of looking at formula (1.5), for instance, is to regard it as an integral equation

for the unknown function S„'7(6) after an appropriate choice of the variable

<f> as, e.g., 4> = n¡2 (cf. [VI] for consequences of this procedure in the Mathieu

case). Moreover, the formulas can be used to derive uniform and pointwise

estimates of the angular or radial spheroidal wave functions (cf. Theorems 3

and 4).
The spheroidal wave functions provide a rich family of examples in which

to study singular differential equations and the harmonic analysis of the corre-

sponding eigenfunction expansions. Though not in the field of classical special

function theory and, in particular, not of orthogonal polynomial type, they nev-

ertheless show a structure depending on two parameters a and y, which allows

distinct eigenfunction expansions to be organized into a scale or continuum of

expansions [CS1], and the properties of the individual eigenfunction systems

can be described by theorems about the parameters. The spheroidal wave func-

tions thus provide a convenient test for general theorems about eigenfunction

expansions.

Finally, we mention that these functions are important for various applica-

tions: they arise, for instance in signal theory where they occur naturally in the

analysis of band limited signals, see, e.g., [S, P]. We intend to study the appli-

cation of the positive convolution to these problems at another time. Further

references can be found in [D].

2. Product formulas for angular spheroidal wave functions

We begin with a few properties of the hypergeometric functions. Let (x)o =

1, and (x)„ = x(x + l)(x + 2) ■ ■ ■ (x + n - 1) for n £ N, and let

Fia, b; c; z) = 2Fx(a,b;c; z) = £ %^z«.
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SPHEROIDAL WAVE FUNCTIONS 699

Then one has

Ha,b-,c-,l) = ^}^c-_l       (Rec>Ke(a + b)),

(2.1) 4-Fia ,b;c;z) = —F(a + 1, b + 1 ; c + 1 ; z),
az c

(2.2) F(a,b;c;z) = (l- z)~aF (a,c-b;c;
z- 1

z
(2.3) =(l-z)-bFlc-a,b;c;

(2.4) =(l-z)c-a-bF(c-a,c-b;c;z).

Our first aim is to establish the product formula for the angular spheroidal

wave functions iS^'^f?), n £ N0, 0 < 6 < n. To this end we recall the

following formulas for the ultraspherical polynomials:

S%-°(8) = Pia+1/2)(cos0)/PiQ+1/2)(l)

= F(-n ,n + 2a+l;a+l; sin2(9/2))

and (see [CMS, (1.8) and (1.9)])

n «        S^°(d)S^°(<l)) = / Sï<°(Z)K°(Z,d,tl>)wa(Ç)dÇ
Kz-->) J\8-(t>\

(0<e,(p<n)

with
wa(£) = sin2a+1£,

Tia+1)        (n)^2    x^e-^n-V + t-nl),
Ka(U,<t>) = \   r(a+l/2)r(l/2)     ag-

io ifi^(|e-01,7t-|e + ^-7r|),

where

ipo = [cos(0 -(f))- cos¿][cos<^ - cos((9 + </>)],

coq = (sin¿;)(sin0)(sin0).

Let Jv denote the Bessel function of the first kind of order v , so that

Mz) = 2»Y(v + l)Uz)/z» = £ ¿, + [¿kl

is an entire function that satisfies ^(0) = 1 and J^(x) = fv(ix) > 0 if x e E.

Let jv be the smallest positive zero of Jv . For detailed information on jv such

as bounds, monotonicity, and asymptotic behavior as v —► -1, see [IM] and

the references cited there.

Theorem 1. Let a >-1/2, yel, 0 < 0, <p < n, and n £ N0.

(i) For a > -1/2, the angular spheroidal wave functions satisfy

pn-\e+4>-n\

(2.6) San<y(d)San'y(<t>)= S^y(^Wa'y(^,e,<l>)wa(^)di
J\e-4>\
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700 W. C CONNETT, CLEMENS MARKETT, AND A. L. SCHWARTZ

where

(2.7) 3T-y(i, 0,0) = Ka(Ç, 9, 4>)fa-XI2(JWo).

(ii) In the particular case of the Mathieu functions, a = —1/2, one has

sñl/2'yid)Sñl/2'y(cp) = \s-n{l2>yi\e - 0|) + l-szl/2'y(n -\e + 4>-*\

(2.8) rn-\e+<p-n\

where

(2.9)

^-1/2'"(c:,0,0)=|o^

l-K-\V+lp-7l\

+ Sn-xl2'y(ïW-xl2>y(t;,9,<j>)dcl

J\8-<t>\

l4YCOoMVW~o)   ifÇ£(\e-<t>\,n-\9 +

if¿í<¿i\9-(j>\,7i-\9 + 4>-n\).

(iii) If a > -1/2 and -oo < y < J¿—1/2 » or a = -1/2 and y < 0, then

Z%a'yiti ,0,0) is positive, symmetric in t\, 9, and 0 and as a function of Ç, it

is supported in \9 - 0| < £ < n - \9 + 0 - n\.
(iv) If y > 0 and a > 0, then

/ \3?a>y(c¡,9,<¡>)\wa(c:)d!;<l.
J\e-<t>\

To prove Theorem 1 we will proceed (as in the ultraspherical case [CMS,

§2]) from the fact that the product on the left-hand side of (2.6) (and of (2.8))
can be considered as the unique solution of a hyperbolic initial value problem

which can be solved in terms of the initial function by Riemann's integration
method. Set

u(i,r,) = u(n,t) = San'y(Ç)Sn»y(r1)

and observe that because of the symmetry

S^y(7i-0^(-l)"S^y(í),

we may restrict our attention to (Ç, n) for which 0 <n <£, <n - n . Denote

this triangle by E. Then, since S^'y(c¡) satisfies equation (1.3) together with

S'(0) = S'(n) = 0 and S(0) = 1 one has

(Lly-L°>?)u(C,n) = 0,        ((Z,n)£E),

u(Ç,0)=Sï>?(Ç),        un(i,0) = 0,        (0<i<n),

where

L¡'y = d2/dc¡2 + (2a + l)(cotí)rf/í/í - y sin2 f.

The solution of (2.10) requires explicit knowledge of the corresponding Rie-

mann function. For any fixed point (0, 0) 6 E let Ag^ be the characteristic

triangle with vertices P = (9, 0), ßo , and Rq , where Qe = (0 - 0 + e, e)

and Re = (8 + 0 - e, e). Then for (¿;, n) £ Ag ̂  , the Riemann function is

defined as the unique solution v(Ç, n) = v(Ç, n; 9, 0) = Ra'v(cl, n; 9, 0) of

the characteristic boundary value problem:
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SPHEROIDAL WAVE FUNCTIONS 701

(Las'y-Lan<y')v(c;,n) = 0       ((tZ,n)£Ae^),

(a+l/2     a+l/2\ .„ _     ^

f a+l/2     a+l/2\ ^

v(9,<t>) = l

(the asterisk (*) denotes the adjoint operator). Let

X = xií,n;9,<t>) = [cos(0 - 0) - cos(£ - r/)][cos(¿ + if) - cos(0 + 0)],

>p=ip(cl,n;9,(t)) = [cos(0 - 0) - cos(£ + n)][cos(C - if) - cos(0 + 0)],

co = 4(sin^)(sin?7)(sin0)(sin0),

W = ^-       o = -^=*
co W - 1      y/

^ (c,^,f7,0)- ^(sinö)(sin0j     i^j

Lemma. For a > -1/2, y G E, and (£,, n) £ Ae $,

(2.12)
A°''(i,f/;fl,0)

i-yxi'4)A= .#<*(£, 9; 0, 0) £ F(k + 1/2 - |a|, 1/2 - \a\ ; k + 1 ; <P)V  ]¿n)   ,
ken0 [   >

in particular, for a = -1/2

R-xt2>yiZ,n;9,<f>) = Joiy/yx).

(Notice that in the ultrasphericalcase y = 0, (2.12) collapses to the k = 0 term

to yield Ra>\c¡, n; 9, 0) = •#<«(£, n; 9, 4>)F(l/2-\a\, 1/2 - |a| ; 1 ; <D).)

Proof. The substitution of the independent and dependent variables

X0 = cos(0 + 0),     Y0 = cos(0 - 0),

f2 13n X = cos(£ + ri),     Y" = cos(£ - rç),

V{¿í> "; *' 0) = Uin0)(sin0)J V{X' Y''X°' Y0)

leads to the selfadjoint "normal" form of problem (2.11),

(2.14) V^+{$^YT2-l)V = °       ^o<X<Y<Yo),

V(X0, Y;X0, Yo) = V(X, Y0;X0, Y0) = 1.

Its solution was given by Henrici [H], (cf. also [L]) as a confluent hypergeometric

function of two auxiliary variables

Wx = (X - Xo)(Y - Y0),
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702 W. C. CONNETT, CLEMENS MARKETT, AND A. L. SCHWARTZ

(X-Xq)(Y-Yq)
2     (X - Y)iX0 - Y0) '

namely

F(X,r;Xo,y0) = H2(l/2 + a, 1/2-a; l;W2,yWx/4)

(2.15) v-    (l/2 + a)n(l/2-a)„ k

^ k\n\(k + n)\       yy2U^W) ,

which converges for \W2\ < 1 (for properties of hypergeometric functions of

several variables cf., e.g., [E, §5]). Writing the inner sum on the right of (2.15)

as an ordinary hypergeometric function and extending it analytically to the half-

plane Re W2 < 1/2 by (2.2), (2.3), one arrives at

F(x,y;Xo,y0) = (i-w/2)|a|-1/2

W2   \ (yWx/4f
X £F(*+l/2-|a|,l/2-|a|;*+l;w£T)

which is valid for all X0 < X < Y < Y0. Returning to the original variables

C, n, 8, 0 via (2.13) and observing that W2 = W, Wx = -% finally yields the
lemma. Notice that in the special case a = -1/2, the boundary value problem

(2.11) reduces to that for the well-known telegraph equation which was solved

by Riemann already in terms of the Bessel function Jo (cf., e.g., [G, (4.84)] or

[L]).    D

Remark. In the proofs of the product formulas for the Bessel functions and for
the Laguerre functions given in [Ml], extensive use was made of the fact that

after transformation to a selfadjoint normal form, the characteristic boundary

value problems defining the corresponding Riemann functions are exactly of

the form (2.14), with y = 0 in the Bessel case and y = constant / 0 in the

Laguerre case. This explains the formal similarity of the product formulas for

the Laguerre and spheroidal wave functions (though being defined on different

intervals). In particular, one can say that the relationship between the Laguerre

and Bessel cases is the same as between the spheroidal and ultraspherical cases.

Proof of Theorem 1. (i) We discuss here the case -1/2 < a < 0 ; the case a > 0

is dealt with by similar arguments. The argument used in [CMS, Theorem 1.2]

in the ultraspherical case yields (2.6) with Z%a'y obtained from the Riemann

function (2.12) by

d_

dr¡'
JTa'y(í,9,ct>) = lim i-l-(sinn)2a+x-^-[(sinc:sinr1)-2"-xR°'y(Ç, r/; 0, 0)]

n-> 0+  [_     L

= -22a lim i(sinf/)2a+1
r/-»0+

d

XÔ~n
w-a-l/2 Y^F(k + a+1/2, a+1/2; k+1; 0>)(   J*^
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SPHEROIDAL WAVE FUNCTIONS 703

In view of (2.1), one has

d_

dr¡
¥ -a-x/2Y/F(k + a+l/2,a+l/2;k+l;(p)

fcGNo

(-rx/4)A
(k\)2

,ö>
= -(a + l/2)<p-a~3'2-^- Y, F(k + a + 1/2, a + 1/2 ; k + 1 ; <D)

dn
k€N0

(-7X/4)*
ik\)2

+ y/~
a_i/2 v (fc + a+l/2)(a + l/2)

keN0
k+ 1

x Fik + a + 3/2, a + 3/2; k + 2; O)
dö (-7^/4)*

a??    ik\)2

+ ^-m^F(k+a+i/2,a+i/2;k + ,.^t^C.l^)
k&N v y x ' '

= sx+s2 + s3.

The term-by-term differentiation is justified because all three series converge

uniformly. We show this first for a < 0. Observe that 0 < O < 1 if n £

(0, 7t/2], so that for some constants Ax and A2,

0 < F(k + a + 1/2, a + 1/2 ; k + 1 ; O)

<F(k + a+ 1/2, a + 1/2; fc+ 1; 1)

r(fc + i)r(-2a) +1/2
r(l/2-a)r(fc+l/2-a) -    '

and from (2.4)

(k + a+l/2)(a+l/2)

(2.16) <

fe+l
(fc + q+l/2)(q+l/2)

Jfc-f- 1
ik + a+l/2)(a+l/2)

k+ 1
Y(k + l)Y(2a + I)

F(k + a + 3/2, a + 3/2 ; k + 2 ; 0)(1 - d>)2a+1

F(l/2-a,k+ l/2-a;k + 2;<&)

F(l/2-a, k+ l/2-a;k + 2; 1)

Y(k + a+l/2)Y(a+l/2)

< A2kx'2~a.

If a = 0, a very similar argument is based on the estimate

Y(k + 1)
F(k+1/2, l/2;k+l; z) < 1

Now,

dy      , dx ~
—-► 2oj0 ,      t.-► -2cúo ,
dn dn dn

Y(k+l/2)Y(l/2)

¿70

log(l-z).

4ct70/yo       (h-»0+)

and so remain bounded in the limit for any 0-0<£<0 + 0. Since, moreover,

l/ip < 1/y/o, it follows that »Si and Si axe bounded as r\ -> 0+ , and

&"•*£, 0, 0) = -2la lim {(sin n_)ln+lS2(t¡, n; 8, 0)}
n->0+
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In view of (2.16) and the fact that

hm (8in,)^V-°-1/2(l -Vr2«-1 = (¿£^.

the kernel can now be calculated to be

r*.'(? 9 ¿\ - -2« ¥^l/2 V      nk + 1)r(2a + 1}     (-^o/4)"

[Ç'0'Ç) (4co0)2<*k^oY(k + a + l/2)Y(a+l/2)      (k\)2

Wrm   r(2a+l)
- (2coo)2«Y2(a+l/2/a-l'2{VWo)-

Thus using the Legendre's duplication formula for the gamma function we ob-

tain (2.7).
(ii) In the special case a = -1/2 we have for 0 < e < n/2, (cf. [CMS,

equation (3.9)])

u(9, (b) =-((uv)\Qc + (uv)\Rc)

¡■e+<j>-s1       ÇV+Ç—1.

5 / [Mi,(í, fl)v(c¡, n)]\„=£d¿¡
L Je-é+e

1/2 Je

e+<t>-e

[u(t¡, n)v„(c¡, n)]\„=£dí
d-Ó-E

= Tx(e) + T2(e) + T3(e),

with v(i, n) = v(Ç,n; 9, 0) = J0(y/ñ).
Now, lim£_o+v(Qe) = limE^o+v(RE) = 1, since /0(0) = 1 , so

lim Tx(e) = \[u(9 - 0) + u(8 + 0)].

Since v(Ç, n) is uniformly bounded and u„(s) —> 0 as £ -> 0+, lime^o+ ^(e)

= 0. Finally

and so

v„it, n) =-IMVU)^

Jf-'/2-^, 0,0)= lim [-\vniZ, r,)] = -IcooMVWo).
e—»0+ 4

This yields (2.9).
(iii) The general theory [CMS, Theorem 1.2(iv)] predicts the positivity of

5fa'y when a > -1/2 and y < 0, for in that case ysin20 is a nonincreas-

ing function onO<0<7r/2. The positivity is also apparent from the ex-

plicit formulas (2.7) and (2.9) since if y < 0 and v = a- 1/2, Jii^yy/o) =

J»iy/\y\\po) > 0, while if 0 < y < j2, then ^/m < jv , and so XiVfWö) > 0.
Symmetry follows since a>o and ipo are symmetric in the three variables.

(iv) If a > 0, then v = a - 1/2 > -1/2, so ^v(x) is a character for

a hypergroup. (See, for instance, the product formula for ^v given in [Sc,

equations (1.1 )—( 1.3), which is in turn based on a theorem of Gegenbauer [W,
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p. 367].) Hence \fv(x)\ < \fv(0)\ = 1. Thus if y > 0 and a > 0,

/ \jra>?it,o,<t>)\waiZ)dï
J\e-4>\

pK-\8+<j>-n\

< Ka(i,e,<p)wa(t)dt = i
J\e-6\

rn-\e+tt>-K\

'I

(as can be seen by setting n = 0 in (2.5)).   D

3. Product formulas for radial prolate spheroidal wave functions

Let us now turn to the product formula for the eigenfunctions of the Sturm-

Liouville equation (1.4), the radial prolate spheroidal wave functions S^f'y(x),

X, x > 0. In the following we use the same notations x, y/, œ,^ as before,

but with the new meaning (indicated sometimes by x, y instead of 0,0)

X = xi£, n ; x, y) = [cosh(x - y) - cosh(£ - r/)][cosh(£ + n) - cosh(x + y)],

yi = y/(Z, n ; x, y) = [cosh(x - y) - cosh(¿; + n)][cosh(c¡ - n) - cosh(x + y)],

co = 4(sinh(¡;)(sinhf7)(sinhx)(sinhy),

0=— ,        y/0 = wi£, 0;x,y),        w0 = (sinh£)(sinhx)(sinhy).

Theorem 2. Let a > -1/2, y < 0, X>0 and x, y £ (0, oo).

ii) For a> -1/2,

fX+y
^'y(x)^'y(y) = /      S"f*>y(t¡)3fa>y(ci,x,y)(sinhcl)2a+Xdct

J\x-v\

fX+y

l\x-y\

where

ra,y (i,x,y)=<
Y(a+l/2)Y(l/2)   aft   ̂ -'MVl^o)

ifc¡£(\x-y\,x+y),

10   iftë(\x-y\,x + y).

(ii) If a =-1/2,

S--x'2'y(x)S--l/2'^y) = ^-l/2'y(\x-y\) + ^Z-l/2'y(x + y)

rX+y

+        ^-l/2'y(CW-i/2'7iC,x,y)d¿:
J\x-v\

rx+y

<\x-y\

where

^-x'2-y(Ç,x,y) = i[ \\y\o)o^\(\/ÏÏm)   if^£(\x-y\,x + y),
0 iftï(\x-y\,x+y).

(ni) For any 0 < x, y < oo and \x-y\ <Ç < x+y, the kernel 5?a>y(tl, x, y)

is positive and symmetric in c¡, x,  and y .
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Proof. The proof follows the same lines as the proof of Theorem 1. The char-

acteristic boundary value problem for the Riemann function now reads

,tanhf   Ji

-y[sinh2¿:-sinh2f7]v = 0       ((<*, r¡)eAx>y),

,,n /a+l/2     a+l/2\        .        ,_

( a+l/2     a+l/2\
v¿-v„- [-rf-z-r1— )v = 0       (t¡ + n = x + y),
(      n     V tanhcl       tanhiy / v       ' "

v(x,y) = 1.

Its solution is given by

A-.'íí  n-x  vi-  Asi°h^)(sinh^y+1/2/^NN-^
R     K'*'*'')- i(sinhx)(sinhy)J \7o)

^2 F(k +1/2-\a\,   l/2-|a|;/c+l;<D)(~x
(k\)2

k€N0 V     '

This follows immediately from the fact that the transformations

X0 = cosh(x + y),     Y0 = cosh(x - y),    X = cosh(¿; + n),     Y = cosh(¿; - n),

<* v     //(sinhO(sinh??)V+'/2I//v VA
^^;x'y)=((sinhx)(Sinhy)j        r(X, y ; *0. lb)

reduce problem (3.1) to the same selfadjoint problem (2.14) as was solved in

the angular spheroidal case, but now in the domain Yo < Y < X < Xq . Using

the representation (2.15) of V , the rest of the proof is straightforward and left

to the reader.   D

Remark. For y = 0, the results of Theorem 2 coincide with the product formula

for ultraspherical functions due to Flensted-Jensen and Koornwinder [FK] (cf.

also [K] and, for a partial differential equation approach, [M3]).

4. Convolution structures, hypergroups, and inequalities

The measure a^l of (1.5) is defined implicitly by Theorem 1 and is given

by

doaQ>l(c\) = 3?a>y(t\,9,<?)wa(t\)dc\       (q>-1/2,  yeE),

i4"1)      d°ëf'yit) = A-*|(í) + 2-dôK-\e+<,-*\it) +3r-'/2'y(t, 9, 0)¿£

(y ER)

where ôt denotes the unit point mass concentrated at t. This gives rise to

two products or convolutions on M([0, n]) which are continuous with respect

to the total variation norm || • ||. If p and v belong to M([0, n]), the first

product p#v = p#a'yv ,is defined by its action on a continuous function f :

(4.2) [* f(s)d(p#v)(s) = f f F f(cZ)do';-l(cZ)dp(9)dv
Jo Jo  Jo  Jo

(0)-
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The explicit form of a^'l given in (4.1) shows that the innermost integral is a

measurable function of (0,0). The product # is a continuous operation on

M([0, n]) provided that Aa'y = sup{||o-0 ^||:0 < 9, 0 < n} < oo. In fact, we

have the inequality \\p#u\\ < Aa-y\\p\\ \\v\\. Let /iA = $*S„*>y(ci)dp(t¡), then

substituting S„'y for / in (4.2) and using (1.5) we have (/i#i/)£ = p^v* , so

the product is commutative and associative. Thus if Aa-y < 1, (M([0, n]),

#"■'') is a commutative Banach algebra. There is also a convolution on an
appropriate Ll space. In particular if

ll/Hi = ll/||i,«= f\f(C)\wa(C)dS <oo
Jo

define

if#g)it) = if1P'rg)ii)= f f f(8)g((f>)dcJe^)wa(d)wa((l>)dddcf>
Jo Jo

and /* = ¡¿SS'rit)fiZ)wait)dt. Examination of (4.1) shows that f#g is a

well-defined measurable function. The product satisfies

ll/#Slli<¿Q>l/||i||*lli    and   (ßg)An=fnS^.

The product formula also gives rise to an inequality for the spheroidal wave

functions since (1.5) implies

\San'y(8)\ |S^(0)| < ^'TC'loo       (0 < 0, 0 < n),

whence HSS'l«, < Aa>y.
The second kind of convolution is based on the ideas in [CMS, §4] and uses

a renormalized measure defined by

^:J(í) = s°>yias%>yid)s°>yi<p))-xdoae:¡ic:).

Notice that S%'yii) is positive throughout [0, n] because S%-7(0) = S%-r(n) =

1 and has no zeros in the interval. So if Rak'y(£,) = S°'y(Ç)/S°'y(c;) we have
the product formula

(4.3) R«n>y(9)Ran>y(<p) = f K'yit)dTae'l(i)
Jo

and the convolution * = *a ■y is defined by

[nfi(C)d(p *!/)({)= r r rf(i)dxae'y^)dp(9)du(ct>).
Jo Jo  Jo  Jo

This operation is also commutative and associative and defines a convolution

on the space of functions / for which

f |/(0| dma>y(£,)< oc
7o

where
dma>r(C) = [S^(i)]2wa(C)dC.

If (Tq 'I is a positive measure for every 0 and 0 in [0, n], then so is tae'7^.

Moreover, if we set n = 0 in (4.3), ||Tg'£|| = 1, so * is probability preserving.
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That is, if p and v are probability measures (positive with unit mass), then so

is p * v . In particular we have for the unit point masses

00*3^ = ^1       (0<9,4><n).

Equation (4.3) yields the global inequality ||/î2','||oo = Rn'7(0) = 1, from which

we obtain the pointwise inequality

|Sï-y(OI<s0,,'(i)     (o <£<*)•

Finally we remark that

T*f(e)= I* mdTÎ'lit)
Jo

is a generalized translation in the sense of Levitan [Le]. If f(¿¡) = J2n^ocn^n '7 (£) >

then   T*fit) = ZnloCnRan'y(OK'y(<t>),™<i

(f*g)(Z) = fnT't'f(9)g(cf))dma'y(4>).
Jo

We summarize these observations and give some particular bounds in

Theorem 3. (i) If y £ E and a > -1/2, then M([0, n]) has a continu-

ous convolution #a'7 which satisfies \\p#a'yv\\ < Aa'y\\p\\ \\u\\ where Aa'y =

sup{||cre^||: 0 < 8, 0 < n}. Moreover HS^'l«, < Aa>y, and Aa<y satisfies the

following:

(a) // y > 0 and a > 0, then Aa-y = 1.

(b) If y >0 and a > -1/2 then Aa>y < max0<x<y \fa- \ß(-Jx)\.

(c) If y >0, then A~xl2<y < 1 + \ max0<x<7 \fx(y[x)\.

id) If y<0 and q>-1/2 then Aa<y < \^a-i/2(^/\y\)\ ■

(e) lfy<0, then A~x!2>y < 1 + pHvTJÏ)-
(ii) If y>0 and a>0, (M([0, n]), #a^y) is a Banach algebra.

(iii) If a > -1/2 and -co < y < j\_Xn, or a = -1/2 and y < 0, then

([0, n], *a'y) is a Jacobi type (a, a) hypergroup with Hermitian characters

{Rn'7}%Lo> identity So, and Haar measure m°J. Moreover

\Sï'y(Ç)\<SZ'y(i)       (0<Ç<7t).

The reader is referred to [CS3] for a general discussion of Jacobi type hyper-

groups and to [CMS, §4] for a discussion of those hypergroups which arise from

a general class of differential equations which includes (1.3).

Proof, (i) In light of the discussion preceding the theorem, it only remains to

establish the estimates (a)-(e). Observe that if a > -1/2,

\ar°->iZ,d,<i>)\wait)dz
,3-4>\

< max{|^_1/2(ym)|: |0 - 0| < £ < n - \8 + 0 - n\}

by (2.7) and the argument used to prove Theorem 1, (iv). This yields (a), and

(b) follows since 0 < yio < 1 . Part (d) uses the fact that JT.-1/2 is an increasing

function; parts (c) and (e) follow from slight modifications of the above,

(ii) is a simple consequence of (i)(a).
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(iii) The hypergroup assertions follow from the remarks preceding the the-

orem. The inequality follows since in any hypergroup, the characters must be
bounded by unity.   D

For the radial prolate functions, when y = 0, SÇ'°(z) has no zeros in

[0, oo ), and Theorem 2 yields the product formula for Jacobi functions ob-

tained in [FK]. In this case we define

dx%>»(z)=S*«>\z)(Z70a'\x)Z7°>\y)rxdox>:Qy(z)

with doxly(z) = J?a-0(z, x, y)sinh2a+lzdz and * = *a'° analogous to the

above; there is also an analogous definition of generalized translation suggested

by Theorem 2. With this definition we obtain

Theorem 4. There is a hypergroup ([0, oo), *Q'°) with Hermitian characters

{S>!Pf"O(z)/S^oa'0(z)}x>o, identity element ôo, and Haar measure ma'° given

by dma>°(z) = LS^'V)]2 sinh2a+1 zdz . Moreover, for each X>0

\Sf'°(z)\<^0a'°(z)        (0<z<oo).

The authors are grateful to Hubert Kalf who pointed out that if y < 0 an

argument based on the Sturm Comparison Theorem shows that Z?Qa'y must

have zeros in (0, oo), and so these methods will not yield bounds on the kernel

that will allow the construction of a convolution.
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