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Abstract
An effective form-finding method for form-fixed spatial network structures is presented in this paper. The adaptive form-
finding method is introduced along with the example of designing an ellipsoidal network dome with bar length variations 
being as small as possible. A typical spherical geodesic network is selected as an initial state, having bar lengths in a limit 
group number. Next, this network is transformed into the ellipsoidal shape as desired by applying compressions on bars 
according to the bar length variations caused by transformation. Afterwards, the dynamic relaxation method is employed to 
explicitly integrate the node positions by applying residual forces. During the form-finding process, the boundary condition 
of constraining nodes on the ellipsoid surface is innovatively considered as reactions on the normal direction of the surface at 
node positions, which are balanced with the components of the nodal forces in a reverse direction induced by compressions 
on bars. The node positions are also corrected according to the fixed-form condition in each explicit iteration step. In the 
serial results of time history, the optimal solution is found from a time history of states by properly choosing convergence 
criteria, and the presented form-finding procedure is proved to be applicable for form-fixed problems.

Keywords  Form-finding · Spatial network structure · Form-fixed · Structural optimization · Dynamic relaxation · Explicit 
integration

Introduction

Since the 1960s, the form finding process, also called the 
shape finding process, has been used to find the certain 
structural state of desired geometry, an equilibrium state, or 
both of them, with specified boundary conditions. Currently, 
the process has been progressively adopted for structural-
engineering applications, such as buildings and bridges 
(Allahdadian and Boroomand 2010; Huang and Xie 2008; 
Neves et al. 1995; Stromberg et al. 2010; Zordan et al. 2010; 
Briseghella et al. 2010, 2013a, b; Zordan et al. 2014), and it 
is widely applied in the architectural design of structures that 

transfer their loads almost purely using their shapes, or vice 
versa (Adriaenssens et al. 2014; Basso and Del Grosso 2011; 
Fenu et al. 2015; Briseghella et al. 2016). Such structures 
mainly include unstrained grid-shells (components in com-
pression), cable nets or membranes (components in tension) 
and tensegrity structures (components both in compression 
and tension) (Barnes 1977; Topping and Ivanyi 2007; Tran 
and Lee 2010; Koohestani 2013). Those structures are con-
sidered to be designed not only in a highly efficient manner 
from the structural point of view but also in an aesthetically 
pleasing manner (Lucerga and Armisén 2012). Some form 
finding methods have been developed through decades of 
practices (Nouri-Baranger 2004). The existing well-known 
methods can be categorized in the following main families:

–	 Stiffness matrix methods are based on using the standard 
elastic and geometric stiffness matrices that were adapted 
from structural analysis. These methods account for the 
material properties in computation, which may lead to 
difficulty in operations of matrices and control of (stable) 
convergence.
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–	 Geometric stiffness methods are material independent, 
with only a geometric stiffness. However, these methods 
are applied in their linear form and produce results that 
are not constructionally practicable (Barnes 1977); thus, 
they can serve only as a preliminary result.

–	 Force density methods. Because the ratio of force to 
length is a central unit in mathematics, force density 
methods can be considered as subtypes under the cate-
gory of geometric stiffness methods. Similar to geometric 
stiffness methods, additional iterations are necessary for 
uniform or geodesic networks or shape-dependent load-
ing, making the method non-linear (Barnes 1977; Haber 
and Abel 1982; Tan 1989; Lewis 2008; Koohestani 
2014). Recently, the so-called thrust network analysis 
derived from the force density method has been used 
to find the shape of a discrete membrane restrained to 
a given geometric limitation (Block 2009; Marmo and 
Rosati 2017).

–	 Dynamic equilibrium or relaxation methods that solve 
the problem of dynamic equilibrium to arrive at a steady-
state solution are equivalent to the static solution of static 
equilibrium. As adapted from explicit time series inte-
gration, the time step parameters are required to control 
stability and convergence (Barnes 1977; Lewis 1989; 
Baraff and Witkin 1998). The main advantage of the 
dynamic relaxation method is that no assembled struc-
tural stiffness matrix is required; hence, it is suitable for 
highly nonlinear problems (Topping and Ivanyi 2007). 
The iterations in dynamic relaxation methods simulate 
the physical evolutionary process of the structures with 
feasible geometric configurations. Furthermore, with the 
development of the computer technique, the time and 
resource consumption in iterations and results storage 
has been significantly reduced. Such dynamic relaxa-
tion methods are becoming more popular (Olsson 2012; 
Bagrianski and Halpern 2014) and will be the basis for 
developing the method to be presented in this paper.

Similar categorizations can be found in other works 
with different names (Topping and Ivanyi 2007; Basso 
and Del Grosso 2011; Veenendaal and Block 2012). In 
applying these methods, the general shapes or forms of 
structures are unknown in advance, the so called free-form 
structures (Liu and Shimoda 2014). By fixing boundary 
conditions, where the forces ended (transferred to con-
straints/supports), the final optimal forms will be found 
through continuous force paths (Fig. 1). In the phase of 
considering boundary conditions in the form-finding 
method or finite element method, typically, the degrees of 
freedom (DOFs) in a Cartesian coordinates system will be 
separated into the following two groups: interior ones (free 
to move) and exterior ones (fixed). Correspondingly, the 
mass matrix, stiffness matrix, displacement vectors, force 

vectors and so on, will be divided into sub-matrices and 
sub-vectors to solve the static system equations.

In the case that the general network form is known or 
fixed, for example, finding a network in the shape of the 
desired ellipsoidal dome, as shown in Fig. 2, the “form” 
to find is the position of the joints/nodes in the network, 
while the “form” surface of network is already fixed. If the 
typical form-finding method is applied, then the nodal sup-
ports should be movable in the surface with changing sup-
ports directions that are normal to the surface, that is, the 
boundary conditions change at every iteration step. This 
situation could make it difficult to correctly describe the 
boundary conditions in the Cartesian coordinate system 
(with the exception of specific desired shapes, e.g., a cyl-
inder shape could be described in a cylindrical coordinates 
system, a spherical shape could be described in a spheri-
cal coordinates system, and so on; otherwise, stiffness 
matrices in the corresponding surface coordinates must 
be developed). Moreover, the calculation matrices will be 
very complicated and might cause singularity problems in 
the matrix operations.

In this case, the dynamic relaxation method will be 
applied, thus avoiding inverse of stiffness matrices of 
complicated and varied geometries; the typical method 
needs to be adapted to easily update the position-depend-
ent boundary conditions. Therefore, the objective of this 
paper is to, based on the dynamic relaxation method, con-
struct an adaptive form finding method for a bar network 
on a form-fixed surface with boundary conditions updated 
in each time step.

Objective and framework

To demonstrate the framework of the presenting method, 
the example of designing an ellipsoid shaped geodesic 
network dome is employed. The lengths of semi-principal 
axes of the ellipsoid are a = 15 m, b = 11 m, and c = 12 m 
(height). The target is to obtain a geodesic network dome 
in this desired ellipsoidal shape, having bars with as few 
length variations as possible, and each bar length should be 
approximately 3 m, for the purpose of economy and conveni-
ence of construction.

form finding

Fig. 1   Typical form-finding of a saddle (Reproduced with permission 
from Veenendaal and Block 2012)
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Geodesic network

As is known to architectural designers, the typical geodesic 
network in the form of a sphere or half sphere, besides the 
aesthetical aspect, the length of all bars (or called struts, 
beams, edges) of the network are in groups of limited num-
ber, according to the frequency of the network, as shown in 
Table 1. The “frequency” here, is defined by the subdivi-
sions of one basic triangular face of an icosahedron. The 
higher the frequency, the more triangles there are in the 
geodesic dome. In icosahedron-based geodesic domes, the 
flat bottoms are available from half-sphere of even frequen-
cies, whereas no flat bottoms are available from those of odd 
frequencies. Thus, the geodesic domes could be fabricated 
in a few types of nodes (also called joints, hubs, vertices) 
and bars and then assembled on-site with a lower cost of 
construction.

Based on the characteristics of the geodesic network, 
the design target is considered to have similar distribution 
of bars of a geodesic dome at a frequency of 6 V with a 

spherical radium of 15 m, where bar lengths in nine groups 
vary from 2.439 to 3.429 m. Thus, this network (designated 
as initial state or zero state in the following content) is trans-
formed to an ellipsoidal geodesic network by scaling in x, 
y, and z directions with factors of 15/15, 11/15, and 12/15, 
respectively (designated as first state). The next step is to 
find a new node position on the current ellipsoidal surface 
that allows the bar lengths to “return” to the correspond-
ing lengths of the geodesic network before transformation. 
To achieve this goal, the adaptive form-finding procedure is 
conducted, as presented in the following section.

Form‑finding procedure

In the first state, bars are given pre-compressions calculated 
from the changing lengths while being transformed from the 
initial state, F1 = EA(L1 − L0)/L0. It can be predicted that, after 
releasing the bar forces, the network form will expand along 
the surface to cover more surface than a half-dome in the end; 

Fig. 2   Example of the form-
finding problem of a network on 
a fixed-form

form finding?

a
b

c

Table 1   Typical geodesic 
domes with different 
frequencies

Frequency (V) Geodesic dome Number of length 
groups

Number of bars 
(struts, beams)

Number of 
nodes (joints, 
hubs)

2 2 26 65

4 6 250 91

6 9 555 196

8 19 980 341
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thus, the “over-design” part will be cut off properly to fit the 
target network.

In the form-finding procedure, the pre-compressions in 
bars are the only loadings considered on the network struc-
ture. Regarding the nodal forces induced by releasing the 
pre-compressed bars, their components in the directions of 
surface normal at the nodes should be balanced with the reac-
tion forces from the surface constraining boundary conditions. 
The residual forces of the nodal forces and the reaction forces, 
therefore, are the components of the nodal forces in the tangent 
plane of the surface at nodes and can be calculated according 
to the nodal forces and the positions of the nodes. In this man-
ner, for any state of the network, the boundary conditions are 
considered in the calculation of the residual forces without 
recognizing the degrees of freedom that are fixed or not fixed. 
Moreover, the operations on vectors and matrices are unified 
for different geometries.

As the dynamic relaxation method is applied, the network 
undergoes a structural dynamic process, where the explicit 
integration of time-dependent variables will be performed 
to obtain the evolutionary node positions over a given time 
duration until the convergence criteria are met. As ideally 
expected, in the end of an iteration, if all nodes are to be at 
stable positions, then the network in that state will have more 
or less the same bar length groups as those in the initial state. 
However, due to the inconstant curvatures of the desired ellip-
soidal surface, the primary radii varying in the quarter part, 
the bars obviously will not have the same length as those in 
the spherical dome. The general objective of this form-finding 
is to find a state of the structure with the most averaged bar 
length variations, where the forces in bars will be the most 
balanced. Therefore, the bar length or force will be the main 
criterion for convergence. The framework of this procedure 
is summarized and shown in the following flowchart (Fig. 3). 
The detailed procedure and relative formulations are discussed 
in the next section.

Procedure and formulations

Geometry state

In each step of the calculation, the items are mainly calculated 
based on the geometric state of the network. Generally, a bar-
node matrix C is used to describe the topology of a network of 
bars and nodes (Schek 1974). For a network with m bars and 
n nodes in three-dimensional space, a bar-node matrix C is 
constructed, where the entries of the i-th row and j-th column 
of the m × n matrix C are as follows:

(1)Cij =

⎧⎪⎨⎪⎩

+1 if node j is the start of bar i

−1 if node j is the end of bar i

0 otherwise

The n × 3 nodal coordinate vectors x is as follows:

The coordinate difference vectors (bar directions in rows) 
u can be written as a function of C and coordinate vectors x 
as follows:

(2)� =
�
� � �

�
=

⎡⎢⎢⎢⎣

x1 y1 z1
x2 y2 z2
⋮ ⋮ ⋮

xn yn zn

⎤⎥⎥⎥⎦

(3)� =
[
� � �

]
= ��

initial state
(geodesic network of 

spherical dome) 

first state
(transformation to 

ellipsoidal)

node positions,  
bar lengths,  

support directions 

initial bar lengths 

forces on bars 

forces on nodes 

residual forces on 
nodes

accelerations on nodes 

explicit integration to 
new node positions 

projection of node 
positions to surface 

new state

convergence 
criteriameet?

no

selection of optimal 
form 

yes 

Fig. 3   Flowchart of the framework of the form-finding procedure (the 
right column shows the calculations in each iteration; the left column 
shows the updated state variables for calculation)
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where � , � and � are vectors, each containing m coordinate 
differences in the corresponding Cartesian direction. With 
coordinate difference vectors, the bar lengths L are as follows:

where the function diag() returns the diagonal matrix from 
the vector or the diagonal elements from the matrix. There-
fore, L is an m × m matrix that contains only diagonal ele-
ments that are bar lengths.

The masses of the structure are considered to be lumped 
at the nodes. The lumped mass matrix can be written as 
follows:

where ml is the mass per unit length of bars or is expressed 
in material density and bar section area ml = ρA.

The problem with form-finding is, in principle, a geomet-
ric one, i.e., material independent (Barnes 1999). After con-
vergence, the forces on bars with m desired stiffnesses EA 
do not disturb the state of equilibrium (Gründig et al. 2000). 
In this procedure, the bar stiffnesses EA are considered as 
constant for all bars and are applied directly to all steps of 
the calculation of forces on beams, expressed as follows:

where L0 is calculated via Eqs. (2)–(4) with coordinates x0 
of the geodesic dome of a unit sphere; and I is an identity 
matrix. Thus, the force-to-length ratios, also called force 
densities or tension coefficients (Veenendaal and Block 
2012), are given by the following:

The resulting forces on nodes are as follows:

Thus, the secant stiffness matrix can be written as follows:

Boundary conditions/constraints update

The boundary conditions are updated through achieving the 
equilibrium of forces, as introduced above. In the design 
example, the nodes are constrained on an ellipsoidal surface, 
where movements in the normal directions of the surface are 
fixed, whereas movements in the tangent planes are free. 
The ellipsoidal surface function in the Cartesian coordinates 
system can be written as follows:

(4)� =
(
diag

(
�
)�
+diag

(
�
)�
+diag

(
�
)�) �

�

(5)� = ml|�|T�

(6)� = EA
(
��−1

0
− �

)

(7)� = ��−1

(8)� = −�T�� = −�T��−1��

(9)� = −�
(
� − �0

)−1
= �T��−1��

(
� − �0

)−1

(10)F
([
x, y, z

])
=
(
x

a

)2

+
( y
b

)2

+
(
z

c

)2

− 1 = 0

where [x, y, z] is an arbitrary point on the surface. Thus, the 
normal direction vector of the ellipsoidal surface at point [x, 
y, z] is as follows:

or, expressed as vectors as follows:

The normal vectors can be normalized as follows:

where the expression of ||n|| returns the second order norm of 
each row in n. The projections of nodal forces P on normal 
�̃ are given by the following:

Because the reaction forces at nodes are balanced with Ppn, 
the reaction forces are − Ppn. The resulting residual forces 
are as follows:

Explicit integration

The relaxation of the bar forces initiates the structural 
dynamic time history process. The state variables of a new 
step will be explicitly integrated from the current state 
according to the governing ordinary differential equations. 
Typically, the integration implementation uses either the 
explicit classic 4th order Runge–Kutta Method (Baraff 
and Witkin 1998) or the Central Finite Difference Method 
(Barnes 1999). Here, a simple conditionally stable explicit 
method based on the Modified Trapezoidal Rule Method 
(Pezeshk and Camp 1995) is used.

The structural equation of motion at step time of t can be 
expressed as follows:

where the subscript of t denotes the present variable cal-
culated based on the geometric state at time of t. The mass 
matrix is constant over time; the external forces Pe are the 
reaction forces; the displacement induced internal forces Kx 
are the nodal forces resulting from the bar forces. Therefore, 
Eq. (16) can be rewritten as follows:

The integration using the Modified Trapezoidal Rule 
Method is accomplished as follows:

(11)
[
�F

�x
,
�F

�y
,
�F

�z

]
=

[
2x

a2
,
2y

b2
,
2z

c2

]

(12)� = �

⎡
⎢⎢⎣

2
�
a2

2
�
b2

2
�
c2

⎤
⎥⎥⎦

(13)�̃ = �diag(‖�‖)−1

(14)𝐏pn = diag
(
diag

(
𝐏𝐧̃

T
))
𝐧̃

(15)𝐑 = 𝐏 − 𝐏pn = 𝐏 − diag
(
diag

(
𝐏𝐧̃

T
))
𝐧̃

(16)�t�t +�t�t = �e,t

(17)��t = �t
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Considering the constraints again here, the resulting 
coordinates xt+Δt, will position outside from the ellipsoid 
surface because the nodal accelerations cause the displace-
ments and velocities on the tangent directions of previous 
positions xt. Therefore, the coordinates will be projected 
back to the constraint of the ellipsoid surface, and the veloc-
ities will be updated by removing the component on newly 
normal directions �̃t+Δt updated via Eqs. (12) and (13). The 
updated coordinates and velocities will be used for updating 
other state variables and for integration in the next iteration.

where k is the absolute minimum root of the surface con-
straint function as follows:

The condition of stability of the integration is to satisfy the 
maximum time step length (Pezeshk and Camp 1995) as 
follows:

where L is the minimum length of bars; ρ is the material 
density of bars. In this case, for example, all the bars are 
made of structural steel, and all the bars are longer than 
2 m. Thus, the time step in the length of Δt = 1 × 10−5 
s < 2 × 2 × (7850/2 × 1011)1/2 s ≈ 8 × 10−4 s is satisfied.

(18)

�
t
= �−1�

t

�
t+Δt∕ 2 =

(
� −

1

2
�−1

t
�

t

)
�
t−Δt∕ 2 + Δt�

t

�
t+Δt = �

t
+

Δt

2

(
�
t−Δt∕ 2 + �

t+Δt∕ 2

)

(19)
�∗
t+Δt

= �
t+Δt

⎡
⎢⎢⎢⎢⎣

1

k∕ a2+1
1

k∕ b2+1
1

k∕ c2+1

⎤
⎥⎥⎥⎥⎦

�∗
t+Δt∕ 2

= �
t+Δt∕ 2 − diag

�
diag

�
�
t+Δt∕ 2�̃t+Δt

T
��
�̃
t+Δt

(20)F

⎛⎜⎜⎜⎝
�t+Δt

⎡⎢⎢⎢⎣

1

k∕ a+a
1

k∕ b+b
1

k∕ c+c

⎤⎥⎥⎥⎦

⎞⎟⎟⎟⎠
= 0

(21)Δt <
T

𝜋
= 2

√
mlL

EA∕L
= 2L

√
𝜌

E

Convergence criteria

To solve the convergence of form-finding problem, 
the following criteria (or some of them) are usually 
adopted (Veenendaal and Block 2012) as follows:

(1)	 small variations in the displacements between 
successive iterations ( ‖‖�t+Δt − �t

‖‖ < �);
(2)	 small variations of the bar forces (or bar lengths) 

between successive iterations ( ‖‖�t+Δt − �t
‖‖ < �);

(3)	 small  values of  the residual  forces 
( ‖‖�t − �t

‖‖ < �);
(4)	 small  values of  the kinet ic  energy (‖‖‖

1

2
�diag

(‖‖�t‖‖
)2‖‖‖ < �

)
;

(5)	 maximum number of iterations (or maximum 
time duration) reached.

The dynamic relaxation process may not have a 
numerical convergence that allows the structure to 
achieve a still or rest state because no damping is 
introduced, as the equation of motion Eq. (16) repre-
sents an undamped structure system to simplify the 
calculation. However, with a preset maximum num-
ber of iterations, the calculation will “converge”, 
even if no damping exists in the system.

After the calculation converged, the optimal (best) 
solution of the network will be selected according to 
the convergence criteria that the calculation achieved. 
Recalling the objective description of the design exam-
ple, the state of minimum residual forces of the entire 
calculation duration will be selected as the optimal 
solution. The maximum acceptable errors have been 
decided according to not only numerical considera-
tions but also structural design ones. If no numerical 
convergence is achieved in the relevant time dura-
tions (converged according to criterion 5), the state of 
minimum residual forces may not be at the end of the 
time history; as a result, the state variables must be 
evaluated if the network is desired. Otherwise, the time 
duration must be extended for another new calculation, 
or the almost-target state from current calculation is 
used as the initial state for the new calculation.

Fig. 4   Time history of the maxi-
mum displacements between 
successive iterations
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Solutions and evaluation

Optimal solution

As the state of the dome network fixed on the ellipsoidal 
surface of a = 15 m, b = 11 m, and c = 12 m, through 
the procedure presented above and considering all the 
five convergence criteria, the time history results, with 

time step length Δt = 1 × 10−5 s and time duration of 
500Δt (500 iteration steps), of the state variables maxi-
mum displacements, maximum residual forces, maximum 
bar length variations, average bar length variations, and 
standard deviation of bar length variations are shown in 
Figs. 4, 5, 6, 7 and 8. The state variables are calculated 
and compared between some the representative states over 
the time history. The selected states are shown in Table 2.

Fig. 5   Time history of the 
maximum residual force
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Fig. 6   Time history of the 
maximum value of the length 
variation (Lt − L0)/L0
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Fig. 7   Time history of the aver-
age value of the length variation 
(Lt − L0)/L0
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Fig. 8   Time history of the 
standard deviation of the length 
variation (Lt − L0)/L0
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It is observed that in this calculation, no numerical 
convergence was achieved; nevertheless, the maximum 
residual force met the minimum value at the 181st step 
during the dynamic process. In the same step, the vari-
ation of the bar length reaches the point having mini-
mum values of the average and standard deviation at the 
same time. Thus, the present procedure is proved to be 
applicable.

Therefore, the 181st state is considered to be the opti-
mal solution to the network structure (Fig. 9). Thus, the 
final network can be the part above the ground level by 
cutting off either directly at the ground level or at the 
horizontal bars closest to the ground level. Here, as shown 
in Fig. 9, if the part above the bands that connect the 
centres of lower pentagons is kept as the final solution 
to the design goal, then the possible design would be as 
shown in Fig. 10.

Table 2   Representative states 
during the calculation

Time step Network Max. residual force Bar length variation distribution

Max. (%) Average (%) Standard 
deviation 
(%)

1 149.2 MN 26.7 15.0 7.3

20 74.6 MN 27.0 14.1 7.0

74 63.2 MN 25.3 10.7 6.5

181 53.8 MN 22.7 5.5 5.2

330 69.2 MN 45.3 11.8 10.0
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Discussion

In the procedure presented above, some key parameters should 
be noted, such as the initial state and the control of explicit 
integration and convergence. Avoiding lengthy parametric 
analyses, some discussions are introduced as follows.

Initial forces or impact pulse applied on bars will obviously 
affect the final state at end of time duration and the speed of 
dynamic evolution process. The induced higher accelerations 
on nodes will cause the nodes to oscillate at higher amplitudes. 
Therefore, the intermediate state will be missed in the time his-
tory records. In the present example, the initial bar forces (pre-
compressions) are obtained from a spherical geodesic dome 
(as original bar lengths). If this radium of the geodesic dome 
is chosen with a large difference between the target ellipsoid 
semi-principal axes, then the initial bar forces and the forces 

calculated during dynamic relaxation will be higher and induce 
time states with lower resolution. Thus, the initial geometry is 
suggested to be as closer to the target as possible.

In the explicit integration, as stated above, the studies on the 
explicit dynamic process revealed the time step length effect 
on the stability of integration. If the procedure is calculated in 
a material-independent manner, then the time step also must 
be less than the dimension unit of the structure elements to 
ensure the explicit integration remains stable.

The convergence criteria chosen for the form-finding pro-
cedure are also important. In the example case presented, the 
target is to minimize length variations, which leads to the state 
of minimum residual force. The other convergence criteria 
(except the criterion 5) have reached 0-state at the initial state 
and obviously are not applicable in this case. Finally, with the 
state of optimal solution found, the form-finding method and 
criterion chosen are proved to be effectively applicable.

Conclusions

The adaptive form-finding method presented in this paper is 
a simple and effective procedure for computational design 
of spatial network structures with a fixed form. According 
to the limitation of the research, the following conclusions 
can be drawn:

(1)	 The dynamic relaxation method is applicable in form-
finding process of form-fixed spatial network structure, 
which avoids the inverse operations on complicated 
stiffness matrices in each step;

(2)	 During form-finding process, the boundary conditions 
can be applied as reaction forces through force equi-
librium to avoid varying operations on vectors and 
matrices, especially for cases of time-dependent vary-
ing boundary conditions;

(3)	 In spatial form-fixed problem, the coordinates and 
velocities integrated from accelerations could be posi-
tioned out of the constraint form. In order to keep solu-

Fig. 9   Optimal solution of a network on an ellipsoidal surface (red 
dotted line represents the ground level)

Fig. 10   Final design solution—
lateral view
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tion feasible, it is necessary to update the coordinates 
and velocities after each explicit integration;

(4)	 It is noticed that the choosing of initial state will affect a 
lot the states obtained in the time duration. It is better to 
choose the initial state closer as much as possible to the 
target state; the time step length is important for the sta-
bility of explicit integration, and for finding accurately 
the optimal solution; the convergence criteria chosen 
for time step iteration influence the target state charac-
teristics. Therefore, the convergence criteria need to be 
chosen properly, especially in undamped systems.
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