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Superconductivity in the Repulsive Hubbard Model

D. Baeriswyl

Abstract The two-dimensional repulsive Hubbard model
has been investigated by a variety of methods, from small to
large U. Superconductivity with d-wave symmetry is con-
sistently found close to half filling. After a brief review of
the various methods a variational many-electron state is dis-
cussed in more detail. This trial state is a natural extension
of the Gutzwiller ansatz and provides a substantial improve-
ment thereof.
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1 Introduction

During the last two decades the Hubbard Hamiltonian
has become the model for strongly correlated particles,
both fermions and bosons, and nowadays its investiga-
tion does not need to be justified. A great variety of
phenomena have been interpreted in terms of the Hub-
bard model, such as ferromagnetism, antiferromagnetism,
bond alternation, spin liquids, superconductivity and even
charge stripes. Due to the complexity of the theoretical
problem the analysis is typically based either on approx-
imate treatments—mean-field theory, perturbative expan-
sions, variational wave functions—or on “numerically ex-
act” methods—diagonalization of the Hamiltonian for small
system sizes, quantum Monte Carlo, Density Matrix Renor-
malization Group. Each method has its own advantages,
but also its drawbacks. Clearly one has to examine the
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various results with a critical mind because often the ap-
proximations are too crude and may thus overestimate cer-
tain ordering tendencies. A famous example is the Stoner
theory of ferromagnetism. If applied to the simple Hub-
bard model on the square lattice at half filling, this the-
ory predicts a ferromagnetic ground state for any (posi-
tive) value of the Hubbard parameter U. In contrast, de-
tailed variational calculations show that there is no ferro-
magnetism at half filling (where the ground state is anti-
ferromagnetic) and close to half filling ferromagnetic or-
dering could at most occur for extremely large values
of U.

While ferromagnetic long-range order fades away if
methods are used that are more accurate than Stoner the-
ory, the situation is radically different in the context of su-
perconductivity. In fact, within BCS theory the repulsive
Hubbard model is not superconducting. The on-site repul-
sion clearly is detrimental to on-site pairing, which can be
discarded right away. For other types of pairing, such as
extended s-wave, p-wave or d-wave, the on-site repulsion
gives zero contribution to the condensation energy in BCS
mean-field theory. Thus, if the Hubbard model has a super-
conducting ground state, then the order parameter has to
be stabilized by electron correlations. A pictorial view of
such an unusual superconductor has been given by Ander-
son in his theory of resonating valence bonds where sin-
glet bonds of the parent antiferromagnetic insulator turn
into charged superconducting pairs upon doping [1]. De-
tailed recent studies for small, intermediate and large val-
ues of U confirm that the repulsive Hubbard model on a
square lattice does exhibit superconductivity with d-wave
symmetry for electron densities close to (but not equal
to) 1.
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2 From Small to Large U

‘We consider the Hubbard Hamiltonian

H=Hy+UD, 1)

where

I:Io = —Zl‘,‘jCZUCjU 2)
ijo

describes hopping over the sites of a square lattice, with the
usual fermion creation and annihilation operators, clTU and
cio, respectively, and

[) =Zn,¢n,¢, with n;, ZCZGCI‘O—, (3)
i

measures the number of doubly occupied sites. Only hop-
ping between nearest (¢;; = t) and next-nearest neighbors
(tij =1") will be considered. The bare spectrum,

ek = —2t(cosky + cosky) — 4t' cos ky cos ky, @)

has a bandwidth W = 8. We discuss the three regimes of
small U (U « W), intermediate U (U ~ W) and large U
(U > W) separately because they are usually approached
with rather different techniques.

2.1 Small U

The question of Cooper pairing in a fermionic system with
purely repulsive interactions has been addressed a long time
ago by Kohn and Luttinger [2] using a perturbative calcula-
tion of the effective two-particle vertex in powers of the cou-
pling strength. Their estimate for the critical temperature in
the case of *He was deceptively small, but it was argued that
in electronic systems with an appropriate band structure the
situation may be more favorable [2]. In the case of the Hub-
bard model on the square lattice close to half filling, diver-
gences preclude the application of naive perturbation theory,
but the development of the renormalization-group approach
for interacting fermions during the early nineties paved the
way for studying the effective two-particle vertex also in this
case. Several groups used this technique, which consists in
tracing out high-energy states in incremental steps and at the
same time incorporating their effects within a renormalized
vertex, which is a function of momenta [3-6]. These stud-
ies differ in technical details, but not in the main message,
namely that at and very close to half filling the ground state
of the two-dimensional Hubbard model is antiferromagnetic
while for higher but not too high doping d-wave supercon-
ductivity prevails. It is not easy to provide accurate quantita-
tive predictions for gap sizes, critical temperatures or order
parameters using this approach, but for U of the order of /2
these quantities are not ridiculously small.

2.2 The Large U Limit

In the large U limit, where double occupancy is suppressed,
the Hubbard model can be replaced by the r—J model close
to half filling [7, 8], defined by the Hamiltonian

ﬁz—Jz_Ztijc,Tnga‘f‘ZJijSi‘Sj, (5)

ijo ij

where S; are spin % operators and J;; = 2ti2j /U . This Hamil-
tonian is supposed to act in the reduced space of configura-
tions without doubly occupied sites. It is important to men-
tion that in general additional three-site terms exist which
are expected to be negligible only very close to half fill-
ing. Further away from half filling these terms should be
kept if one wants to study the large U limit of the Hubbard
model. A great variety of techniques have been applied to
the 7—J model [9, 10]. Here we just mention a simple vari-
ational ansatz for the ground state, the “resonating valence
bond state” (RVB) of Anderson [1],

Wrvs) = [ [(1 = nirni) %), (6)

1

where |¥,) represents the filled Fermi sea or a BCS singlet
superconductor. Variational Monte Carlo results for d-wave
pairing with the gap function

A(K) = Ap(cosky —cosky) @)

yield a large region of doping, up to about 40%, where this
state is preferred [11]. The gap parameter Ag is found to be
largest at half filling, of the order of ¢, at the same time the
pair amplitude goes to zero when approaching half filling.
This unusual behavior has been associated with the pseudo-
gap of underdoped cuprates [12].

2.3 Cuprates, a Case for Intermediate U

The application of the Hubbard model to layered cuprates
is a priori not obvious, but several experiments indicate that
this is a good starting point. Photoemission data exhibit a
single band crossing the Fermi surface, at least in optimally
and overdoped samples, and the shape of the Fermi surface
can be fitted rather well [13] using the tight-binding band
structure (4) with ¢ &~ —0.3¢. Inelastic neutron scattering for
the parent antiferromagnetic insulator can be interpreted in
terms of the Heisenberg model, provided that ring exchange
is included [14]. This term appears naturally in the Hubbard
model if the large U expansion is carried out to higher orders
than in (5). The comparison between theoretical and experi-
mental dispersion curves for magnetic excitations gives [15]
an estimate of U ~ W. The analysis of the neutron data is
consistent with photoemission experiments on the antiferro-
magnetic insulator, where the momentum distribution 7 (k)
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shows a pronounced k-dependence [13], in contrast to the
Heisenberg model where n(k) = 1. We conclude that U is
of the order of the bandwidth W where neither the func-
tional renormalization group, valid for U < W, nor the t—J
model, representing the U > W regime, can be trusted.

2.4 Variational Results for Intermediate U

Numerical approaches, such as quantum Monte Carlo [16]
or quantum cluster methods [17, 18] are widely used to un-
ravel the secrets of the Hubbard model, especially for in-
termediate values of U. These techniques have certain ad-
vantages, for instance to be rather unbiased, but they have
also their problems, such as the trouble with the fermionic
sign and/or the restriction to small cluster sizes. An alterna-
tive route is the use of variational wave functions. The RVB
state (0) is clearly not appropriate for U of the order of the
bandwidth, where doubly occupied sites cannot be excluded.
Many other proposals have appeared in the literature, but we
restrict ourselves to one of them, defined as

|Wep) = e M0/ e=8D |yy). (8)

The operator e ¢ partially suppresses double occupancy
for g > 0, while e H0/! promotes both hole motion and
kinetic exchange. The limit 4 — 0 leads to the Gutzwiller
ansatz. In the large U limit and close to half filling the vari-
ational ansatz (8) for the Hubbard model is equivalent to the
RVB state (6) applied to the —J model [19], but we should
keep in mind that the state (8) is a rather poor approximation
for U > W [19, 20].

The results obtained with the variational ground state (8)
for U = 8t, t' = —0.3¢ can be summarized as follows [21].
Superconductivity occurs in a limited doping range, namely
for electron densities 0.75 < n < 1 on the hole-doped side
and 1.05 < n < 1.2 for electron doping. The two endpoints
0.75 and 1.2 correspond to the two specific densities beyond
which the antiferromagnetic zone boundary does no longer
cut the Fermi surface (the “hot spots” have disappeared).
This strongly hints at pairing induced by antiferromagnetic
fluctuations. Very close to half filling the magnetic correla-
tions become so strong that they suppress both the supercon-
ducting gap parameter and the Cooper pair amplitude. There
are qualitative differences between hole and electron doping.
In the former case the energy gain comes clearly from the ki-
netic energy, while in the latter case the more conventional
gain in potential energy is found. Moreover the condensa-
tion energy for the hole-doped side is much larger than that
for electron doping.

The variational results obtained with the ansatz (8) are in
good agreement with quantum cluster calculations [22] and
experimental phase diagrams [23]. A quantum Monte Carlo
study by Aimi and Imada [24], often quoted as counter-
argument against superconductivity in the repulsive Hub-
bard model, is also consistent with these variational results,
not however with the predictions of the RVB trial state (6).

3 Concluding Remarks

An important issue in the discussions of layered cuprates
is the nature of the “pseudogap phase”. In contrast to the
RVB theory [11, 12] the variational results discussed above
did not show an energy scale steadily increasing when ap-
proaching half filling. This can be due to the fact that com-
peting instabilities, such as charge stripes, incommensurate
spin-density waves or circulating currents have not been in-
cluded in the ansatz. In any case, the superconducting gap,
which was found to decrease when approaching half filling,
is more naturally associated with an onset temperature for
superconducting fluctuations than with the temperature 7
below which the pseudogap appears.
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