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Abstract
In this paper, in b-metric space, we introduce the concept of b-generalized
pseudodistance which is an extension of the b-metric. Next, inspired by the ideas of
Nadler (Pac. J. Math. 30:475-488, 1969) and Abkar and Gabeleh (Rev. R. Acad. Cienc.
Exactas Fís. Nat., Ser. A Mat. 107(2):319-325, 2013), we define a new set-valued
non-self-mapping contraction of Nadler type with respect to this b-generalized
pseudodistance, which is a generalization of Nadler’s contraction. Moreover, we
provide the condition guaranteeing the existence of best proximity points for
T : A→ 2B. A best proximity point theorem furnishes sufficient conditions that
ascertain the existence of an optimal solution to the problem of globally minimizing
the error inf{d(x, y) : y ∈ T (x)}, and hence the existence of a consummate approximate
solution to the equation T (x) = x. In other words, the best proximity points theorem
achieves a global optimal minimum of the map x → inf{d(x; y) : y ∈ T (x)} by
stipulating an approximate solution x of the point equation T (x) = x to satisfy the
condition that inf{d(x; y) : y ∈ T (x)} = dist(A;B). The examples which illustrate the main
result given. The paper includes also the comparison of our results with those existing
in the literature.
MSC: 47H10; 54C60; 54E40; 54E35; 54E30
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1 Introduction
A number of authors generalize Banach’s [] and Nadler’s [] result and introduce the
new concepts of set-valued contractions (cyclic or non-cyclic) of Banach or Nadler type,
and they study the problem concerning the existence of best proximity points for such
contractions; see e.g. Abkar and Gabeleh [–], Al-Thagafi and Shahzad [], Suzuki et
al. [], Di Bari et al. [], Sankar Raj [], Derafshpour et al. [], Sadiq Basha [], and
Włodarczyk et al. [].
In , Abkar and Gabeleh [] introduced and established the following interesting

and important best proximity points theorem for a set-valued non-self-mapping. First,
we recall some definitions and notations.
Let A, B be nonempty subsets of a metric space (X,d). Then denote: dist(A,B) =

inf{d(x, y) : x ∈ A, y ∈ B}; A = {x ∈ A : d(x, y) = dist(A,B) for some y ∈ B}; B = {y ∈ B :
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d(x, y) = dist(A,B) for some x ∈ A}; D(x,B) = inf{d(x, y) : y ∈ B} for x ∈ X. We say that the
pair (A,B) has the P-property if and only if

{
d(x, y) = dist(A,B)∧ d(x, y) = dist(A,B)

} ⇒ d(x,x) = d(y, y),

where x,x ∈ A and y, y ∈ B.

Theorem . (Abkar and Gabeleh []) Let (A,B) be a pair of nonempty closed subsets of
a complete metric space (X,d) such that A �= ∅ and (A,B) has the P-property. Let T : A →
B be a multivalued non-self-mapping contraction, that is, ∃≤λ<∀x,y∈A{H(T(x),T(y)) ≤
λd(x, y)}. If T(x) is bounded and closed in B for all x ∈ A, and T(x) ⊂ B for each x ∈ A,
then T has a best proximity point in A.

It isworth noticing that themapT inTheorem. is continuous, so it is u.s.c. onX, which
by [, Theorem , p.], shows that T is closed on X. In , Czerwik [] introduced
of the concept of a b-metric space. A number of authors study the problem concerning
the existence of fixed points and best proximity points in b-metric space; see e.g. Berinde
[], Boriceanu et al. [, ], Bota et al. [] and many others.
In this paper, in a b-metric space, we introduce the concept of a b-generalized pseu-

dodistance which is an extension of the b-metric. The idea of replacing a metric by the
more general mapping is not new (see e.g. distances of Tataru [], w-distances of Kada et
al. [], τ -distances of Suzuki [, Section ] and τ -functions of Lin and Du [] in metric
spaces and distances of Vályi [] in uniform spaces). Next, inspired by the ideas of Nadler
[] and Abkar andGabeleh [], we define a new set-valued non-self-mapping contraction
of Nadler type with respect to this b-generalized pseudodistance, which is a generalization
of Nadler’s contraction. Moreover, we provide the condition guaranteeing the existence of
best proximity points for T : A→ B. A best proximity point theorem furnishes sufficient
conditions that ascertain the existence of an optimal solution to the problem of globally
minimizing the error inf{d(x, y) : y ∈ T(x)}, and hence the existence of a consummate ap-
proximate solution to the equation T(X) = x. In other words, the best proximity points
theorem achieves a global optimal minimum of the map x→ inf{d(x; y) : y ∈ T(x)} by stip-
ulating an approximate solution x of the point equation T(x) = x to satisfy the condition
that inf{d(x; y) : y ∈ T(x)} = dist(A;B). Examples which illustrate the main result are given.
The paper includes also the comparison of our results with those existing in the literature.
This paper is a continuation of research on b-generalized pseudodistances in the area of
b-metric space, which was initiated in [].

2 On generalized pseudodistance
To begin, we recall the concept of b-metric space, which was introduced by Czerwik []
in .

Definition . Let X be a nonempty subset and s ≥  be a given real number. A func-
tion d : X × X → [,∞) is b-metric if the following three conditions are satisfied:
(d) ∀x,y∈X{d(x, y) =  ⇔ x = y}; (d) ∀x,y∈X{d(x, y) = d(y,x)}; and (d) ∀x,y,z∈X{d(x, z) ≤
s[d(x, y) + d(y, z)]}.

The pair (X,d) is called a b-metric space (with constant s ≥ ). It is easy to see that each
metric space is a b-metric space.

http://www.fixedpointtheoryandapplications.com/content/2014/1/39
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In the rest of the paper we assume that the b-metric d : X × X → [,∞) is continuous
onX. Now in b-metric spacewe introduce the concept of a b-generalized pseudodistance,
which is an essential generalization of the b-metric.

Definition . Let X be a b-metric space (with constant s ≥ ). The map J : X × X →
[,∞), is said to be a b-generalized pseudodistance on X if the following two conditions
hold:
(J) ∀x,y,z∈X{J(x, z)≤ s[J(x, y) + J(y, z)]}; and
(J) for any sequences (xm :m ∈N) and (ym :m ∈ N) in X such that

lim
n→∞ sup

m>n
J(xn,xm) =  (.)

and

lim
m→∞ J(xm, ym) = , (.)

we have

lim
m→∞d(xm, ym) = . (.)

Remark . (A) If (X,d) is a b-metric space (with s ≥ ), then the b-metric d : X × X →
[,∞) is a b-generalized pseudodistance onX. However, there exists a b-generalized pseu-
dodistance on X which is not a b-metric (for details see Example .).
(B) From (J) and (J) it follows that if x �= y, x, y ∈ X, then

J(x, y) > ∨ J(y,x) > .

Indeed, if J(x, y) =  and J(y,x) = , then J(x,x) = , since, by (J), we get J(x,x)≤ s[J(x, y) +
J(y,x)] = s[+] = . Now, defining (xm = x :m ∈ N) and (ym = y :m ∈N), we conclude that
(.) and (.) hold. Consequently, by (J), we get (.), which implies d(x, y) = . However,
since x �= y, we have d(x, y) �= , a contradiction.

Now, we apply the b-generalized pseudodistance to define the HJ -distance of Nadler
type.

Definition . Let X be a b-metric space (with s ≥ ). Let the class of all nonempty
closed subsets of X be denoted by Cl(X), and let the map J : X × X → [,∞) be a
b-generalized pseudodistance on X. Let ∀u∈X∀V∈Cl(X){J(u,V ) = infv∈V J(u, v)}. Define HJ :
Cl(X)×Cl(X)→ [,∞) by

∀A,B∈Cl(X)
{
HJ (A,B) =max

{
sup
u∈A

J(u,B), sup
v∈B

J(v,A)
}}

.

We will present now some indications that we will use later in the work.
Let (X,d) be a b-metric space (with s ≥ ) and let A �= ∅ and B �= ∅ be subsets of X and

let the map J : X × X → [,∞) be a b-generalized pseudodistance on X. We adopt the
following denotations and definitions: ∀A,B∈Cl(X){dist(A,B) = inf{d(x, y) : x ∈ A, y ∈ B}} and

A =
{
x ∈ A : J(x, y) = dist(A,B) for some y ∈ B

}
;

B =
{
y ∈ B : J(x, y) = dist(A,B) for some x ∈ A

}
.

http://www.fixedpointtheoryandapplications.com/content/2014/1/39
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Definition . Let X be a b-metric space (with s≥ ) and let the map J : X ×X → [,∞)
be a b-generalized pseudodistance on X. Let (A,B) be a pair of nonempty subset of X with
A �= ∅.

(I) The pair (A,B) is said to have the PJ -property if and only if

{[
J(x, y) = dist(A,B)

] ∧ [
J(x, y) = dist(A,B)

]}
⇒ {

J(x,x) = J(y, y)
}
,

where x,x ∈ A and y, y ∈ B.
(II) We say that the b-generalized pseudodistance J is associated with the pair (A,B) if

for any sequences (xm :m ∈N) and (ym :m ∈N) in X such that limm→∞ xm = x;
limm→∞ ym = y, and

∀m∈N
{
J(xm, ym–) = dist(A,B)

}
,

then d(x, y) = dist(A,B).

Remark . If (X,d) is a b-metric space (with s ≥ ), and we put J = d, then:
(I) The map d is associated with each pair (A,B), where A,B ⊂ X . It is an easy

consequence of the continuity of d.
(II) The Pd-property is identical with the P-property. In view of this, instead of writing

the Pd-property we will write shortly the P-property.

3 The best proximity point theoremwith respect to a b-generalized
pseudodistance

We first recall the definition of closed maps in topological spaces given in Berge [] and
Klein and Thompson [].

Definition . Let L be a topological vector space. The set-valued dynamic system (X,T),
i.e. T : X → X is called closed if whenever (xm :m ∈ N) is a sequence in X converging to
x ∈ X and (ym :m ∈ N) is a sequence in X satisfying the condition ∀m∈N{ym ∈ T(xm)} and
converging to y ∈ X, then y ∈ T(x).

Next, we introduce the concepts of a set-valued non-self-closed map and a set-valued
non-self-mapping contraction ofNadler typewith respect to the b-generalized pseudodis-
tance.

Definition . Let L be a topological vector space. Let X be certain space and A, B be
a nonempty subsets of X. The set-valued non-self-mapping T : A → B is called closed
if whenever (xm : m ∈ N) is a sequence in A converging to x ∈ A and (ym : m ∈ N) is a
sequence in B satisfying the condition ∀m∈N{ym ∈ T(xm)} and converging to y ∈ B, then
y ∈ T(x).

It is worth noticing that the map T in Theorem . is continuous, so it is u.s.c. on X,
which by [, Theorem , p.], shows that T is closed on X.

Definition . Let X be a b-metric space (with s≥ ) and let the map J : X ×X → [,∞)
be a b-generalized pseudodistance on X. Let (A,B) be a pair of nonempty subsets of X.

http://www.fixedpointtheoryandapplications.com/content/2014/1/39
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The map T : A→ B such that T(x) ∈ Cl(X), for each x ∈ X, we call a set-valued non-self-
mapping contraction of Nadler type, if the following condition holds:

∃≤λ<∀x,y∈A
{
sHJ(T(x),T(y)) ≤ λJ(x, y)

}
. (.)

It is worth noticing that if (X,d) is a metric space (i.e. s = ) and we put J = d, then we
obtain the classical Nadler condition. Now we prove two auxiliary lemmas.

Lemma . Let X be a complete b-metric space (with s ≥ ). Let (A,B) be a pair of
nonempty closed subsets of X and let T : A→ B. Then

∀x,y∈A∀γ>∀w∈T(x)∃v∈T(y)
{
J(w, v)≤HJ(T(x),T(y)) + γ

}
. (.)

Proof Let x, y ∈ A, γ >  and w ∈ T(x) be arbitrary and fixed. Then, by the definition of
infimum, there exists v ∈ T(y) such that

J(w, v) < inf
{
J(w,u) : u ∈ T(y)

}
+ γ . (.)

Next,

inf
{
J(w,u) : u ∈ T(y)

}
+ γ

≤ sup
{
inf

{
J(z,u) : u ∈ T(y)

}
: z ∈ T(x)

}
+ γ

≤max
{
sup

{
inf

{
J(z,u) : u ∈ T(y)

}
: z ∈ T(x)

}
,

sup
{
inf

{
J(u, z) : z ∈ T(x)

}
: u ∈ T(y)

}}
+ γ

=HJ(T(x),T(y)) + γ .

Hence, by (.) we obtain J(w, v) ≤HJ (T(x),T(y)) + γ , thus (.) holds. �

Lemma . Let X be a complete b-metric space (with s ≥ ) and let the sequence (xm :m ∈
{} ∪N) satisfy

lim
n→∞ sup

m>n
J(xn,xm) = . (.)

Then (xm :m ∈ {} ∪N) is a Cauchy sequence on X .

Proof From (.) we claim that

∀ε>∃n=n(ε)∈N∀n>n
{
sup

{
J(xn,xm) :m > n

}
< ε

}
and, in particular,

∀ε>∃n=n(ε)∈N∀n>n∀t∈N
{
J(xn,xt+n) < ε

}
. (.)

Let i, j ∈N, i > j, be arbitrary and fixed. If we define

zn = xi+n and un = xj+n for n ∈N, (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/39
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then (.) gives

lim
n→∞ J(xn, zn) = lim

n→∞ J(xn,un) = . (.)

Therefore, by (.), (.), and (J),

lim
n→∞d(xn, zn) = lim

n→∞d(xn,un) = . (.)

From (.) and (.) we then claim that

∀ε>∃n=n(ε)∈N∀n>n

{
d(xn,xi+n) <

ε

s

}
(.)

and

∃n=n(ε)∈N∀n>n

{
d(xn,xj+n) <

ε

s

}
. (.)

Let now ε >  be arbitrary and fixed, let n(ε) =max{n(ε),n(ε)} +  and let k, l ∈N

be arbitrary and fixed such that k > l > n. Then k = i + n and l = j + n for some i, j ∈
N such that i > j and, using (d), (.), and (.), we get d(xk ,xl) = d(xi+n ,xj+n ) ≤
sd(xn ,xi+n ) + sd(xn ,xj+n ) < sε/s + sε/s = ε.
Hence, we conclude that ∀ε>∃n=n(ε)∈N∀k,l∈N,k>l>n{d(xk ,xl) < ε}. Thus the sequence

(xm :m ∈ {} ∪N) is Cauchy. �

Next we present the main result of the paper.

Theorem . Let X be a complete b-metric space (with s≥ ) and let the map J : X ×X →
[,∞) be a b-generalized pseudodistance on X. Let (A,B) be a pair of nonempty closed
subsets of X with A �= ∅ and such that (A,B) has the PJ -property and J is associated with
(A,B). Let T : A → B be a closed set-valued non-self-mapping contraction of Nadler type.
If T(x) is bounded and closed in B for all x ∈ A, and T(x)⊂ B for each x ∈ A, then T has
a best proximity point in A.

Proof To begin, we observe that by assumptions of Theorem . and by Lemma ., the
property (.) holds. The proof will be broken into four steps.
Step . We can construct the sequences (wm :m ∈ {} ∪ N) and (vm :m ∈ {} ∪ N) such

that

∀m∈{}∪N
{
wm ∈ A ∧ vm ∈ B

}
, (.)

∀m∈{}∪N
{
vm ∈ T

(
wm)}

, (.)

∀m∈N
{
J
(
wm, vm–) = dist(A,B)

}
, (.)

∀m∈N
{
J
(
vm–, vm

) ≤HJ(T(
wm–),T(

wm))
+

(
λ

s

)m}
(.)

and

∀m∈N
{
J
(
wm,wm+) = J

(
vm–, vm

)}
, (.)

http://www.fixedpointtheoryandapplications.com/content/2014/1/39
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lim
n→∞ sup

m>n
J
(
wn,wm)

= , (.)

and

lim
n→∞ sup

m>n
J
(
vn, vm

)
= . (.)

Indeed, since A �= ∅ and T(x) ⊆ B for each x ∈ A, we may choose w ∈ A and next
v ∈ T(w)⊆ B. By definition of B, there exists w ∈ A such that

J
(
w, v

)
= dist(A,B). (.)

Of course, since v ∈ B, by (.), we have w ∈ A. Next, since T(x) ⊆ B for each x ∈ A,
from (.) (for x = w, y = w, γ = λ/s,w = v) we conclude that there exists v ∈ T(w) ⊆ B

(since w ∈ A) such that

J
(
v, v

) ≤HJ(T(
w),T(

w)) + λ

s
. (.)

Next, since v ∈ B, by definition of B, there exists w ∈ A such that

J
(
w, v

)
= dist(A,B). (.)

Of course, since v ∈ B, by (.), we have w ∈ A. Since T(x)⊆ B for each x ∈ A, from
(.) (for x = w, y = w, γ = (λ/s), w = v) we conclude that there exists v ∈ T(w) ⊆ B

(since w ∈ A) such that

J
(
v, v

) ≤HJ(T(
w),T(

w)) +(
λ

s

)

. (.)

By (.)-(.) and by the induction, we produce sequences (wm :m ∈ {} ∪N) and (vm :
m ∈ {} ∪N) such that:

∀m∈{}∪N
{
wm ∈ A ∧ vm ∈ B

}
,

∀m∈{}∪N
{
vm ∈ T

(
wm)}

,

∀m∈N
{
J
(
wm, vm–) = dist(A,B)

}
and

∀m∈N
{
J
(
vm–, vm

) ≤HJ(T(
wm–),T(

wm))
+

(
λ

s

)m}
.

Thus (.)-(.) hold. In particularly (.) gives ∀m∈N{J(wm, vm–) = dist(A,B)∧ J(wm+,
vm) = dist(A,B)}. Now, since the pair (A,B) has the PJ -property, from the above we con-
clude

∀m∈N
{
J
(
wm,wm+) = J

(
vm–, vm

)}
.

Consequently, the property (.) holds.

http://www.fixedpointtheoryandapplications.com/content/2014/1/39
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We recall that the contractive condition (see (.)) is as follows:

∃≤λ<∀x,y∈A
{
sHJ(T(x),T(y)) ≤ λJ(x, y)

}
. (.)

In particular, by (.) (for x = wm, y = wm+,m ∈ {} ∪N) we obtain

∀m∈{}∪N
{
HJ(T(

wm)
,T

(
wm+)) ≤ λ

s
J
(
wm,wm+)}. (.)

Next, by (.), (.), and (.) we calculate:

∀m∈N
{
J
(
wm,wm+) = J

(
vm–, vm

) ≤HJ(T(
wm–),T(

wm))
+

(
λ

s

)m

≤ λ

s
J
(
wm–,wm)

+
(

λ

s

)m

=
λ

s
J
(
vm–, vm–) +(

λ

s

)m

≤ λ

s

[
HJ(T(

wm–),T(
wm–)) +(

λ

s

)m–]
+

(
λ

s

)m

=
λ

s
HJ(T(

wm–),T(
wm–)) + 

(
λ

s

)m

≤
(

λ

s

)

J
(
wm–,wm–) + 

(
λ

s

)m

=
(

λ

s

)

J
(
vm–, vm–) + 

(
λ

s

)m

≤
(

λ

s

)[
HJ(T(

wm–),T(
wm–)) +(

λ

s

)m–]
+ 

(
λ

s

)m

=
(

λ

s

)

HJ(T(
wm–),T(

wm–)) + 
(

λ

s

)m

≤
(

λ

s

)

J
(
wm–,wm–) + 

(
λ

s

)m

≤ · · · ≤
(

λ

s

)m

J
(
w,w) +m

(
λ

s

)m}
.

Hence,

∀m∈N
{
J
(
wm,wm+) ≤

(
λ

s

)m

J
(
w,w) +m

(
λ

s

)m}
. (.)

Now, for arbitrary and fixed n ∈N and allm ∈N,m > n, by (.) and (d), we have

J
(
wn,wm) ≤ sJ

(
wn,wn+) + sJ

(
wn+,wm)

≤ sJ
(
wn,wn+) + s

[
sJ

(
wn+,wn+) + sJ

(
wn+,wm)]

= sJ
(
wn,wn+) + sJ

(
wn+,wn+) + sJ

(
wn+,wm)

≤ · · · ≤
m–(n+)∑
k=

sk+J
(
wn+k ,wn++k)

≤
m–(n+)∑
k=

sk+
[(

λ

s

)n+k

J
(
w,w) + (n + k)

(
λ

s

)n+k]

http://www.fixedpointtheoryandapplications.com/content/2014/1/39
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=
m–(n+)∑
k=

[(
λn+k

sn–

)
J
(
w,w) + (n + k)

(
λn+k

sn–

)]

=


sn–

m–(n+)∑
k=

[
λn+kJ

(
w,w) + (n + k)λn+k].

Hence

J
(
wn,wm) ≤ 

sn–

m–(n+)∑
k=

[
J
(
w,w) + (n + k)

]
λn+k . (.)

Thus, as n → ∞ in (.), we obtain

lim
n→∞ sup

m>n
J
(
wn,wm)

= .

Next, by (.) we obtain limn→∞ supm>n J(vn, vm) = . Then the properties (.)-(.)
hold.
Step .We can show that the sequence (wm :m ∈ {} ∪N) is Cauchy.
Indeed, it is an easy consequence of (.) and Lemma ..
Step .We can show that the sequence (vm :m ∈ {} ∪N) is Cauchy.
Indeed, it follows by Step  and by a similar argumentation as in Step .
Step . There exists a best proximity point, i.e. there exists w ∈ A such that

inf
{
d(w, z) : z ∈ T(w)

}
= dist(A,B).

Indeed, by Steps  and , the sequences (wm :m ∈ {} ∪ N) and (vm :m ∈ {} ∪ N) are
Cauchy and in particularly satisfy (.). Next, since X is a complete space, there exist
w, v ∈ X such that limm→∞ wm = w and limm→∞ vm = v, respectively. Now, since A and
B are closed (we recall that ∀m∈{}∪N{wm ∈ A ∧ vm ∈ B}), thus w ∈ A and v ∈ B. Finally,
since by (.) we have ∀m∈{}∪N{vm ∈ T(wm)}, by closedness of T , we have

v ∈ T(w). (.)

Next, since w ∈ A, v ∈ B and T(A) ⊂ B, by (.) we have T(w) ⊂ B and

dist(A,B) = inf
{
d(a,b) : a ∈ A∧ b ∈ B

} ≤D(w,B)≤D
(
w,T(w)

)
= inf

{
d(w, z) : z ∈ T(w)

} ≤ d(w, v). (.)

We know that limm→∞ wm = w, limm→∞ vm = v. Moreover by (.)

∀m∈N
{
J
(
wm, vm–) = dist(A,B)

}
.

Thus, since J and (A,B) are associated, so by Definition .(II), we conclude that

d(w, v) = dist(A,B). (.)

Finally, (.) and (.), give inf{d(w, z) : z ∈ T(w)} = dist(A,B). �
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4 Examples illustrating Theorem 3.1 and some comparisons
Now, we will present some examples illustrating the concepts having been introduced so
far. We will show a fundamental difference between Theorem . and Theorem .. The
examples will show that Theorem . is an essential generalization of Theorem .. First,
we present an example of J , a generalized pseudodistance.

Example . Let X be a b-metric space (with constant s = ) where b-metric d : X ×X →
[,∞) is of the form d(x, y) = |x – y|, x, y ∈ X. Let the closed set E ⊂ X, containing at
least two different points, be arbitrary and fixed. Let c >  such that c > δ(E), where δ(E) =
sup{d(x, y) : x, y ∈ X} be arbitrary and fixed. Define the map J : X ×X → [,∞) as follows:

J(x, y) =

{
d(x, y) if {x, y} ∩ E = {x, y},
c if {x, y} ∩ E �= {x, y}. (.)

The map J is a b-generalized pseudodistance on X. Indeed, it is worth noticing that the
condition (J) does not hold only if some x, y, z ∈ X such that J(x, z) > s[J(x, y) +
J(y, z)] exists. This inequality is equivalent to c > s[d(x, y)+d(y, z)] where J(x, z) = c,
J(x, y) = d(x, y) and J(y, z) = d(y, z). However, by (.), J(x, z) = c shows that there
exists v ∈ {x, z} such that v /∈ E; J(x, y) = d(x, y) gives {x, y} ⊂ E; J(y, z) = d(y, z)
gives {y, z} ⊂ E. This is impossible. Therefore, ∀x,y,z∈X{J(x, y) ≤ s[J(x, z) + J(z, y)]}, i.e. the
condition (J) holds.
Proving that (J) holds, we assume that the sequences (xm :m ∈ N) and (ym :m ∈ N) in

X satisfy (.) and (.). Then, in particular, (.) yields

∀<ε<c∃m=m(ε)∈N∀m≥m

{
J(xm, ym) < ε

}
. (.)

By (.) and (.), since ε < c, we conclude that

∀m≥m

{
E ∩ {xm, ym} = {xm, ym}}. (.)

From (.), (.), and (.), we get

∀<ε<c∃m∈N∀m≥m

{
d(xm, ym) < ε

}
.

Therefore, the sequences (xm : m ∈ N) and (ym : m ∈ N) satisfy (.). Consequently, the
property (J) holds.

The next example illustrates Theorem ..

Example . LetX be a b-metric space (with constant s = ), whereX = [, ] and d(x, y) =
|x – y|, x, y ∈ X. Let A = [, ] and B = [, ]. Let E = [,  ] ∪ [, ] and let the map J :
X ×X → [,∞) be defined as follows:

J(x, y) =

{
d(x, y) if {x, y} ∩ E = {x, y},
 if {x, y} ∩ E �= {x, y}. (.)

Of course, since E is closed set and δ(E) =  < , by Example . we see that the map J
is the b-generalized pseudodistance on X. Moreover, it is easy to verify that A = {} and
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B = {}. Indeed, dist(A,B) = , thus

A =
{
x ∈ A = [, ] : J(x, y) = dist(A,B) =  for some y ∈ B = [, ]

}
,

and by (.) {x, y} ∩ E = {x, y}, so J(x, y) = d(x, y), x ∈ [, /] ∪ {} and y ∈ [, ]. Conse-
quently A = {}. Similarly,

B =
{
y ∈ B = [, ] : J(x, y) = dist(A,B) =  for some x ∈ A = [, ]

}
,

and, by (.), {x, y} ∩ E = {x, y}, so J(x, y) = d(x, y), y ∈ [, ] and x ∈ [, /] ∪ {}. Conse-
quently B = {}.
Let T : A→ B be given by the formula

T(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

{} ∪ [  , ] for x ∈ [,  ],
[  , ] for x ∈ (  ,


 ),

[  , ] for x ∈ [  ,

 ),

[  , ] for x ∈ [  ,

 ),

{} ∪ [  , ] for x = 
 ,

{} for x ∈ (  , ],

x ∈ X. (.)

We observe the following.
(I)We can show that the pair (A,B) has the PJ -property.
Indeed, as we have previously calculated A = {} and B = {}. This gives the following

result: for each x,x ∈ A and y, y ∈ B, such that J(x, y) = dist(A,B) =  and J(x, y) =
dist(A,B) = , since A and B are included in E, by (.) we have

J(x,x) = d(x,x) = d(, ) =  = d(, ) = d(y, y) = J(y, y).

(II)We can show that the map J is associated with (A,B).
Indeed, let the sequences (xm :m ∈ N) and (ym :m ∈ N) in X, such that limm→∞ xm = x,

limm→∞ ym = y and

∀m∈N
{
J(xm, ym–) = dist(A,B)

}
, (.)

be arbitrary and fixed. Then, since dist(A,B) =  < , by (.) and (.), we have

∀m∈N
{
d(xm, ym–) = J(xm, ym–) = dist(A,B)

}
. (.)

Now, from (.) and by continuity of d, we have d(x, y) = dist(A,B).
(III) It is easy to see that T is a closed map on X.
(IV) We can show that T is a set-valued non-self -mapping contraction of Nadler type

with respect J (for λ = /; as a reminder: we have s = ).
Indeed, let x, y ∈ A be arbitrary and fixed. First we observe that since T(A) ⊂ B = [, ] ⊂

E, by (.) we have HJ (T(x),T(y)) = H(T(x),T(y)) ≤ , for each x, y ∈ A. We consider the
following two cases.
Case . If {x, y} ∩ E �= {x, y}, then by (.), J(x, y) = , and consequently HJ (T(x),T(y))≤

 < / = (/) ·  = (λ/s)J(x, y). In consequence, sHJ (T(x),T(y))≤ λJ(x, y).

http://www.fixedpointtheoryandapplications.com/content/2014/1/39


Plebaniak Fixed Point Theory and Applications 2014, 2014:39 Page 12 of 13
http://www.fixedpointtheoryandapplications.com/content/2014/1/39

Case . If {x, y} ∩ E = {x, y}, then x, y ∈ E∩ [, ] = [, //]∪ {}. From the obvious prop-
erty

∀x,y∈[,//]
{
T(x) = T(y)∧ T()⊂ T(x)

}
can be deduced that ∀x,y∈[,//]∪{}{HJ (T(x),T(y)) = }. Hence, sHJ (T(x),T(y)) =  ≤
λJ(x, y).
In consequence, T is the set-valued non-self-mapping contraction of Nadler type with

respect to J .
(V)We can show that T(x) is bounded and closed in B for all x ∈ A.
Indeed, it is an easy consequence of (.).
(VI)We can show that T(x) ⊂ B for each x ∈ A.
Indeed, by (I), we haveA = {} andB = {}, fromwhich, by (.), we getT() = {} ⊆ B.
All assumptions of Theorem . hold. We see that D(,T()) = D(, {}) =  = dist(A,B),

i.e.  is the best proximity point of T .

Remark . (I) The introduction of the concept of b-generalized pseudodistances is es-
sential. If X and T are like in Example ., then we can show that T is not a set-valued
non-self -mapping contraction of Nadler type with respect to d. Indeed, suppose that T is a
set-valued non-self-mapping contraction of Nadler type, i.e. ∃≤λ<∀x,y∈X{sH(T(x),T(y)) ≤
λd(x, y)}. In particular, for x = 

 and y =  we have T(x) = [/, ], T(y) = {} and
 = H(T(x),T(y)) = sH(T(x),T(y)) ≤ λd(x, y) = λ|/ – | = λ · / < /. This is
absurd.
(II) If X is metric space (s = ) with metric d(x, y) = |x – y|, x, y ∈ X, and T is like in

Example ., then we can show that T is not a set-valued non-self -mapping contraction
of Nadler type with respect to d. Indeed, suppose that T is a set-valued non-self -mapping
contraction of Nadler type, i.e. ∃≤λ<∀x,y∈X{H(T(x),T(y))≤ λd(x, y)}. In particular, for x =

 and y =  we have  = H(T(x),T(y)) = sH(T(x),T(y)) ≤ λd(x, y) = λ|/ – | = λ ·
/ < /. This is absurd.Hence,wefind that our theorem ismore general thanTheorem.
(Abkar and Gabeleh []).
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