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ABSTRACT

Popular de novo amplicon clustering methods suffer from two fundamental flaws: arbitrary global

clustering thresholds, and input-order dependency induced by centroid selection. Swarm was developed

to address these issues by first clustering nearly identical amplicons iteratively using a local threshold,

and then by using clusters’ internal structure and amplicon abundances to refine its results. This fast,

scalable, and input-order independent approach reduces the influence of clustering parameters and

produces robust operational taxonomic units, improving the amount of meaningful biological information

that can be extracted from amplicon-based studies.
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INTRODUCTION

High-throughput sequencing technologies can generate millions of amplicons (or barcode sequences) in a

single run, and are thus today our best approach to deeply assess the environmental or clinical diversity of

complex microbial assemblages of archaea, bacteria, and eukaryotes. The millions, and soon billions, of

raw reads produced in molecular ecology and metabarcoding projects need to be clustered into molecular

operational taxonomic units (OTUs) before being used for diversity estimates or other statistical analyses.

Because of the increasing sizes of today’s amplicon datasets, fast and greedy de novo clustering

heuristics are the preferred and the only practical approach to produce OTUs (Edgar, 2010; Ghodsi et al.,

2011; Fu et al., 2012). Shared steps in these current algorithms are: an amplicon is drawn out of the

amplicon pool and becomes the center of a new OTU (centroid selection), this centroid is then compared to

all other amplicons remaining in the pool. Amplicons for which the distance is within a global clustering

threshold, t, to the centroid are moved from the pool to the OTU. The OTU is then closed. These steps are

repeated as long as amplicons remain in the pool (Fig. 1a).

These greedy clustering methods suffer from two fundamental problems. First, they use an arbitrary

fixed global clustering threshold. As lineages evolve at variable rates, no single cut-off value can

accommodate the entire tree of life. A single global clustering threshold will inevitably be too relaxed for

slow-evolving lineages and too stringent for rapidly evolving ones (Stackebrandt and Goebel, 1994; Sogin

et al., 2006; Nebel et al., 2011; Koeppel and Wu, 2013). Second, the input order of amplicons strongly

influences the clustering results. Previous centroid selections are not re-evaluated as clustering progresses,

which can generate inaccurately formed OTUs, where closely related amplicons can be separated and

unrelated amplicons can be grouped (Koeppel and Wu, 2013) (Fig. 1a).
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Figure 1. Visualization of the widely used greedy clustering approach based on centroid selection and a

global clustering threshold, t, where closely related amplicons can be placed into different OTUs. (b) By

contrast, Swarm clusters iteratively by using a small local clustering threshold, d, allowing OTUs to reach

their natural limits.

SWARM’S RATIONALE

While working on two large scale environmental diversity studies using different markers and different

sequencing platforms—the BioMarKs project (e.g. Bittner et al., 2013; Dunthorn et al., 2014; Logares

et al., 2014) and the TARA OCEANS project (e.g. Karsenti et al., 2011)—the limitations of greedy de novo

clustering methods became salient. We observed that amplicons from one species can be subsumed into

the OTU of a genetically closely related species with a very dissimilar ecology if that second species had

a higher abundance, leading to erroneous ecological interpretations. To solve these issues, we developed

Swarm—a novel method that avoids both fixed global clustering thresholds, and input-order dependency

due to centroid selection. Our objective was to implement an exact, yet fast, de novo clustering method

that produces meaningful OTUs and reduces the influence of clustering parameters.

Swarm can be defined as a fast and exact agglomerative, unsupervised (de novo) single-linkage-

clustering algorithm that first computes sequence differences between aligned pairs of amplicons to

delineate OTUs, using k-mer comparisons and a new and extremely fast global pairwise alignment

algorithm; and in a second step, uses amplicon abundance information and OTUs’ internal structures to

refine the clustering results.

In our view, amplicons can be seen as discrete coordinates in an abstract amplicon-space. Each position

of this space represents a possible amplicon, which can be absent from the dataset (null abundance), or

present (observed abundance). The direct neighbors of a given amplicon are all the possible amplicons

with one nucleotide difference (a mutation, insertion, or deletion). In that amplicon-space, the clusters are

regions of the space with non-null abundances. The assumption behind Swarm is that clusters are clearly

separated by empty regions, i.e., amplicons do not form a continuum. If this condition holds true, then

OTUs can be allowed to grow iteratively until they reach their natural limits.

Swarm explores the amplicon-space as follows: Swarm processes the input file and creates a pool of

amplicons. An empty OTU is created, and the first available amplicon in the pool is withdrawn from the

pool to become the OTU seed. The seed is then compared to all amplicons remaining in the pool, and the

measured number of differences is stored in the memory. The number of differences d, the local clustering

threshold, is calculated as the number of nucleotide mismatches (mutation, insertion, or deletion) between

two amplicons once the optimal pairwise global alignment has been found. Amplicons for which the

number of differences is equal to or less than d are removed from the pool and added to the OTU, where

they become subseeds.
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Each subseed is then compared to the amplicons remaining in the pool, but only to those that have

at most 2d differences with the seed. Indeed, amplicons with more than 2d differences with the seed

cannot have d or less differences with one of its subseeds. This filtering step can be generalized as such: a

subseed of generation k, a k-seed, is compared to the amplicons remaining in the pool, but only to those

that have at most (k+1)d differences with the seed.

After each series of comparisons, amplicons for which the number of differences is equal to or less

than d are removed from the pool and added to the OTU to become (k+1)-seeds. This iterative growth

process is repeated for each generation of subseeds as long as new amplicons are captured. The OTU is

then closed. The first available amplicon is removed from the pool, a new OTU is created, and the process

is repeated until no more amplicons remain in the pool.

This clustering process generates stable OTUs, regardless of the first seed choice. Thus, an OTU

organically grows to its natural limits where it cannot recruit any more amplicons with d or fewer

differences. Operating in this way, Swarm removes the two main sources of variability inherent in greedy

de novo clustering methods: the need to designate an OTU center (centroid selection), and the need for an

arbitrary global clustering threshold. Swarm outlines OTUs without imposing one particular shape or size,

and produces the same OTUs regardless of the initially selected amplicon.

Under certain conditions, when using short or slowly evolving markers for instance, the assumption

that amplicons do not form a continuum can be violated. To solve this issue, Swarm takes a post-clustering

step, and uses the internal structure of the cluster and abundance values to find the natural frontiers and to

delineate higher-resolution OTUs (see “Refining the clusters”).

SWARM’S MECHANICS

Swarm input files
Swarm input is a standard fasta file of unambiguous DNA or RNA amplicons, preferably fully sequenced

(from the forward to the reverse primer), and with unique identifiers. The amplicon identifier is defined

as the string comprised between the “>” and the first space or the end of the line, whichever come

first. Swarm expects amplicon identifiers to be unique to avoid ambiguity in the clustering results. The

amplicon sequence can only be composed of A, C, G and Ts (or Us) (case insensitive), and Swarm exits

with an error message if any other symbol is present. To reduce the volume of data and to further increase

analysis speed, it is recommended to merge amplicons with strictly identical sequences (dereplication).

The Swarm README file gives examples of commands to properly format, and dereplicate the input

fasta file.

Avoiding unnecessary pairwise global alignments
Global pairwise alignment is an exact but computationally expensive way to count the number of

differences between two amplicons. It is possible to avoid costly comparisons by simply comparing

amplicon lengths: two amplicons cannot have less than d differences if their length difference is greater

than d. Unfortunately, that costless filtering is rather limited in scope. A more general and powerful way

to estimate amplicon identity is to compare k-mer compositions (Ukkonen, 1992). Swarm starts by listing

all possible DNA oligomers of length 5 (i.e. 5-mers; 45 = 1024 possibilities). For a given amplicon,

Swarm counts the number of occurrences of each 5-mer and builds a 1024-bit vector of zeros (absence

or even number of occurrences) and ones (odd number of occurrences). For d differences between two

amplicon, the maximum number of differences in their k-mer vectors is 2dk. Therefore, two amplicons

with one difference in their sequences will have at most 10 differences in their 5-mer vectors. Only pairs

of amplicons with 10 or less differences in their 5-mer vectors need to be considered as candidates for a

pairwise global alignment. It is possible for a pair of dissimilar amplicons to have similar bit vectors, but

it is not possible for two similar amplicons to have dissimilar bit vectors. In other words, false positives

are possible but not false negatives. As comparing bit vectors can be done rapidly in modern computers

using XOR and POPCOUNT bitwise instructions, Swarm can efficiently, and in a lossless way, filter out

many unnecessary pairwise global alignments.

Pairwise Global Alignment Implementation
To speed up the remaining pairwise comparisons, Swarm implements a novel exact global pairwise

alignment algorithm (Needleman and Wunsch, 1970) using SIMD vectorial instructions of modern CPUs,

similar to the local pairwise alignment (Smith and Waterman, 1981; Gotoh, 1982) implemented in Swipe
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by Rognes (2011). Swarm is able to compare up to 16 pool amplicons simultaneously with one seed (or

k-seed) per CPU core. Swarm is also multi-threaded and efficiently uses multiple cores. In addition to

computing the alignment score, it also stores backtracking data during amplicon comparisons in order to

subsequently reconstruct the highest scoring alignments, and to count the number of differences. Since

amplicons are usually of limited length (less than 1,000 bp) for the intended purpose, the amount of

storage required for this data is not a major concern.

To achieve the most efficient parallelization of the algorithm, using as many parallel operations as

possible (i.e., 16 simultaneous pairwise comparisons per CPU core), the magnitude of the score values of

the highest scoring alignments to be calculated should be small, preferably fitting in one byte of memory

(a byte can store one integer value ranging from 0 to 255). Swarm calculates the alignment score as

follows: instead of computing the optimal global alignment similarity score as in the Needleman-Wunsch

algorithm, Swarm identifies the alignments with the minimum edit distance, as described by Sellers

(1974), by transforming the given similarity scoring system into an equivalent edit distance system. In

the default scoring system a match is given a score of +5, a mismatch −4, gap opening −12, and gap

extension −4. Swarm will transform this scoring scheme into an equivalent system of positive integers

where each mismatch corresponds to a penalty of +9, gap-opening +12, and gap extension +9. These

distances are all divided by their greatest common divisor, 3, resulting in the final edit distances of 3 for

mismatches, 4 for gap openings, and 3 for gap extensions. This modified scoring system yields pairwise

alignments strictly identical to the pairwise alignments produced by the original scoring system.

Swarm first tries to compute the global pairwise alignment using a single byte of memory, allowing

scores up to 255, which corresponds to a maximum of 85 differences. Should the score be larger than

255, Swarm will re-compute the pairwise alignment using 2 bytes of memory or more. Using two bytes

of memory reduces the speed of the pairwise alignment by 50%; however the upstream k-mer filtering

implemented in Swarm limits the number of alignments overflowing one byte of memory.

After having identified the best alignment(s), Swarm will backtrack the optimal alignment (or one of

the co-optimal alignments) using the backtracking data saved earlier. It will then simply count the number

of mismatches and indels in that alignment and use it as the final difference between two amplicons.

In a very few cases the co-optimal alignments might contain a different number of gaps. As a result, the

final number of differences counted may depend on which alignment is followed during the backtracking.

The effect of this alignment issue is that a very small variability may exist in some results. We are

currently solving this minor issue, and it will be implemented in a future Swarm release.

Refining the clusters

Swarm is an agglomerative, unsupervised, single-linkage-clustering algorithm. Single-linkage clustering

is known to produce chains of amplicons that can potentially link closely related OTUs and decrease

clustering resolution (Huse et al., 2010). As Swarm works with small local clustering threshold values,

this chaining effect is rather limited. Nevertheless, this risk exists, especially when using short or slowly

evolving molecular markers. To solve this issue, we implemented an algorithm that explores the internal

structure of the OTUs produced by Swarm, and detects and breaks possible chains by using abundance

values associated with each amplicon.

OTUs present an internal structure where the most abundant amplicon usually occupies a central

position and is surrounded by less abundant amplicons. The way Swarm explores the amplicon-space

naturally produces a graph representation of the OTU, in the form of a star-shaped minimum spanning

tree. In this context, chains of amplicons appear as links between such star-shaped sub-graphs. To identify

and break the chains, our algorithm finds paths linking abundant amplicons (peaks) and monitors the

abundance variations along these paths. If abundances decrease, go through a minimum, and then go

up again (valley shape), this indicates a possible amplicon chain. Depending on the depth of the valley

(i.e. the ratio between the minimum and maximum observed abundances), the algorithm will decide

whether or not to break the graph into independent OTUs. In its current form, this step in Swarm is a

python companion script set with the following parameters: only amplicons with 100 or more copies are

considered as peaks; for a given pair of peaks, the path always starts from the highest peak (primary peak)

and joins the secondary peak; valleys are considered deep when the ratio between the lowest point and the

secondary peak is equal or greater than 50. Observations we made on environmental data indicated that

chains of amplicons tend to form in the largest clusters, and are unlikely to occur in clusters with peaks

smaller than 100. This small clusters are not removed from the clustering results, they are merely not

4/12
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.386v1 | CC-BY 4.0 Open Access | received: 12 May 2014, published: 12 May 2014

P
re
P
ri
n
ts



searched for potential chains.

As this OTU breaking step improves Swarm’s precision at all clustering levels, we recommend to

always apply this companion script. We are currently testing a faster, less parametrized and more elegant

solution using graph properties to quickly identify potential breaking points. We plan to include it soon in

Swarm itself.

On the influence of the value d

Swarm’s most important user-chosen parameter is d, the local clustering threshold (for other parameters,

see the Swarm Manual). Empirical results show that the choice of the d value has far less impact on the

clustering results than the choice of the global clustering threshold (see results below where we show

that the choice of d has minimal impact). By default, d is set to 1 to obtain the finest partition of the

amplicon-space, and to maximize the yield of biological information. Several factors can motivate the use

of higher d values: longer amplicons, fast evolving markers, shallow sequencing (i.e., under-sampling of

the amplicon-space), or the need to work with fewer but more inclusive OTUs. The stability of Swarm

results also allows hierarchical clustering approaches: tracking OTU coalescing events when d increases

allows to identify the d value best suited for the targeted amplicon-space region. We invite users to test

several d values to find the value, or the range of values, best fitting their data and scientific questions.

Speed and general behavior
Swarm clustering is a non-linear process. For speed purposes, it is suggested to sort the input data by

decreasing amplicon abundance (if applicable); however results will not change, only the speed. Abundant

amplicons often occupy a central position in OTUs, and when used as seeds, rapidly capture large amounts

of subseeds. Using this strategy, the first OTUs produced are generally among the largest. As OTUs

are outputted as soon as they are closed, most of the input amplicons can be quickly removed from the

pool early in the clustering process, and can be passed to post-clustering analyses. The duration of a

Swarm analysis depends on several parameters: e.g. the d value used, the amplicon number and length,

the number of CPU cores available, the molecular diversity of the dataset, and the amplicon abundance

distribution. While being slower than Usearch, the fastest greedy heuristic for amplicon clustering, Swarm

is fast enough to deal with datasets with millions of unique amplicons in a few days. For example, the

clustering of an unpublished dataset of 1.5 million raw reads (312,503 unique amplicons, 382 nucleotides

on average) takes less than 10 minutes (d = 1) and 20 minutes (d = 7), using a single core. It only takes 4

minutes using 16 cores (d = 1).

Swarm output files
The dereplication command example provided in Swarm’s README includes amplicon copy number

within the amplicon identifier. This amplicon copy number information is retained in the output file, and

used by Swarm to output statistics on the number of unique amplicons in the swarm, total copy number

of amplicons in the swarm, identifier of the initial seed, initial seed abundance, number of singletons

(amplicons with an abundance of 1), maximum number of iterations, the maximum radius of the swarm.

Swarm default behavior is to output results using a format similar to DNAclust’s format (but with

space separated amplicon identifiers instead of tab-separated). An optional behavior is to output results

using the Usearch format, which allow easy integration with extant amplicon-analysis pipelines, such

as QIIME (Caporaso et al., 2010). We are working on a similar option for easy integration with Mothur

(Schloss et al., 2009).

COMPARISON WITH POPULAR DE NOVO CLUSTERING METHODS

As Swarm was designed to analyze extremely large high-throughput sequencing datasets, we compared it

to other stand-alone, fast, de novo clustering methods. Other clustering methods, such as average linkage,

complete linkage or hierarchical clustering, do not scale up to this large datasets, and were therefore not

compared.

Swarm’s performance was tested on two mock communities each comprising genome isolates from 49

bacterial and 10 archaeal species: one with even abundances with 143,163 unique amplicons (1,576,869

raw reads of average length 254.6 bp), the other with uneven populations with 55,622 unique amplicons

(637,693 raw reads of average length 253.9 bp). In both cases, sequencing on the MiSeq platform with

250 bp paired-end reads was performed following amplification of the V4 region of the 16S rRNA gene
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with fusion Golay adaptors barcoded on the reverse end. The forward 16S rRNA primer sequence 515f

was used (GTGNCAGCMGCCGCGGTAA). The reverse primers, barcodes and adaptors were identical

to Caporaso et al. (2011).

Sequences were trimmed for quality and adaptors using Sickle (https://github.com/najoshi/sickle) and

then forward and reverse reads were overlapped with PandaSeq (Masella et al., 2012) insisting on a 50 bp

overlap. Strictly identical amplicons were merged with the command described in Swarm’s README,

and the two datasets were subjected to five different stand-alone clustering methods: CD-HIT-454 (Fu

et al., 2012, v4.6 2012-11-12), DNAclust (Ghodsi et al., 2011, v64bit, release 3, 2013-08-12), Swarm

(v1.2.3), Usearch (Edgar, 2010, v7.0.1001 i86linux32) with presorting of the amplicons by decreasing

length (option -cluster fast) and without presorting (options -usersort -cluster smallmem). Different

clustering thresholds were used: d = 1 to 20 local differences for Swarm, and t = 1 to 20% global

divergence for the other methods. For each clustering threshold and each clustering method, the first

analysis was done on a fasta file sorted by decreasing abundance, and repeated 100 times with amplicon

input order randomly shuffled.

The clustering results of the two communities were then evaluated with three metrics using the known

assignments to the 59 species as the ground truth, which was determined by matching with Usearch

against the known 16S rRNA reference sequences and only using reads that were within 5% sequence

difference using Usearch with the usearch global alignment option. The three metrics used were: recall,

which quantifies the extent to which amplicons assigned to the same species are grouped together in the

same OTU (i.e. not over-splitting); precision, which asks if all amplicons in an OTU are assigned to the

same species (i.e. not over-grouping); and the adjusted Rand index, which summarizes both precision

and recall as the proportion of pairs of amplicons that are placed in the same OTU and are from the same

species, but adjusting for the expected proportions through random chance (Rand, 1971; Hubert and

Arabie, 1985). The results were synthesized in Fig. 2 (uneven community) and Fig. 3 (even community)

using R (R Development Core Team, 2014) and the ggplot2 library (Wickham, 2009). The command lines

and scripts we used to analyze the data, and to visualize the results are provided in the Supplementary

File 1.

For both uneven (Fig. 2), and even communities (Fig. 3), almost all clustering thresholds for CD-

HIT-454 and Usearch (with or without presorting) show extreme variability due to strong input-order

dependency, while Swarm and DNAclust do not. Because of the pervasive variability in other methods,

we then compared the median output values (Table 1 and 2). Using the adjusted Rand index for both

the uneven and even populations, Swarm outperforms the other methods at small d or t values (1 to 2);

these small clustering thresholds are of critical importance when making fine-scale partitions of amplicon

datasets, and strongly indicate that Swarm is more robust than the other methods to sequencing noise.

At medium values (3 to 5), Swarm is either better, tied, or within 0.011 points to DNAclust. Swarm

outperforms all other methods at larger values (6 to 20). These superior results for Swarm reflect its

ability to conserve good precision and good recall over a wide range of clustering thresholds, which is

critical as the true threshold for species-level assignments will in general not be known in advance and

will vary with the choice of the sequenced marker or genomic region. Additionally, the adjusted Rand

index results show that Swarm results are little affected by the choice of d; that is, it limits the effect of

the choice of clustering threshold and is adaptative across a large array of organisms and genes.

PERSPECTIVES

Swarm is efficient enough to deal with today’s largest datasets, and several new optimizations are now in

development to handle even larger future datasets. For example, with the 256-bit integer SIMD instructions

of the new Intel Haswell CPUs (released in late 2013) Swarm’s pairwise alignment throughput can double.

We are also testing more efficient parallelization strategies, as well as new filters to avoid further un-

needed pairwise alignments. These hardware evolutions and software optimizations will improve Swarm’s

scalability even further. In parallel, improvements to our abundance-based chain breaking model will

increase Swarm’s capacity to produce high-resolution OTUs and meaningful biological results, even for

the most intricate species complexes.

In summary, Swarm is a novel and robust approach that solves the problems of arbitrary global

clustering thresholds and centroid selection induced input-order dependency, and creates robust and more

natural OTUs than current greedy, de novo, scalable clustering algorithms. Swarm’s high-resolution

capacities improve the amount of biological information that can be obtained from environmental and

6/12
PeerJ PrePrints | http://dx.doi.org/10.7287/peerj.preprints.386v1 | CC-BY 4.0 Open Access | received: 12 May 2014, published: 12 May 2014

P
re
P
ri
n
ts



clinical amplicon-based studies. Swarm is a scalable C++ program able to handle many millions of

amplicons. It is freely available at https://github.com/torognes/swarm under the GNU Affero General

Public License version 3.
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Divergence Metric Clustering algorithm

CD-HIT-454 DNAclust Swarm Usearch Usearch

(no presorting) (presorting)

1

adjusted Rand index

0.916 0.883 0.958 0.780 0.806

2 0.956 0.971 0.972 0.785 0.846

3 0.943 0.979 0.977 0.802 0.871

4 0.965 0.979 0.981 0.853 0.946

5 0.967 0.984 0.983 0.913 0.974

6 0.968 0.985 0.985 0.949 0.984

7 0.968 0.980 0.985 0.972 0.982

8 0.967 0.969 0.986 0.979 0.981

9 0.965 0.969 0.983 0.979 0.969

10 0.964 0.907 0.983 0.980 0.957

11 0.955 0.921 0.983 0.979 0.928

12 0.943 0.914 0.981 0.976 0.901

13 0.937 0.914 0.981 0.970 0.895

14 0.931 0.893 0.978 0.960 0.875

15 0.897 0.870 0.977 0.942 0.871

16 0.867 0.867 0.974 0.929 0.867

17 0.854 0.852 0.978 0.916 0.819

18 0.852 0.831 0.976 0.907 0.806

19 0.861 0.622 0.958 0.898 0.780

20 0.739 0.554 0.973 0.881 0.769

1

precision

0.993 0.993 0.992 0.999 0.996

2 0.992 0.992 0.992 0.999 0.992

3 0.992 0.992 0.992 0.997 0.993

4 0.992 0.992 0.992 0.992 0.992

5 0.992 0.992 0.992 0.996 0.991

6 0.991 0.991 0.992 0.991 0.991

7 0.991 0.986 0.992 0.991 0.986

8 0.987 0.972 0.992 0.990 0.983

9 0.980 0.971 0.990 0.990 0.970

10 0.979 0.932 0.990 0.990 0.963

11 0.978 0.932 0.990 0.985 0.940

12 0.964 0.931 0.989 0.981 0.927

13 0.954 0.930 0.987 0.976 0.918

14 0.948 0.914 0.985 0.965 0.907

15 0.932 0.901 0.983 0.958 0.899

16 0.918 0.898 0.982 0.942 0.893

17 0.899 0.880 0.981 0.931 0.875

18 0.897 0.871 0.980 0.924 0.863

19 0.887 0.726 0.967 0.909 0.841

20 0.803 0.644 0.978 0.897 0.833

1

recall

0.900 0.883 0.949 0.778 0.812

2 0.946 0.968 0.970 0.790 0.860

3 0.940 0.981 0.976 0.816 0.890

4 0.958 0.983 0.979 0.871 0.953

5 0.960 0.986 0.981 0.924 0.980

6 0.962 0.988 0.986 0.950 0.987

7 0.962 0.986 0.987 0.971 0.987

8 0.962 0.987 0.988 0.978 0.987

9 0.959 0.988 0.987 0.979 0.984

10 0.961 0.972 0.987 0.982 0.979

11 0.961 0.987 0.988 0.985 0.977

12 0.958 0.988 0.987 0.983 0.972

13 0.958 0.988 0.985 0.982 0.969

14 0.959 0.986 0.983 0.981 0.969

15 0.956 0.986 0.987 0.980 0.970

16 0.956 0.988 0.985 0.979 0.972

17 0.957 0.981 0.988 0.978 0.960

18 0.955 0.981 0.987 0.979 0.959

19 0.952 0.981 0.972 0.980 0.959

20 0.949 0.973 0.985 0.978 0.958

Table 1. Uneven mock-community. Median values for Figure 2.
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Divergence Metric Clustering algorithm

CD-HIT-454 DNAclust Swarm Usearch Usearch

(no presorting) (presorting)

1

adjusted Rand index

0.834 0.792 0.891 0.731 0.765

2 0.914 0.930 0.942 0.734 0.796

3 0.923 0.948 0.948 0.744 0.817

4 0.928 0.961 0.952 0.777 0.874

5 0.930 0.964 0.953 0.848 0.931

6 0.931 0.965 0.955 0.868 0.956

7 0.932 0.956 0.961 0.904 0.955

8 0.921 0.926 0.958 0.946 0.950

9 0.919 0.924 0.951 0.952 0.936

10 0.917 0.836 0.960 0.954 0.903

11 0.917 0.822 0.952 0.951 0.855

12 0.908 0.818 0.950 0.945 0.838

13 0.867 0.787 0.950 0.939 0.831

14 0.859 0.780 0.954 0.931 0.827

15 0.847 0.765 0.942 0.924 0.820

16 0.836 0.711 0.935 0.906 0.810

17 0.820 0.651 0.925 0.896 0.774

18 0.794 0.583 0.941 0.875 0.704

19 0.768 0.559 0.925 0.858 0.668

20 0.758 0.511 0.925 0.835 0.647

1

precision

0.992 0.994 0.989 0.999 0.998

2 0.990 0.989 0.989 0.999 0.997

3 0.989 0.989 0.989 0.997 0.995

4 0.989 0.989 0.989 0.995 0.992

5 0.988 0.988 0.988 0.996 0.988

6 0.987 0.988 0.988 0.994 0.987

7 0.987 0.974 0.987 0.987 0.975

8 0.970 0.932 0.987 0.987 0.969

9 0.961 0.929 0.985 0.986 0.950

10 0.959 0.887 0.985 0.986 0.914

11 0.959 0.850 0.984 0.985 0.891

12 0.946 0.837 0.983 0.982 0.870

13 0.923 0.819 0.981 0.971 0.861

14 0.916 0.809 0.981 0.962 0.857

15 0.904 0.791 0.970 0.948 0.846

16 0.888 0.769 0.964 0.929 0.842

17 0.864 0.736 0.949 0.915 0.809

18 0.852 0.667 0.967 0.897 0.768

19 0.828 0.651 0.945 0.875 0.729

20 0.816 0.630 0.944 0.858 0.714

1

recall

0.817 0.805 0.900 0.729 0.777

2 0.899 0.927 0.944 0.734 0.809

3 0.909 0.949 0.951 0.749 0.836

4 0.914 0.967 0.955 0.790 0.891

5 0.916 0.970 0.957 0.855 0.946

6 0.919 0.972 0.958 0.883 0.966

7 0.921 0.971 0.968 0.912 0.969

8 0.921 0.969 0.964 0.947 0.965

9 0.924 0.970 0.960 0.954 0.963

10 0.923 0.966 0.969 0.958 0.958

11 0.927 0.962 0.963 0.958 0.954

12 0.927 0.966 0.953 0.955 0.951

13 0.926 0.968 0.962 0.955 0.950

14 0.925 0.969 0.964 0.955 0.950

15 0.922 0.966 0.956 0.955 0.949

16 0.925 0.963 0.960 0.956 0.949

17 0.923 0.963 0.947 0.956 0.948

18 0.921 0.960 0.961 0.956 0.943

19 0.919 0.967 0.961 0.956 0.935

20 0.915 0.959 0.960 0.956 0.935

Table 2. Even mock-community. Median values for Figure 3.
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