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Abstract

Background: Projection pursuit regression, multilayer feed-forward networks, multivariate adaptive regression
splines and trees (including survival trees) have challenged classic multivariable models such as the multiple logistic
function, the proportional hazards life table Cox model (Cox), the Poisson’s model, and the Weibull’s life table
model to perform multivariable predictions. However, only artificial neural networks (NN) have become popular in
medical applications.

Results: We compared several Cox versus NN models in predicting 45-year all-cause mortality (45-ACM) by 18 risk
factors selected a priori: age; father life status; mother life status; family history of cardiovascular diseases; job-related
physical activity; cigarette smoking; body mass index (linear and quadratic terms); arm circumference; mean blood
pressure; heart rate; forced expiratory volume; serum cholesterol; corneal arcus; diagnoses of cardiovascular diseases,
cancer and diabetes; minor ECG abnormalities at rest. Two Italian rural cohorts of the Seven Countries Study,
made up of men aged 40 to 59 years, enrolled and first examined in 1960 in Italy. Cox models were estimated by:
a) forcing all factors; b) a forward-; and c) a backward-stepwise procedure. Observed cases of deaths and of
survivors were computed in decile classes of estimated risk. Forced and stepwise NN were run and compared by
C-statistics (ROC analysis) with the Cox models. Out of 1591 men, 1447 died. Model global accuracies were
extremely high by all methods (ROCs > 0.810) but there was no clear-cut superiority of any model to predict
45-ACM. The highest ROCs (> 0.838) were observed by NN. There were inter-model variations to select predictive
covariates: whereas all models concurred to define the role of 10 covariates (mainly cardiovascular risk factors),
family history, heart rate and minor ECG abnormalities were not contributors by Cox models but were so by forced
NN. Forced expiratory volume and arm circumference (two protectors), were not selected by stepwise NN but
were so by the Cox models.

Conclusions: There were similar global accuracies of NN versus Cox models to predict 45-ACM. NN detected
specific predictive covariates having a common thread with physical fitness as related to job physical activity
such as arm circumference and forced expiratory volume. Future attention should be concentrated on why NN
versus Cox models detect different predictors.
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Background
The predictive power assessment of risk factors by mul-
tivariable models such as the multiple logistic function,
the proportional hazards life table Cox model, the Pois-
son’s model, and the Weibull’s life table model, is one of
the cogent problems of contemporary cardiovascular
epidemiology since the selection among these standard
methods [1-3] has been challenged by other methods to
perform multivariable predictions. New models included
projection pursuit regression [4], multilayer feed-forward
networks [5] and multivariate adaptive regression splines
[6]. Other methods, particularly trees (including sur-
vival trees) have been employed [7-10], although back
prop nets may well perform better. However, among
new comers [4-12] only artificial neural networks have
become popular in medical applications [11,12], which
could also be possibly due to a lot of attention being
focused on these techniques in other fields and so have
become known in medicine. This larger acceptance and
applicability relates to widespread availability of free-,
share-, and commercial-ware [see: http://neuralnetworks.
ai-depot.com/Software.html] and the recent increase of
personal computer power. On the other hand, the neces-
sity has been felt to cope with the limitations of methods
such as logistic regression [13]. In fact, receiver operating
characteristic (ROC) curves, indexing global predictive
accuracy of logistic models [14-17] also comparatively
[18-20], rarely exceeded 0.75 in the majority of epidemio-
logical or clinical cardiovascular investigations [21,22].

Implementation
When the performance and/or reliability of predictive
models is limited, or of low sensitivity and specificity,
their capability may be hampered to identify high risk
subjects who deserve individualized treatment [21].
The neural network method stems [11,12,23,24] from
its potential for improved predictive performance by
exploring hidden layers to find nonlinearities, interac-
tions and nonlinear interactions among predictors,
particularly when the data are continuous [25]. The at-
traction of neural networks is quite evident from the im-
pressive growth of results published with these methods
in the last 20 years [12]. However, there are relatively
few comparative reports on the performance and accur-
acy of neural networks, which were assessed only versus
multiple logistic function, to predict events in clinical
[26,27] or epidemiological [28,29] cardiovascular studies
and none has been performed versus models taking
time into account such as the proportional hazards
Cox model.
For the purpose of the present investigation we

selected a priori [30] a series of covariates among those
previously studied [31] to assess 40-year all-cause mor-
tality predictive power among middle-aged men of the
Italian Rural Areas (IRA) of the Seven Countries Study
(SCS). We used the 45-year survival data to compare
the global predictive accuracy of Cox and neural net-
work models.

Cohorts and risk factors
The epidemiological material used for this analysis derives
from the two Italian rural cohorts of the Seven Countries
Study of Cardiovascular Diseases, made up of men aged 40
to 59 years, enrolled and first examined in 1960 [32] using
standard methods [33,34]. They represented 98.8%
(n=1712) of defined samples belonging to the rural com-
munities of Crevalcore in Northern Italy and Montegiorgio
in Central Italy. For the purposes of this analysis only base-
line measurements of risk factors were considered, together
with information on mortality over 45 years, although sev-
eral re-examinations were conducted after the entry one.
Risk factors used in this analysis were those identified

as significant in a previous analysis dealing with 40 years
of follow-up of all cause mortality (except xantelasma,
too rare and unstable) [31], plus heart rate, minor ECG
abnormalities and family history of cardiovascular dis-
eases which were promising but not reaching signifi-
cance in the previous analysis. Altogether they were the
following: age; father life status; mother life status; family
history of cardiovascular diseases; job-related physical
activity; cigarette smoking; body mass index (linear and
quadratic terms); arm circumference; mean blood pres-
sure; heart rate; forced expiratory volume; serum choles-
terol; corneal arcus; diagnoses of cardiovascular diseases,
cancer and diabetes; minor ECG abnormalities at rest.
Unit of measurements and technical details, are reported
in Additional file 1: Appendix 1.
Collection of data on vital status and causes of death

was complete for 45 years. Causes of death were coded
but not used for this analysis. The baseline survey was
conducted well before the era of the Helsinki Declar-
ation. On the occasion of subsequent examinations,
verbal consent was obtained in view of collecting follow-
up data. The end-point of this analysis was all-cause
mortality in 45 years, and the corresponding survival in
some analyses. The analysis was conducted on 1591 men
who had all the measurements available.

Statistical analysis
Data are expressed as means ± SD or proportions and
SE (when appropriate). Follow-up data, during 45 years,
were investigated by modelling the presence (coded 1)
or absence (coded 0) of all-cause mortality using the
proportional hazards model [31]. Cox proportional
hazards models were estimated by: a) forcing all factors;
b) a forward stepwise procedure; and c) a backward step-
wise procedure (with p =< 0.05 as selection criterion for
stepwise procedures). Plots of Schönfeld residuals over
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time were produced to test the proportionality of hazard.
The coefficients and constants of the models were
applied back to the original risk factor levels of all men,
to obtain an estimated risk of death. Observed cases of
survivors were computed in decile classes of estimated
risk. NCSS software version 2007 (released August 14,
2007 by J Hintze, Kaysville, Utah; see www.ncss.com)
was used.
Tiberius Data Mining © software (version 5.4.3; see

www.tiberius.biz) was used to obtain multilayer percep-
tron (MLP) neural network solutions (see Additional
file 1: Appendix 2 for details). Briefly, these were from a
3-layer network, including the hidden unit containing 2
neurons (one linear and the second nonlinear), with 18
input nodes (corresponding to the 18 risk factors
selected for Cox model) and one output unit, modelling
the dichotomous risk outcome (for details and examples
see Additional file 1: Appendix 2). MLPs were trained
on all patterns but preventing over-fitting [12], using
procedures substantially similar to the forced or forward
stepwise methods used by the Cox model. A method
similar to bootstrap was used on 10 consecutive runs
to obtain MPLs by both forced and forward methods.
Corrado Gini’s coefficient and graph [35] were produced.
A Gini coefficient is the area under the diagonal and the
curve whereas the area under the curve is the total
area under an ROC. Therefore it is easy to obtain:
ROC= (Gini*0.5) + 0.5. MedCalc software (version 9.6.3.0;
see www.medcalcsoftware.com) was used to calculate the
area under an ROC with 95% confidence intervals (CI)
and make comparisons [14,15,19]. ROCs were com-
pared between models and among solutions obtained.
A value of p<0.05 was considered statistically significant
in all cases.

Results
Baseline characteristics are presented in Additional file
1: Appendix 1. Out of 1591 men entering the analysis
1447 died in 45 years (91%). Table 1 shows the results of
3 proportional hazards models to predict 45-year all
cause mortality by either forcing all variables or by for-
ward or backward stepwise approaches. The β coeffi-
cients and t values are shown along with hazard ratios
and their 95% confidence intervals. In the forced Cox’
model, out of 18 pre-selected variables there were 13
covariates significantly associated with all-cause mortal-
ity. A direct relation was present for 10 covariates (age,
father and mother life status, corneal arcus, cigarettes
smoked per day, mean blood pressure, serum cholesterol
and the prevalences of cardiovascular disease, cancer
and diabetes), an inverse relation for one covariate
(forced expiratory volume), whereas body mass index
showed an inverse J shaped relation. Global accuracy by
forced Cox model was extremely high (ROC> 0.810).
Global accuracy (by ROC statistics) was not significantly
different by adopting a stepwise approach (either for-
ward or backward) and the covariates were substantially
the same (with similar β coefficients) as compared to
those selected by the forced approach. There was how-
ever an exception: arm circumference was selected (with
an inverse relation) by forward stepwise Cox model,
whereas backward stepwise Cox model selected instead
physical activity (also with an inverse relation) pointing
to physical fitness as the common descriptor. In fact, in
the forced model both variables, although not statisti-
cally significant there, had an inverse relation with all-
cause mortality. On the other hand, family history
of CVD, heart rate and minor ECG abnormalities were
not contributors.
Table 2 shows the results of forced and stepwise multi-

player perceptron models to predict 45-year all-cause
mortality in IRA SCS cohorts whose multiple-run results
are illustrated in Figure 1 along with global accuracies.
By inspecting Gini coefficients produced by Tiberius
software the incremental contribution of each one
among the 18 covariates might be appreciated. By forced
neural network there were 16 contributing covariates
whereas by stepwise neural model there were 13 covari-
ates contributing to 45-year all cause prediction. Differ-
ent from Cox models, family history, heart rate and
minor ECG abnormalities were selected among contri-
butors, whereas physical activity and prevalence of can-
cer were not. Moreover, whereas forced neural network
selected body mass index (both indices), arm circum-
ference and forced expiratory volume, stepwise neural
network did not. Notwithstanding these differences
Table 3 indicates no statistical differences between couple-
comparisons of ROCs among Cox versus neural network
models. On the other hand, the distribution of survivors
in decile classes of 45-year estimated mortality risk
were substantially similar when assessed by each one
of the 3 Cox models, with large differences across deciles
(Figure 2).

Discussion
This is the first investigation to have ever compared in
epidemiological material several methods to run Cox
versus neural network models to predict 45-year all-
cause mortality by a set of 18 risk factors (of which half
were continuous) selected a priori. The global accur-
acies, assessed by C-statistics (ROC analysis) were
extremely high by all methods but there was no clear-
cut superiority of any model to predict 45-year all-cause
mortality. There are inter-model variations to select pre-
dictive covariates among baseline variables. In particular,
whereas all models concurred to define the role of 10
covariates (age, father and mother status, corneal arcus,
cigarettes smoked per day, mean blood pressure, serum
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Table 1 Proportional hazards models predicting 45-year all-cause mortality (1447 deaths among 1591 men) by three methods

Forced Cox model Forward stepwise Cox model Backward stepwise Cox model

(N= 1591) (N= 1591) (N = 1591)

β t HR(±95%CI) β t HR(±95%CI) β t HR(±95%CI)

Age (years) 0.1024 16.81 1.68(1.58-1.79) 0.1017 16.78 1.67(1.58-1.78) 0.1029 17.01 1.69(1.59-1.79)

Father status (codes 0–1) 0.1422 2.19 1.15(1.01-1.31) 0.1421 2.19 1.15(1.01-1.31) 0.1436 2.21 1.15(1.02-1.31)

Mother status (codes 0–1) 0.2063 3.11 1.23(1.08-1.40) 0.2121 3.22 1.24(1.09-1.41) 0.2072 3.16 1.23(1.08-1.40)

Family history of CVD (codes 0–1) 0.0326 0.60 1.03(0.93-1.15) = = = = = =

Corneal arcus (codes 0–1) 0.2092 2.70 1.23(1.06-1.43) 0.1988 2.57 1.22(1.05-1.42) 0.2037 2.63 1.23(1.05-1.43)

Physical activity (codes 1-2-3) −0.0830 −1.92 0.92(0.85-1.00) = = = −0.1042 −2.51 0.90(0.83-0.98)

Cigarettes smoked per day (N) 0.0174 6.26 1.18(1.12-1.24) 0.0177 6.37 1.18(1.12-1.25) 0.0177 6.36 1.18(1.12-1.25)

Body mass index (Kg/m2) −0.1840 −2.77 0.51(0.31-0.82) −0.1711 −2.62 0.53(0.33-0.85) −0.2097 −3.30 0.46(0.29-0.73)

Body mass index2 [(Kg/m2)2] 0.0033 2.70 1.90(1.19-3.04) 0.0031 2.62 1.85(1.17-2.93) 0.0036 3.03 2.02(1.28-3.18)

Arm circumference (cm) −0.0026 −1.64 0.94(0.88-1.01) −0.0034 −2.21 0.92(0.86-0.99) = = =

Mean blood pressure (mmHg) 0.0180 7.76 1.28(1.20-1.36) 0.0186 8.24 1.29(1.21-1.36) 0.0189 8.43 1.29(1.22-1.37)

Heart rate (beats/min) 0.0018 0.78 1.02(0.97-1.09) = = = = = =

Serum cholesterol (mmol/l) 0.0722 2.81 1.08(1.02-1.14) 0.0758 2.97 1.08(1.03-1.14) 0.0751 2.94 1.08(1.03-1.14)

Forced expiratory volume (l/m2) −0.4691 −3.93 0.89(0.84-0.94) −0.4815 −4.05 0.89(0.84-0.94) −0.4742 −3.99 0.89(0.84-0.94)

ECGm abnormalities (codes 0–1) 0.0518 0.47 1.05(0.85-1.31) = = = = = =

Prevalence CVD (codes 0–1) 0.3658 2.85 1.44(1.12-1.85) 0.3520 2.75 1.42(1.11-1.83) 0.3905 3.05 1.48(1.15-1.90)

Prevalence K (codes 0–1) 2.1479 4.72 8.57(3.51-20.89) 2.2056 4.87 9.08(3.73-22.07) 2.1644 4.76 8.71(3.58-21.22)

Prevalence DIAB (codes 0–1) 0.2545 2.06 1.29(1.01-1.64) 0.2502 2.02 1.28(1.01-1.64) 0.2674 2.16 1.31(1.03-1.66)

ROC± standard error (±95%CI) 0.829 ± 0.0137
(0.810-0.847)

0.830 ± 0.0136
(0.811-0.849)

0.830 ± 0.0137
(0.810-0.848)

β= coefficient; t= t value of coefficient (when t> |1.96| p<0.05); HR=hazard ratio; CI= confidence intervals. The differences for hazards ratio are expressed as 0–1 for dichotomic variables, as 1 unit for physical activity,
and as standard deviations for continuous variables.
CVD= cardiovascular disease; DIAB=diabetes; ECGm =minor ECG; K= cancer.
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Table 2 Multilayer perceptron models predicting 45-year
all-cause mortality (1447 deaths among 1591 men) by
two methods

Rank Gini Variable Keep

NEURAL NETWORK FORCED

1 0.15950 Age (AGE0: years) 1

2 0.60615 Cigarettes smoked per day (CIG0: N) 1

3 0.64475 Family history of CVD(famcv0: codes 0–1) 1

4 0.64790 Mean blood pressure (MBP: mmHg) 1

5 0.65872 Serum cholesterol (CHOL0: mmol/l) 1

6 0.67052 Corneal arcus (gero0: codes 0–1) 1

7 0.67484 Mother status (Mother0: codes 0–1) 1

8 0.67680 Prevalence DIAB (pdiab0: codes 0–1) 1

9 0.68081 Forced expiratory volume (fev0trans0: l/m2) 1

10 0.68321 Heart rate (hr0: beats/min) 1

11 0.68362 Father status (Father0: codes 0–1) 1

12 0.68414 Body mass index (BMI0: Kg/m2) 1

13 0.68516 Minor ECG abnormalities (MinorECG0: codes 0–1) 1

14 0.68524 Prevalence CVD (Pcvd0: codes 0–1) 1

15 0.68579 Arm circumference (midclean0: cm) 1

16 0.68664 Body mass index2 (BMIsq0) [(Kg/m2)2] 1

17 0.68813 Prevalence cancer (pcan0: codes 0–1) 0

18 0.68872 Physical activity (PHYAC0: codes 1-2-3) 0

NEURAL NETWORK STEPWISE

1 0.17824 Age (years) 1

2 0.60661 Cigarettes smoked per day (N) 1

3 0.65370 Mean blood pressure (mmHg) 1

4 0.67844 Mother status (codes 0–1) 1

5 0.67918 Corneal arcus (codes 0–1) 1

6 0.68104 Heart rate (beats/min) 1

7 0.68347 Father status (codes 0–1) 1

8 0.68468 Minor ECG abnormalities (codes 0–1) 1

9 0.69231 Physical activity (codes 1-2-3) 1

10 0.69329 Family history (codes 0–1) 1

11 0.69480 Prevalence DIAB (codes 0–1) 1

12 0.69603 Serum cholesterol (mmol/l) 1

13 0.69854 Prevalence CVD (codes 0–1) 1

Gini = (ROC-0.5)*2 [see text for further details]; Keep = 1: the variable may stay
in the model; Keep = 0: removing the variable improves the training set model.
CVD= cardiovascular disease; DIAB=diabetes. Variables’ codes are included in
parentheses to interpret the Figure in Additional file 1: Appendix 2.
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cholesterol and the prevalences of cardiovascular dis-
ease, cancer and diabetes), family history of CVD, heart
rate and minor ECG abnormalities were not contributors
by Cox models but were so by forced neural network
model. Special attention needs be directed to the pro-
tective roles of forced expiratory volume and arm cir-
cumference, which may have a common thread with
physical fitness as related to job physical activity [31,32],
since these variables were not selected by stepwise
neural network (selecting instead physical activity) but
were so by Cox models. Finally, the overall picture indi-
cates an inverse J shaped relations for body mass index
(except than by stepwise neural network).

Multivariable statistics and neural networks
There are excellent recent books [1,2,17] to have cov-
ered proportional hazards life table Cox model [36] and
its use to assess the relationship between covariates and
events including mortality. On the other hand, multi-
layer feed-forward networks were demonstrated by Hor-
nik et al. with appropriate internal parameters (weights)
to approximate an arbitrary non-linear function [5].
Because prediction can be restated as a function
approximation problem, it follows that artificial neural
networks have the potential to solve major problems in
a wide range of applications where their use has been
reviewed to show advantages and disadvantages for pre-
dicting medical outcomes [12]. What is particularly
important with neural networks is that a multi-factorial
function can be fitted in such a way that creating the
functional form and fitting the function are performed
at the same time, unlike non-linear regression in which
a fit is forced to a pre-chosen function. This capability
gives neural networks, at least potentially, an advantage
over traditional statistical multivariable regression tech-
niques [12].
Dayhoff and De Leo have recently reviewed what is in-

side the black box of neural network models in describ-
ing the most popular squashing function (also known as
activation function) by which multilayered perceptron
actually operates (see Additional file 1: Appendix 2).
They have pointed out that with neural networks it is
possible to mediate predictions for individual patients
with prevalence and misclassification cost considerations
using ROC methodology [12]. When a neural network is
trained on a compendium of data, it builds a predictive
model based on those data, by reflecting a minimiza-
tion in error when the network’s prediction (its output)
is compared with a known or expected outcome. Per-
formance measurements would be taken to report the
neural network’s level of success. The trained neural net-
work then can be used to classify each new individual
subject. This represents “a paradigm shift”, compared to
previous methods whereby statistics concerning given
populations are computed and published and a new
individual subject then is referenced to the closest match-
ing patient population for clinical decision support [12].
With all modelling methods an important part is

the selection (and the number) of prognostic variables
to be included in the model. The selection may be done
a priori based on previous knowledge, as it was done
in the present investigation, to prevent the data driven



ROC=0.841±0.002 (0.838-0.845)

ROC=0.842±0.002 (0.838-0.846)

Stepwise Neural Network

Forced Neural Network models

Figure 1 Receiver operating characteristic curve by forced and stepwise neural network models obtained by 10 runs. ROC= receiver
operating characteristic curve (95% confidence intervals).
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method used more often than not, which leads to a dif-
ferent set of variables being selected each time [30].
However, some inspiration was taken by a previous
experience on this material exploring 40-year predictive
Table 3 Comparisons among receiver operating
characteristics curves obtained by Cox versus neural
network models predicting 45-year all-cause mortality
(1447 deaths among 1591 men)

First Model Compared to the Model p

Cox forced Cox forward stepwise 0.9587

Cox forced Cox backward stepwise 0.9588

Cox forced Neural network forced 0.3478

Cox forced Neural network stepwise 0.3681

Cox forward stepwise Cox backward stepwise 1.0000

Cox forward stepwise Neural network forced 0.3478

Cox forward stepwise Neural network stepwise 0.4236

Cox backward stepwise Neural network forced 0.3861

Cox backward stepwise Neural network stepwise 0.4269

Neural network forced Neural network stepwise 0.7237
capabilities of all-cause mortality [31]. The results of our
study also showed that it is indeed important to take
into consideration also the methods used to run the
predictive models. In fact, when several variables are
included, one may not obtain directly comparable solu-
tions among different studies (or here different models),
if the selected procedure is stepwise. This reinforces the
importance to have forced solutions with a full model
considering all selected covariates.

Comparing different predictive models
In the cardiovascular area, systematic comparisons of
neural networks versus standard multivariable predictive
models such as multiple logistic function has not been a
common practice in either epidemiological [28,29] or
clinical [21-27] investigations. Cox and neural networks
were not previously compared. Voss et al. [28] analysed
10-year fatal (104 of 5.159 men, or 2%) and non-fatal
(235 of 5.159 men, or 4.6%) CHD events among work-
ing men aged 35–65 years from the PROCAM study in
Germany [28]. However, neural network and multiple
logistic models were run with dissimilar covariates [30].
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For example body mass index, height, presence and fam-
ily history of hypertension were considered for neural
network and not for multiple logistic function model.
The conclusion was a superior performance of neural
network versus logistic regression model in predicting
10-year CHD events. ROCs were 0.897 (95% CI 0.888-
0.906) and 0.840 (95% CI 0.830-0.851), respectively [28].
Since the PROCAM experience lacked external valid-

ation of the neural network model [28], as commented
by May [30], a necessary step to delineate not only its
predictive accuracy and potency, but also its generaliza-
tion, which might be a potential advantage over conven-
tional regression techniques [11,12,37,38] we investigated
12763 men enrolled in the SCS. We compared 25-year
CHD mortality and the predictive discrimination of the
multilayer perceptron neural network versus multiple
logistic function based on 4 standard, continuous risk
factors, selected a priori. CHD mortality prediction by
training neural network or multiple logistic function had
similar ROCs (below 0.699). The external validation of
neural network models derived from the high (USA) and
low (Italy) risk populations yielded comparable ROCs
similar to the logistic solutions in Northern and Eastern
Europe, but higher ROCs in two areas [0.633 (logistic)
vs. 0.665 or 0.666 (neural network: p<0.05) in Southern
Europe and 0.676 (logistic) vs. 0.725 or 0.737 (neural net-
work: p<0.01) in Japan]. Thus 25-year CHD prediction
based on 4 continuous covariates showed lower global
accuracies, both by neural network and logistic models
[29], than 10-year CHD prediction based on 13 covari-
ates [28].

How to take advantage of all this
A lot of models in epidemiology, historically [32,39],
have been linear-based on the principle of parsimony
[1-3]. If the principle of linearity predicts the data well,
why go to more complex models? The question has
received replies from the continuous developments of
theoretical mathematicians and the parallel increase of
computer computation power, so that curvilinear models
[13,36] are no more a problem also with personal com-
puters [3,17,40-42]. This prompted new methods in the
domain of survival prediction, among which neural net-
works [11,12,37,38] are only a few [4-10]. If neural net-
works are interesting, the interest should be in two
aspects. First, the overall predictability of the model im-
pact is at increasing the identification of high risk sub-
jects who deserve individualized treatment [21]. The
stakes are high as better models may lead to prevention
of more deaths from CHD [30]. The second should be
the actual pattern of prediction. Does the neural network
give an answer which is intuitively more appealing
and explanatory than the logistic regression or other
models? This would be the most interesting aspect of
the method [12]. With neural network methodology a
meaningful prediction that is unique to each individual
might be produced (see Additional file 1: Appendix 2).
By applying ROC methodology to model outputs, the
decision for individual subjects can be tailored further,
since cost trade-off between false-positive and false-
negative classifications might be examined [12].
There are obviously some limitations with neural net-

works but these may largely apply to standard multivari-
able methods as well. For example when applying neural
networks for long-term (say more than 25 years) predic-
tion of CHD deaths, the number of non-CHD deaths are
too many and the time is not considered by neural net-
works. In this case, if non-CHD deaths are retained (as
non cases) the predictive power of risk factors is diluted;
if they are excluded the structure of the population and
of its destiny are deformed. However, when prediction is
referred to all-cause mortality as in the present study,
these limitations do not operate. A further limitation of
this analysis is bound to the use of a single measurement
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of personal characteristics employed for prediction, ig-
noring the time changes occurred along time. The satis-
factory, and even more significant results separately
obtained in the 40-year run of the IRA SCS cohort [31]
made us confident in a valuable outcome of this analysis.
The present essay may thus provide a baseline material
to construct upon in the hope of further advancing our
knowledge on risk factors for all-cause mortality predic-
tion by neural networks.

Consideration for the statistically-educated clinician
It is important to understand than global accuracy com-
parisons (using ROC curves) are often made on ‘hold-
out’ data, eg data that was not used to generate models
in the first place, so as to test the generality of the mod-
els. It is instead best to compare on new data, although
this has been done quite rarely [29,43,44]. On the other
hand, similar to the present results, several medical
studies have found conventional regression techniques
to perform as well or better than more complex techni-
ques [27-29,44-46]. As for conventional techniques it
is important to consider that full forced models should
be used, since stepwise methods may convey unstable
(or difficult to compare) results. As for more complex
methods, an extremely important feature of the present
study is the potential for a ‘paradigm shift’ in prediction,
mentioned above in relation to neural network models.
Although neural nets (and trees and various other
machine learning techniques such as boosting, random
forests etc.) allow individual predictions, back propaga-
tion neural network are still something of a ‘black box’
to the average clinician. Outputs of neural networks can
be difficult to interpret for the ‘uninitiated’, although
progress is being made.

Long-term all-cause mortality prediction by risk factors
Comparisons with other studies are not easy due to dif-
ferent length of follow-up, different choice of risk factors
and predictive models, and also because most of them
dealt with a single risk factor, or few related risk factors.
In the 30-year follow-up experience of the Framingham
Study serum cholesterol was directly associated with all-
cause mortality, at least for relatively younger subjects
[47]: this was also observed here by all models, but was
not the case in larger aggregate experience of the SCS in
Europe [42]. All-cause mortality investigations were
reviewed [42]. In the context of the General Post Office
study in UK [48] among women and men aged 35–70,
associations with systolic blood pressure were equally
strong for women and men, that of serum cholesterol
was higher in women, while associations with 2-hour
glucose levels was observed only in men. The strongest,
most consistent predictor of mortality was smoking in
women and poor lung function in men. ECG ischemia,
although associated with cardiovascular mortality in
both sexes was not associated with all-cause mortality.
In a Japanese study on elderly people, health behavior
and social role were risk factors for all-cause mortality
along with age, low serum albumin, high blood pressure
and ECG abnormalities, among a total of 30 personal
characteristics [49]. Other studies (always reviewed in
[42]) considered single or very specific risk factors for
all-cause mortality such as the limited influence of soil-
cadmium levels, the null influence of radar equipment,
the direct role of respiratory symptoms, alcohol abuse,
left bundle branch block, post-load plasma glucose, high
basal metabolic rates, high body mass index, pessimistic
side of the Minnesota Multiphasic Personality Inventory
Optimism-Pessimism Scale scores, and high physical
work demand. None of previous investigations consid-
ered neural networks or undertook a comparative study
of global predictive performance vs. Cox models or
logistic regression.

Conclusions
Following the external validation of neural networks [29],
at least in the context of 25-year prediction of CHD mor-
tality, a global conclusion should be that neural network
models present some potential advantage [12], although
the statistical difference as compared to standard multi-
variable methods such as logistic regression [28] or other
more complex models [43] may have not a tremendous
impact to call for their wider application. The evidence
presented here about 45-year all-cause mortality predic-
tion by 18 covariates is in line with these conclusions as
ROCs were higher by neural networks (also in absolute
terms since> 0.838: Figure 1) but there was no statistical
differences vs. Cox models (ROCs> 0.810: Tables 1 and
3). A peculiarity may still reside on the capability of select-
ing covariates (such as in here arm circumference) that
may go underestimated by different methods. Future at-
tention should be concentrated on why neural network
versus Cox models detect different predictors.

Additional files

Additional file 1: Appendix 1. Risk factors measured at entry.
Definitions, units of measurement, mean levels and use in analyses.
Appendix 2. Neural network modelling.
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