
Università
della
Svizzera
italiana

USI Technical Report Series in Informatics

Empirical Validation of CodeCity:
A Controlled Experiment
Richard Wettel1, Michele Lanza1, Romain Robbes2

1 REVEAL @ Faculty of Informatics, Università della Svizzera italiana, Switzerland
2 PLEIAD Lab, DCC, University of Chile

Abstract

We describe an empirical evaluation of a visualization approach based on a 3D city
metaphor, implemented in a tool called CodeCity. We designed the controlled exper-
iment based on a set of lessons extracted from the current body of research and per-
fected it during a preliminary pilot phase. We then conducted the experiment in four
locations across three countries over a period of four months, involving participants
from both academia and industry. We detail the decisions behind our design as well as
the lessons we learned from this experience. Finally, we present the results of the exper-
iment and the complete set of data required to ensure repeatability of the experiment.

Report Info

Published
June 2010

Number
USI-INF-TR-2010/05

Institution
Faculty of Informatics
Università della Svizzera italiana
Lugano, Switzerland

Online Access
www.inf.usi.ch/techreports

1 Introduction

Software visualization is an aid in reverse-engineering software systems and in the resource allocation for
maintenance tasks. Therefore, it is important to investigate whether the use of software visualization—which
produces oftentimes spectacular interactive tools, capable of generating beautiful images—can make a sig-
nificant difference in practice, one that can justify the costs of adopting such a tool in an industrial context.

Our approach for the analysis of —primarily— object-oriented software systems, which uses 3D visualiz-
ations based on a city metaphor [43], is briefly described next.

1.1 Software Systems as Cities

Our approach, based on a 3D city metaphor, provides a complex environment for the exploration of software
systems, with a clear notion of locality that counteracts disorientation, i.e., an open challenge in 3D visu-
alization. According to this metaphor, software systems are visualized as cities, whose buildings represent
the classes of the system and whose districts depict the system’s packages. The visual properties of the city
artifacts depict software metrics.

Initially, we designed the metaphor to support users in solving high-level program comprehension tasks
based on one system version [42]. Later, we extended it to enable analyses of system evolution [46] and
design problem assessments [47]. We validated each of these applications of our approach, by applying it
on several case studies consisting of open-source software systems. To be able to apply our approach on
real software systems, we implemented all the promising ideas emerging from our research in a tool called
CodeCity [45, 44].

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/20653204?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.inf.usi.ch/techreports/

(a) Structural overview of Findbugs

(b) Disharmony map of Azureus (c) Legend

Figure 1: CodeCity visualizations

1.2 CodeCity

From a user interface perspective, CodeCity is a sovereign (i.e., it requires the entire screen [3]) and interactive
application. To allow experimenting with visualizations, CodeCity provides a high customizability, by means
of view configurations (i.e., property mappings, layouts, etc.) and later through scripting support [41]. The
tool, which is freely available1, has been released in March 2008 and has reached its fifth version (i.e., 1.04)
before the beginning of the experiment.

Since we can only perform the evaluation of our approach by means of the tool, the outcome of this
evaluation depends not only on the soundness of the approach, but also on the efficiency and usability of
its implementation. We believe that, after almost two years, CodeCity has achieved the maturity required by
an empirical evaluation. We designed and conducted a controlled experiment aimed at discovering whether,
under which circumstances, and to whom is our approach useful.

1http://codecity.inf.usi.ch

2

http://codecity.inf.usi.ch

1.3 The Experiment in a Nutshell

In this experiment we evaluate two of the three applications of our approach, i.e., structural understanding
and design problem assessment.

The CodeCity view configuration used in the experiment encapsulates the following property mapping:
The number of methods (NOM) metric of classes is mapped on the buildings’ height, the number of attributes
(NOA) on their base size, and the number of lines of code (LOC) on the color of the buildings, i.e., gray build-
ings are the classes with the lowest LOC value, while intensive blue classes are the classes with the highest
LOC value. In the case of packages, the nesting level metric is mapped on the districts’ color saturation, i.e.,
root packages are dark gray, deeply nested packages are light gray. The package hierarchy is thus reflected by
the city’s district structure, as seen in Figure 1(a).

To support design quality analyses, we devised a technique we call disharmony maps [47], which are code
cities enriched with design problem data (See Figure 1(b)). Inspired by disease maps, we assigned vivid colors
to the various design problems and shades of gray to the unaffected entities, which enables the users to focus
on the design disharmonies in the presence of a non-distracting context. Disharmony maps enable the users
to localize the affected elements and assess the distribution of design problems throughout the system.

The main goal of the experiment is to compare the efficiency and effectiveness of our approach to the
ones of the state-of-the-practice. To this end, we compare the performances in terms of correctness and
completion time of CodeCity and of a baseline toolset, in providing support in solving the task set.

Structure of this Report. In Section 2 we cover the related work in a study on empirical validations of
visualization tools. Based on the lessons learned from the body of research, we built a “wish list” of desirable
features for our experimental design, presented in Section 3. Section 4 describes the experimental design we
derived from this wish list, including the list of tasks to be carried out by the subjects of the experiment, as well
as the actual subjects that took part in our experiment. Section 5 describes how we actually performed the
experiment, while Section 6 details our data collection procedure. In Section 7, we present our data analysis
aimed at finding and discarding outliers in data. In Section 8 we present the results of the statistical analysis,
in terms of time taken to perform the tasks, and correctness of the solutions. Finally, we discuss potential
threats to the validity of our experiment in Section 9, before concluding in Section 10.

2 Related Work

There is a rich body of research on empirical evaluation through controlled experiments. We first conducted
an extensive study of the literature to identify both good practices and commonly occurring mistakes in con-
trolled experiments. Given the wide span of related work, we limit ourselves to discuss mostly the work that
contributed in one way or another to the design of our experiment. The lessons extracted from this study are
synthesized in a list of desiderata for the design of our experiment, presented in Section 3.

2.1 Guidelines for Information Visualization Evaluation

Since software visualization is rooted in the information visualization field, we first look at the means of
evaluation for information visualization research.

Plaisant acknowledges the challenge of information visualization evaluation, but also its major role in in-
creasing the credibility of tools towards an industry adoption [29]. The author divided the current evaluation
practices in the following categories:

• controlled experiments that compare design elements

• usability evaluations of tools

• controlled experiments comparing two or more tools

• case studies of tools in realistic settings

Two important matter emphasized in this work is the use of real datasets and the demonstration of real-
istic tasks. Based on several reviewed experiments, Plaisant observed that tools perform differently for dif-
ferent tasks and, consequently, the composition of tasks can favor one tool over another when measuring
overall performances.

3

To allow potential adopters to match tools with their own tasks, Plaisant recommends reporting on in-
dividual tasks rather than overall. The author also signals the urgent need for both task taxonomies and for
benchmarks repositories of datasets and tasks.

In their analysis of user evaluation studies in information visualization [7], Ellis and Dix identified a set
of problems that occur in user evaluation studies and discussed a number of solutions to these problems,
which can be applied when designing and conducting evaluation studies in information visualization. The
authors claim that empirical evaluation of visualizations is methodologically unsound, because of the gen-
erative nature of visualizations. It turns out that we cannot find perfect justifications of the observed results,
because reasoning based on our incomplete knowledge of human perception is flawed. The authors do not
advocate against empirical evaluations, but rather plead for a restrained interpretation of their results. An-
other issue they discussed was finding a balance between good science and “publishability”: When evaluating
solely aspects that are questionable, one is more likely to find problems in the visualization, while when eval-
uating aspects that are on the safe side, it is practically impossible to learn something from the experiment, in
spite of the potentially significant results. An interesting observation was that in open-ended tasks, the time
a user spent on a task does not necessarily reflect the actual time required to finish it, but could also show
how much they enjoyed themselves solving it.

Zhu proposed a framework for the definition and measurement of effective data visualization [50], ac-
cording to three principles:

1. Accuracy, i.e., the attributes and structure of a visual element should match the ones of the represented
data item

2. Utility, i.e., an effective visualization should help users achieve the goal of specific tasks

3. Efficiency, i.e., an effective visualization should reduce the cognitive load for a specific task over non-
visual representations.

However, the great challenge in this context—finding concrete means to measure these effectiveness
metrics—has unfortunately not been addressed by the author of this work with concrete solutions.

2.2 Empirical Evaluation in Information Visualization

In information visualization there are many controlled experiments which compare the efficiency of several
tools presenting the same data. Since information visualization tools are more general than software visu-
alization tools, the evaluations are not always task-centered, and even if they are, the tasks tend to be less
focused than the ones in software visualization.

Petre shares some timeless insights which, although aimed at visual programming, are valid for software
visualization as well [28]. In this work, the author focused mostly on the difference between novice users and
experts and discussed these difference. First, the expert knows where to look, which is not so obvious for a
novice. Second, there is a major difference in the strategies employed by experts and novices in using a graph-
ical environment. While reading a textual representation is straightforward—due to the sequential nature of
text—reading a graphical representation in two or three dimensions requires the reader to identify an appro-
priate reading strategy. Finally, an expert knows how to exploit cues outside of what is formally defined—an
information invisible to a novice. To support her claim that “looking isn’t always seeing”, Petre distinguishes
experts by their ability to “see”, which allows them to both perceive as important the information relevant to
solve a task and to filter out inessential information. We support this observation and therefore take it into
account in the design of our experience, by using blocking—distributing our subjects in groups featuring
similar characteristics—based on the experience level of our subjects.

An early work in evaluating 3D visualization designs is the one of Wiss et al. [48]. The authors tried to
isolate the design from the implementation and to evaluate it in isolation. For this, they implemented three
existing 3D information visualization designs: the Cam Tree, the Information Cube, and the Information
Landscape. The object system was a data set with 30 leaves and 8 internal nodes and an electronic newspa-
per’s table-of-contents with 56 leaves and 14 internal nodes. The authors compared the three designs and
concluded that each created problems with different data sets and that there was no absolute winner. At the
end, however, the authors acknowledged that, by evaluating any information visualization design in isola-
tion, one can only look at whether it can be used for implementing a task or not. This conclusion strengthens
our belief that, in order to test a visual approach, one needs to test its implementation, to allow the users to
perform real tasks.

4

Stasko et al. [36] presented the results of two empirical studies of two visualization tools for depicting
hierarchies, implementing two space-filling layout methodologies, i.e., Treemap and Sunburst. The authors,
who have developed certain assumptions about the strengths and weaknesses of each of the two approaches,
used the empirical studies to test these assumptions. The experiment had 32 students as participants and
16 short tasks (i.e., with a maximum time limit of 1 minute), typical of operations that people perform on
file systems. Besides correctness, the authors also analyzed average completion time per task, but only on
correct tasks. An interesting fact about this work is that the authors analyzed the strategies taken (in terms of
basic operations upon the tools) by the users to solve each task.

Kobsa presented the results from an empirical study, in which he compared three commercial informa-
tion visualization systems (i.e., Eureka, InfoZoom, and Spotfire), based on tasks performed on three different
databases [14]. There were 82 student participants, and they had to solve 26 tasks (i.e., small tasks that can
be solved in 1-2 minutes each) in three blocks of 30 minutes. Kobsa acknowledges that the more complex the
tasks are, more factors may influence the outcome of the study, such as the ability of the subjects to under-
stand the tasks and to translate them into available visualizations and operations upon these visualizations.

In another work, Kobsa compared five tree visualization systems (i.e., Treemap, Sequoia View, BeamTrees,
Star Tree, and Tree Viewer) and Windows Explorer as a baseline [15]. There were 15 tasks and the object
system was a test hierarchy representing a subset of a taxonomy of items on eBay. The participants in this
experiment were 48 students with at least one year of experience working with computers, and the design
of the experiment was between-subjects. The subjects were allowed a maximum of 5 minutes per task and
were recorded with screen recording software. This allowed the experimenters to perform a post-experiment
analysis in order to try to explain the differences in performance, and to observe a series of interesting insights
in relation to each of the tools. An interesting outcome of the experiment was that, in the end, the most
preferred tool was the non-visual, yet popular, Windows Explorer.

Kosara et al. [16] addressed a set of questions around user studies, drawing attention upon the importance
of studying a technique in an application setting, since one cannot assume that low-level results automatic-
ally apply to more complex displays. The authors remark that the comments from participants are often more
important than the other data an experimenter collects and that observing how professionals use a tool or
technique is vital. They also acknowledge the fact that in visualization, one cannot publish null results (i.e.,
results showing that the original hypothesis was not supported by the data), in spite of their intrinsic value.

We applied several lessons we learned from this work. First, we designed tasks that are not trivial, but
rather close in complexity to realistic tasks, and yet solvable in a limited amount of time. During our ex-
periment runs, we gathered many observations from our subjects, both formally, via questionnaires, and
informally, by verbal communication. Finally, we had the chance to watch professionals using our tool in
their own after-work environment, i.e., during a user group meeting, which was a valuable experience.

O’Donnell et al. [25] presented an evaluation experiment for an area-based tree visualization called
PieTree. Before the formal evaluation (i.e., the actual experiment run) the authors performed two rounds
of informal evaluation to discover usability problems. For the informal evaluation the subjects were eight
postgraduate students and the objects two fictional data hierarchies of 12 and 125 nodes. The formal eval-
uation was conducted with 16 students, most of them postgraduate. While in the informal evaluation they
compared PieTree in conjunction to a TreeView with TreeMap, in the formal experiment they compared the
use of PieTree in conjunction with a TreeView to just using the PieTree or the TreeView alone. The comparison
chosen by the authors is rather weak, because it shows at best that the two approaches are better than any
one of them taken separately, instead of trying to prove the usefulness of the PieTree approach created by the
authors. The experiment took place with one subject at a time, which allowed the authors to observe a num-
ber of common strategies used by the subjects to solve the tasks and discuss how these strategies influenced
the results. The main lesson that the authors learned with their experiment is that the results depend not only
on the support provided by the tool, but also on the users and on their capability to translate the tasks into
interactions with the visualization. The results of the comparison—which showed that the combination of
the two tools was outperformed by the use of one of the tools in every task—strengthen the belief that more
is not always better.

Although there are several other controlled experiments in the information visualization field [2, 8, 40],
we restrict ourselves to the ones that influenced our experiment’s design.

5

2.3 The Challenges of Software Visualization

Since tool support is a key factor for the evaluation of software visualization approaches, the challenges of
software visualization tools are important for empirical evaluations.

In the context of the theories, tools, and research methods used in program comprehension, Storey places
an important emphasis on visualization [37], whose challenges include dealing with scalability, choosing the
right level of abstraction, and selecting which views to show—all problems we needed to handle to provide a
tool that can stand the test of evaluation.

Koschke performed a research survey on the use of software visualization in the fields of software main-
tenance, reverse engineering and re-engineering and synthesized the perspectives of 82 researchers, obtained
by way of electronic mail [17]. According to this survey, the vast majority of the researchers believe that visu-
alization is absolutely necessary or at least very important to their domain, a result considered overrated by
the author of the survey. The author brings up a set of observations, pointing out the space for improvement.
Despite the fact that visualization has come to be perceived as particularly appropriate to give an overview of
a large information space, several researchers stated that it is only suited for small-to-medium-sized systems,
and one of the participants indicated that for large systems or for systems with an overwhelming number of
dependencies, queries are preferred over visualization.

From the perspective of the existing representation in software visualization, graphs are by far the domin-
ant one, while metaphors are covered by only 1% of the approaches. This insight gives a clear indication of the
quantity of research invested in each of these directions and strengthens our belief that we are investigating
a less uncovered, and thus potentially valuable direction.

Some of the challenges of visualization mentioned by Koschke are scalability and complexity, source code
proximity (i.e., maintaining a link with source code), and integrability of visualization in processes and tools
for maintenance, reverse engineering, re-engineering, and forward engineering. Finally, an interesting aspect
is the subjectivity of most researchers, who consider the appropriateness of their own visualization as a given,
without any empirical evidence whatsoever. However, the justified expectation of the research community
for evaluation through controlled experiments is challenged not only by the creators’ subjectivity, but also by
the cognitive nature of the tasks supported by software visualization.

2.4 Program Comprehension Tasks

Differently from the information visualization field, where the focus is more on perception, the evaluations of
software visualization approaches are based on task solving. Therefore, finding the tasks for the experiments
is of major importance. We looked at the existing frameworks and at the tasks used in controlled experiments
for the validation of reverse engineering and program comprehension approaches.

Based on qualitative studies performed with participants from both industry and academia, Sillito et al.
defined a set of questions that developers ask during a programming change task [35]. However, this valuable
framework focuses on the source code level and supports mainly developers. Therefore, it is not very appro-
priate for the evaluation of our approach, which supports developers, but also architects, designers, project
managers, in solving high-level reverse engineering and comprehension tasks.

Pacione et al. [26] proposed a model for evaluating the ability of software visualization tools to support
software comprehension. According to their model, a tool or approach is characterized by three dimensions:
level of abstraction (i.e., the granularity of the visualized data), facets of software (i.e., structure, behavior,
data), and type of analyzed data (i.e., static or dynamic). The authors defined a set of comprehension activit-
ies that should be supported by visualization tools and a set of tasks which are mapped on the comprehension
activities. However, in spite of its apparent generality, this model is heavily biased towards dynamic data (e.g.,
execution traces) visualizations, and therefore is not usable for the evaluation of our approach, which relies
solely on static information. The authors themselves acknowledged the fact that none of their tasks can be
solved in the absence of dynamic information.

2.5 Guidelines for Software Visualization Evaluation

Kitchenam et al. [12] proposed a set of guidelines for designing, conducting, and evaluating empirical re-
search in the more general context of software engineering. Some of these are just as applicable to empirical
research in software visualization, in particular the ones related to the presentation of the results. An observa-
tion mentioned in this work is that in a validation experiment one can compare two defined technologies, one
against the other, but “it is usually not valid to compare using a technology with not using it”. Although this

6

sounds like a reasonable observation, we found this anti-pattern in the designs of several of the controlled
experiments in software visualization discussed later.

One of the problems in designing and performing evaluations of software visualization approaches is the
lack of software visualization benchmarks, a reality acknowledged by Maletic and Marcus, who launched a
call for such contribution, to raise the awareness of the scientific community on this problem [20].

Di Penta et al. synthesized a set of guidelines for designing empirical studies in the field of program
comprehension [27]. Some of the pitfalls of breaking these guidelines are severe, such as data that fails to
support even true hypotheses, or conclusions that are not statistically significant due to insufficient data
points. A major concern raised by the authors was the replicability of the empirical studies. They proposed a
“recipe” for presenting the results and making materials available to facilitate replication and evaluation. We
used this recipe to present our controlled experiment in a replicable way.

After performing several experiments for the evaluation of visualization approaches, Sensalire et al. [33]
shared a number of lessons learned during the process. One lesson is the risk of involving participants cov-
ering a wide range of levels of experience, which could bias the results of the study. To address this issue in
our experiment, we use blocking based on the experience level, which allows us to perform separate analyses
on the different blocks. Following the authors’ advice against exposing the participants to the tool for a few
minutes just before the experiment, we planned to perform a session to present our approach before each
experimental run.

With respect to the tasks, Sensalire et al. make a distinction between tasks aiming at program discov-
ery and tasks aiming at program maintenance, and admit that in case of the former, it is harder to quantify
the effectiveness of the tool. CodeCity is a tool that supports mainly program discovery and only indirectly
maintenance, and therefore its usefulness in finding unexpected facts has only been shown during our case
studies. However, testing its effectiveness in performing precise tasks can give a complementary measure of
its practical value. The authors suggested that professionals are interested in tools supporting maintenance,
rather than program discovery. The positive feedback we received on CodeCity support our somewhat differ-
ent viewpoint: Lower-level maintenance tools and higher-level analysis tools (e.g., visualizations) should be
used complementarily to deal with today’s software systems. Some of the more experienced industry practi-
tioners that participated in our experiment, or only attended a presentation, specifically mentioned the lack
and need of overview tools, such as CodeCity.

Another concern raised by the authors of this work relates to the motivation of participants, in particular
professionals, who may require a measurable return to invest time in learning a tool. To this end, the present-
ation session preceding every experimental session in our design includes a presentation of the approach and
a tool demonstration, which provides benefits for both professional interested in new tools, and academics
active in software visualization, reverse engineering, or program comprehension.

2.6 Empirical Evaluation in Software Visualization

Koschke states that the lack of proper evaluation to demonstrate the effectiveness of tools is detrimental
to the development in the field [17]. Consequently, there is a growing request for empirical evaluations in
software visualization.

Storey and Müller were among the first ones to tackle the evaluation of their visualization tools (i.e.,
SHriMP and Rigi, respectively) by means of controlled experiments. In a first step, the authors drafted a
controlled experiment for the evaluation of reverse engineering tools, and reported on preliminary results
obtained from a pilot study [38]. In a second step, Storey et al. performed the actual experiment [39], in
which they compared their two tools to a baseline (i.e., SNIFF+). Based on the experiment, performed with
30 students, of which 5 graduates and 25 undergrads, the authors compared the support provided by their
tools in solving a number of program comprehension tasks. The authors focused on identifying both the
types of tasks that are best supported by their tools and their limitations, which is also one of the goals of our
controlled experiment. However, the tasks of their user study are more oriented towards code change and
lower-level comprehension, while the aim of our approach and therefore, of the tasks in our experiment, is
on higher-level analyses and overall comprehension of the system’s structure.

Apart from the positive lessons we could extract from this work, we identified a couple of issues with this
user study. First, in spite of the practical nature of the tasks (i.e., maintenance and program understanding),
the subjects were exclusively students and therefore might not have been a representative sample for the
tasks’ target population, namely industry practitioners. Second, the two experimental treatments required a
decomposition of the object system manually built by the authors of the tools (i.e., a sub-system hierarchy,

7

based on the modularization of the source code into files), which turned out to be a key factor on the out-
come of these groups. Although semi-automatic approaches are common in program comprehension, this
intervention may have influenced the results of the experiment.

Marcus et al. [21] described a study aimed at testing the support provided by their tool called sv3D in
answering a set of program comprehension questions. To this purpose, the authors compared the use of
their tool to the exploration of a text file containing all the metrics data and of source code in an IDE, which
is a more spartan version of our choice for a baseline (i.e., we provided a spreadsheet with all the metric
data, which is structured and allows advanced operations, such as sorting or filtering). The questions that the
subjects were supposed to address mostly related to the metrics represented by the tool (i.e., number lines of
text, number of lines of comments, complexity measures, number of control structures). The object system
of their experiment was a small Java application of only 27 classes and 42 kLOC, which is not a representative
size for typical software systems. Moreover, the fact that all the participants (i.e., 24 in the experiment and 12
in the pilot study) were students raises the threat of representativeness of the subject sample. In the pilot, the
authors performed the training session just before the test, while for the experiment they decided to schedule
the training session few days prior to the test. The authors developed additional software to capture statistics,
such as the ubiquitous amount of time needed to answer a question or the number of times a participant
changed an answer. A surprising result of the experiment was that from the viewpoint of completion time, the
text group performed better than the visualization group. From the accuracy point of view, the experimental
group performed slightly better, but the difference was not statistically significant. The authors felt that their
subjects would have required several hours of training to get to use the tool in a similar manner as the authors
themselves.

One fundamental threat to internal validity we see in the design of this experiment is the fact that the
authors changed too many elements (i.e., level of experience of the subjects, the amount of time passed
between the training and the test) between the two phases of the experiment and thus were not able to de-
termine which of these confounding factors was the real cause of the difference between the results of the
two runs.

Arisholm et al. [1] performed an experiment to validate the impact of UML documentation on software
maintenance. Although documentation does not have much in common with interactive visualization—
and yet, so many people consider ULM as visualization, rather than a visual language—there is a number
of interesting insights about the design of evaluation experiments and the presentation of the results. The
independent variable was the use of UML, which goes against one of the guidelines of Kitchenham et al. [12],
because it compares using a technology to not using it. Moreover, providing the experimental group with
the same toolset as the control group, in addition to the new tool, opened the possibility for the subjects in
the experimental group to use only the baseline tools, a fact the authors found out from the debriefing inter-
views. Apart from the questionable validity of such a comparison, the presence of this confounding factor is
another reason to avoid such a design. The two objects of this experiment were very small systems: a simple
ATM system of 7 classes and 338 LOC and a software system controlling a vending machine with 12 classes
and 293 LOC. The UML documents provided were a use case diagram, sequence diagrams, and a class dia-
gram. Although the authors were mainly interested in demonstrating the usefulness of UML documentation
in practice, the size of the two object systems is not comparable with the size of software systems in industry
and the few UML diagrams used in the experiment cannot reflect the huge amount of UML diagrams present
in a system documented using this modeling language. We claim that anything that is demonstrated under
such artificial conditions can hardly be generalized for a real setting, such as an industrial context. Moreover,
all 98 subjects of the experiment were students, which is another external threat to validity.

A positive characteristic of this experiment’s design was the realism of the tasks, reflected also by the sig-
nificant amount of time required for an experiment run (8–12 hours). The authors used blocking to ensure
comparable skills across the two student groups corresponding to the two treatments. We also use block-
ing in our experiment, not only based on the experience level, but also on the background (i.e., industry or
academy), since we had a large share of industry practitioners. The experiment of Arisholm et al. took place
on two sites, i.e., Oslo (Norway) and Ottawa (Ontario, Canada). In a similar vein, our experiment had eleven
runs over four sites in three different countries. For the analysis, Arisholm et al. considered each task separ-
ately, since different results were observed due to the variation in complexity. Complementary to the overall
results, we also consider each task separately for the same reasons. The authors concluded that although in
terms of time UML documentation did not seem to provide an advantage when considering the additional
time needed to modify models, in terms of correctness, for the most complex tasks, the subjects who used
UML documentation performed significantly better than those who did not.

8

Lange et al. presented the results of a controlled experiment in which they evaluated the usefulness of
four enriched UML views they have devised, by comparing them with traditional UML diagrams [18]. The
experiment was conducted over two runs, in which the second was a replication of the first. There were 29
multiple-choice questions divided in four categories. The subjects of this experiment, conducted within a
course on software architecture, were 100 master students unaware of the goal and research questions of the
experiment. The baseline of the experiment was composed of a UML tool and a metric analysis tool. Similarly
to this approach, we compose a baseline from several tools in order to cover the part of our tool’s functionality
that we decided to evaluate. Probably due to the lack of scalability of UML in general, the size of the object
systems in this experiment was rather modest (i.e., 40 classes) compared to our object systems, which are
up to two orders of magnitude larger (i.e., 4’656 classes in the case of Azureus). The measured dependent
variables in the experiment of Lange et al. were the total time and the correctness, which is defined as the
ratio between the number of correct answers and the total number of questions. This form of recall allows
direct comparison in terms of correctness between the experiment and its future replications, even if the
number of questions varies.

For our experiment, we considered that measuring the total time alone was a rather imprecise measure
of performance, given the variety in difficulty of the tasks, and therefore we decided to analyze the time on a
task-by-task basis, complementary to the overall time.

Quante performed a controlled experiment for the evaluation of his dynamic object process graphs in
supporting program understanding [30]. The experiment had 25 computer science students as subjects, a
homogeneous composition lacking any representation from industry. An interesting choice of the author
was the use of not one, but two object systems. The tool was introduced using slides and an experimenter’s
handbook, followed by a set of training tasks for both the experimental and the control group, of which the
first half performed in parallel with the experimenter. For each of the two systems, the author devised three
tasks and allowed the participants to take as much time as needed to finish each task, to avoid placing any
time pressure on the subjects. The participants were not told how many tasks there were, yet after two hours,
they were stopped. The lack of time constraints led to several participants using all the allotted time in solving
the first task. For this reason, only the first task for each object system had complete data.

A very interesting outcome of this experiment is the fact that the two object systems led to significantly
different results. The improvement of the experimental group could only be detected in the case of one of
the object systems, while in the case of the other, the performances of the participants were not significantly
better. This work gave us the valuable insight that relying on solely one subject system is unsound. Another
lesson we learned from Quante’s work is that an experiment that failed with respect to the expected results is
not necessarily a failure.

Knodel et al. presented the results of a controlled experiment for the evaluation of the role of graphical
elements in visualization of software architecture [13]. In a preliminary step, the authors verified the sound-
ness of the tasks with the help of two experts in the object system (i.e., Tomcat). The participants of the
experiment were 12 experienced researchers and 17 students from Fraunhofer in Kaiserslautern (Germany)
and Maryland (United States). The tested hypotheses were either about the impact of the configuration of
the visualization on the results of different types of tasks, or about the difference in performance between
experienced researchers and students in solving the tasks. In our experiment, we use blocking based on
the experience level to identify the type of user best supported by our approach. Interestingly, the authors
asked for results in the form of both written answers and screenshots created with the tool. From the de-
briefing questionnaire the authors found out that the configuration of the visualization makes a difference
when solving tasks and that an “optimal configuration” does not exist, because the results depend on both
the user and the task. Moreover, they were able to identify the more efficient of the two configurations they
tested. Knodel et al. consider configurability to be a key requirement and recommend the visualization tool
developers to invest effort into it.

Cornelissen et al. [4, 5] performed a controlled experiment for the evaluation of EXTRAVIS, an execution
trace visualization tool. The experiment consisted of solving four “typical tasks”, divided in eight sub-tasks,
which—as the authors claimed—cover all the activities in Pacione’s model [26]. The choice of the model
fits the nature of this approach, i.e., the analysis of dynamic data. The purpose of the experiment was to
evaluate how the availability of EXTRAVIS influences the correctness and the time spent by the participants
in solving the tasks. The subject population was composed of 23 participants from academia and only one
participant from industry, which the authors claimed to mitigate the concern of unrepresentative population.
Obviously, as the authors discussed in the threats to validity, one single subject from industry cannot generate
any statistically relevant insights that holds for industry practitioners in general.

9

However, we drew inspiration from this experiment in some of the organizational aspects, such as the
pre-experiment questionnaire (i.e., a self-assessment of the participant candidates on a set of fields of ex-
pertise) or the debriefing questionnaire (i.e., a set of questions related to the difficulty and the time pressure
experienced while solving the tasks). We also learned that training sessions of 10 minutes are probably too
short, something acknowledged even by some of their participants. The authors designed the treatments as
follows: The control group gets Eclipse, while the experimental group gets Eclipse, EXTRAVIS, and the execu-
tion traces.

We found two issues with this design. First, the two groups do not benefit from the same data, since
only the experimental group has the execution traces. Under these circumstances, it is not clear whether
the observed effect is owed to the availability of the data, of the tool, or of both. Second, in addition to
the evaluated tool (i.e., EXTRAVIS), the experimental group also had the tool of the control group, which goes
back to the problem signaled by Kitchenham et al., who question the validity of comparing using a technology
with not using it [12]. Nevertheless, the work has inspired us from many points of view, such as organization,
the questionnaire, or the amount of details in which they presented the experiment’s design and procedure,
which makes it repeatable.

3 Wish List Extracted from the Literature

The literature survey we conducted allowed us to establish the following list of guidelines for our experiment,
extracted from both the success and the shortfalls of the current body of research:

1. Avoid comparing using a technique against not using it. Although in their guidelines for empirical
research in software engineering Kitchenham et al. characterized this practice as invalid, many of the
recent controlled experiments are based on such a design, which tends to become an anti-pattern.
To be able to perform a head-to-head comparison with a reasonable baseline, we invested effort into
finding a good combination of state-of-the-practice tools to compare our approach to.

2. Involve participants from industry. Our approach, which we devised to support practitioners in ana-
lyzing their software systems, should be evaluated by a subject population that includes a fair share of
software practitioners. Moreover, professionals are less likely to provide a positive evaluation of the tool
if it does not actually support them in solving their tasks [33]. Unfortunately, the literature study we per-
formed showed that most evaluations of software visualization approaches have been performed with
academics, in particular students.

3. Provide a not-so-short tutorial of the experimental tool to the participants. It is important for the
participants to choose an appropriate visualization and to translate the tasks into actions upon the
visualization. On the one hand, for a fair comparison of a new tool with the state-of-the-practice, the
experimental group would require many hours of intensive training, to even come close to the skills
of the control group acquired in years of operation. On the other hand, the most an experimenter can
hope for from any participant, in particular from professionals in both research and industry, is a very
limited amount of time. Therefore, the experimenter needs to design an interesting yet concise tutorial
which is broad enough to cover all the features required by the experiment, yet is not limited to solely
those features.

4. Avoid, whenever possible, to give the tutorial right before the test. One of the lessons learned from the
experiment of Marcus et al. [21] is that allowing the subjects to get in contact with the tool in advance
(i.e., performing the training a few days before the test) is quite useful. Although we tried to give the
tutorial in advance, sometimes this was just not possible due mostly to the limited amount of time we
could afford to get from our subjects. To compensate for this, we provided a set of online video tutorials
that the subjects could consult in advance.

5. Use the tutorial to cover both the research behind the approach and the implementation. Different
types of subjects have different incentives to participate in the experiment. Practitioners are probably
more interested in what the tool is able to support them with, while academics are more likely to be
interested in the research behind the tool. If the experiment is designed to have both categories of
subjects, dividing the tutorial in two distinctive parts can be helpful. Each of our experimental sessions
is preceded by a presentation and tool demonstration of about 45 minutes.

10

6. Find a set of relevant tasks. In task-based evaluations, the relevance of the results depends directly on
the relevance of the tasks with respect to the purpose of the approach. In the absence of a definitive
set of typical higher-level software comprehension tasks in the literature, we naturally look for the tasks
among the ones that we had in mind when devising our approach. However, for objectivity, we placed
the tasks in the context of their rationale and of their target users. Moreover, we avoided very basic or
trivial tasks and chose tasks close in complexity to the real tasks performed by practitioners. This alle-
viates the concern about performing the study in an artificially simple environment, raised by Kosara
et al. [16].

7. Choose real object systems that are relevant for the tasks. Many of the experiments in the literature
use very small systems as objects and therefore, the results cannot be generalized for the case of real
systems, such as the ones in industry. Since with our research we aim at supporting the understanding
and analysis of medium-to-large software systems, for our experiment we consider only real systems of
relevant size, a decision that goes along the guidelines of Plaisant et al. [29].

8. Include more than one subject system in the experimental design. The experiment of Quante [30]
showed that performing the same experiment on two different systems can lead to significantly differ-
ent results. Therefore, in our experiment, we consider two systems, different in both scale and applic-
ation domain.

9. Provide the same data to all participants. No matter which groups the participants belong to, they
should have access to the same data. Thus, the observed effect of the experiment is more likely to be
due to the independent variables.

10. Limit the amount of time allowed for solving each task. Allowing unbounded time for a task to avoid
time pressure may lead to participants spending the entire alloted time for the experiment solving a
single task. Moreover, in an open-ended task setup, a long time does not necessarily reflect the difficulty
of the task, but also the fun one has solving it. Our solution for this was to provide a maximum time per
task and to check with an expert for each of the tools whether the time window is feasible for the task.

11. Provide all the details needed to make the experiment replicable. We followed the guidelines of Di
Penta et al. [27] and made available the materials and results to facilitate its evaluation and replication:

• subject selection criteria and justification

• subject screening materials and results (with private information replaced by unique identifiers)

• pre-test questions, and results keyed to the unique subject identifiers, as well as explanation that
the questions are designed to evaluate

• control and treatment groups (i.e., sets of subject identifiers)

• post-test design and control/treatment group materials, as well as an explanation of the know-
ledge the post-test questions are designed to evaluate

• if different instructions are given to the control and treatment groups, some summary of the con-
tents of these instructions

12. Report results on individual tasks. A precise identification of the types of tasks that mostly benefit
from the evaluated tool or approach allows a more informed decision for potential adopters. Moreover,
due to the variation in complexity, differences in time performances from one task to another are ex-
pected [1].

13. Include tasks on which the expected result is not always to the advantage of the tool being evaluated.
This allows the experimenter to actually learn something during the experiment, including shortcom-
ings of the approach. However, given the limited amount of time—and thus tasks—participants have,
these tasks should be a minority with respect to the tasks for which superiority from the evaluated tool
is expected.

14. Take into account the possible wide range of experience level of the participants. To allow an analysis
based on the experience level which is supposed to influence the participants’ performance in solving
the given tasks [28, 13], we use blocking, which implies dividing the subjects of each treatment into
blocks based on their experience and skills.

11

4 Experimental Design

The purpose of the experiment is to provide a quantitative evaluation of the effectiveness and efficiency of
our approach when compared to state-of-the-practice exploration approaches.

4.1 Research Questions & Hypotheses

The research questions underlying our experiment are:

Q1 : Does the use of CodeCity increase the correctness of the solutions to program comprehension tasks,
compared to non-visual exploration tools, regardless of the object system size?

Q2 : Does the use of CodeCity reduce the time needed to solve program comprehension tasks, compared to
non-visual exploration tools, regardless of the object system size?

Q3 : Which are the task types for which using CodeCity over non-visual exploration tools makes a difference
in either correctness or completion time?

Q4 : Do the potential benefits of using CodeCity in terms of correctness and time depend on the user’s back-
ground (i.e., academic versus industry practitioner)?

Q5 : Do the potential benefits of using CodeCity in terms of correctness and time depend on the user’s ex-
perience level (i.e., novice versus advanced)?

The null hypotheses and alternative hypotheses corresponding to the first two research questions are
synthesized in Table 1.

Null hypothesis Alternative hypothesis
H10 : The tool does not impact the correctness

of the solutions to program comprehension
tasks.

H1 : The tool impacts the correctness of the
solutions to program comprehension tasks.

H20 : The tool does not impact the time required
to complete program comprehension tasks.

H2 : The tool impacts the time required to com-
plete program comprehension tasks.

Table 1: Null and alternative hypotheses

The remaining three questions, although secondary, allow us to search for more precise insights about
our approach. For the third question, we perform a separate analysis of correctness and completion time for
each of the tasks. For the last two questions we perform an analysis of the data within blocks.

4.2 Dependent & Independent Variables

The purpose of the experiment is to show whether CodeCity’s 3D visualizations provide better support to
software practitioners in solving program comprehension tasks than state-of-the-practice non-visual explor-
ation tools. Additionally, we want to see how well CodeCity performs compared to the baseline when analyz-
ing systems of different magnitudes, given that one of the goals of our approach was to provide support in
large-scale systems.

Hence, our experiment has two independent variables: the tool used to solve the tasks and object sys-
tem size. The tool variable has two treatments, i.e., CodeCity and a baseline, chosen based on the criteria
described in Section 4.2.1. The object system size has two treatments, i.e., medium and large, because visu-
alization starts to become useful only when the analyzed system has a reasonable size. The object systems
chosen to represent these two treatments are presented in Section 4.2.2.

Similarly to other empirical evaluations of software visualization approaches [18, 30, 4], the dependent
variables of our experiment are correctness of the task solution and completion time. While the correctness of
the task solutions is a measure of the effectiveness of the approach, the completion time represents a measure
of the efficiency of the approach.

The design of our experiment is a between-subjects design, i.e., a subject is part of either the control group
or of the experimental group.

12

4.2.1 Finding a Baseline

There is a subtle interdependency between the baseline and the set of tasks for the experiment. In an ideal
world, we would have devised tasks for each of the three context in which we applied our approach: software
understanding, evolution analysis, and design quality assessment. Instead, we had to settle to a reasonable
compromise. We looked for two characteristics in an appropriate baseline: data & feature compatibility with
CodeCity and recognition from the community (i.e., a state-of-the-practice tool).

Unfortunately we could not find a single tool satisfying both criteria. The first candidate was a highly
configurable text-based reverse engineering tool called MooseBrowser [24], built on top of the Moose reen-
gineering platform2. MooseBrowser is data-compatible with CodeCity, for it uses the same underlying meta-
model for object-oriented software (i.e., FAMIX [6]) and is able to cover the features of CodeCity we wanted
to test. However, in spite of the enthusiastic Moose community, MooseBrowser cannot yet be considered
state-of-the-practice in reverse engineering.

To allow a fair comparison, without having to limit the task range, we opted to build a baseline from sev-
eral tools. The baseline needed to provide exploration and querying functionality, support for the presenting
at least the most important software metrics, support for design problems exploration, and if possible sup-
port for evolutionary analysis.

In spite of the many existing software analysis approaches, software understanding is still mainly per-
formed at the source code level. Since the most common source code exploration tools are integrated de-
velopment environments (IDEs), we chose Eclipse3, a popular IDE in both academia and industry. The next
step was finding support for exploring meta-data, such as software metrics and design problem data, since
they were not available in Eclipse. We looked for a convenient Eclipse plugin for metrics or even an external
tool (such as Sonar4) that would either include the metrics we needed for the tasks, or provide support for
entering user-defined metrics, or allow us to hard-code the data we had in CodeCity. Again, none of the tools
we found allowed us to do so. Since we did not want to confer an unfair data advantage to the subjects in
the experimental group, we chose to provide the control group with tables containing the metrics and design
problem data, and the popular Excel spreadsheet application for exploring the data.

Finally, due to Eclipse’s lack of support for multiple versions, we decided to exclude the evolution analysis
from our evaluation, although we consider it one of the strong points of our approach. We felt that providing
the users with several projects in Eclipse representing different versions of the same system, with no relation
among them (or even worse, with just a versioning repository), would have been unfair.

4.2.2 Objects

We chose two Java systems, both large enough to potentially benefit from visualization, yet of different size, so
that we can reason about this independent variable. The smaller of the two systems is FindBugs5, a tool using
static analysis to find bugs in Java code, developed as an academic project at the University of Maryland [11],
while the larger system is Azureus6, a popular P2P file sharing clients and one of the most active open-source
projects hosted at SourceForge. In Table 2, we present the main characteristics of the two systems related to
the tasks of the experiment.

medium large
Name FindBugs Azureus
Lines of code 93’310 454’387
Packages 53 520
Classes 1’320 4’656
God classes 62 111
Brain classes 9 55
Data classes 67 256

Table 2: The object systems corresponding to the two levels of system size

2http://www.moosetechnology.org
3http://www.eclipse.org
4http://www.sonarsource.org
5http://findbugs.sourceforge.net
6http://azureus.sourceforge.net

13

http://www.moosetechnology.org
http://www.eclipse.org
http://www.sonarsource.org
http://findbugs.sourceforge.net
http://azureus.sourceforge.net

4.3 Controlled Variables

For our controlled experiment we identified two factors that can have an influence on the performance, i.e.,
the background and the experience level of the participants.

The background represents the working context of a subject, i.e., the context in which they are currently
conducting their work. The background factor has two levels: industry and academy. The background in-
formation is directly extracted from the personal information provided by the participants at the time of their
enrollment. If a participant is active in both an academic and an industrial context, we chose the role that is
the most convenient for the experiment.

The second factor is experience level, which represents the domain expertise gained by each of the par-
ticipants. To keep things simple, the experience level also has two levels: beginner and advanced. The level
of experience of the participants is also derived from the information provided at the time of their enroll-
ment. First, for participants from the academia, students (i.e., bachelor and master) are considered beginner,
while researchers (i.e., PhD students, post-docs and professors) are considered advanced. For industry, we
considered that participants with up to three years of experience are beginners, and the rest advanced.

We used a randomized block design, with background and experience level as blocking factors. We as-
signed each participant—based on personal information collected before the experiment—to one of the four
categories (i.e., academy-beginner, academy-advanced, industry-beginner, and industry-advanced). We then
randomly assigned one of the four treatments (i.e., combinations of tool and system size) to the participants
in each category. The outcome of this procedure is described in Section 4.6, after presenting our subjects.

4.4 Tasks

Our approach, implemented in CodeCity, provides aid in comprehension tasks supporting adaptive and per-
fective maintenance. We considered using a previously-defined maintenance task definition framework to
design the tasks of our evaluation. However, the existing framework proved ill-suited. Due to the fact that Co-
deCity relies exclusively on static information extracted from the source code, it was not realistic to map our
tasks over the model of Pacione et al. [26], which is biased towards dynamic information visualization. On
the other hand, the set of questions asked by developers, synthesized by Sillito et al. [35], although partially
compatible with our tasks refers to developers exploring source code only. Our approach supports software
architects, designers, quality-assurance engineers, and project managers, in addition to developers. These
additional roles assess software systems at higher levels of abstraction not covered by the the framework pro-
posed by Sillito et al.

In spite of the lack of frameworks and task models for higher-level assessments of software systems, we
describe each task in terms of its concern and rationale, which illustrate operation scenarios and identify
the targeted user types. The questions in the tasks were designed to fit in one of the following categories:
structural understanding, concept location, impact analysis, metric-based analysis, and design problem as-
sessment.

The questionnaires corresponding to the four treatments are specific for each combination of toolset and
object system, but conceptually equal. In the following, we present the conceptual set of tasks, while in
Section A we include the full questionnaire with all the variations corresponding to the four treatments. In
the handed questionnaires, apart from the tasks themselves, we included spots for the participants to log the
begin and end times, as well as the split times between each two consecutive tasks.

The task set is split in two parts, i.e., part A concerned with program comprehension and part B concerned
with the design quality assessment.

A1 Task. Locate all the unit test classes of the system and identify the convention (or lack of convention)
used by the system’s developers to organize the unit tests.
Concern. Structural understanding.
Rationale. Unit testing is a fundamental part of quality software development. For object-oriented
systems, the unit tests are defined in test classes. Typically, the test classes are defined in packages
according to a project-specific convention. Before integrating their work (which ideally includes unit
tests) in the structure of the system, developers need to understand how the test classes are organized.
Software architects design the high-level structure of the system (which may include the convention by
which test classes are organized), while quality assurance engineers monitor the consistency of applying
these rules throughout the evolution of the system.

14

A2.1 Task. Look for the term T1 in the names of the classes and their attributes and methods, and describe
the spread of these classes in the system.
Concern. Concept Location.
Rationale. Assessing how the domain knowledge is encapsulated in the source code is important for
several practitioner roles. To understand a system they are not familiar with, developers often start by
locating familiar concepts in the source code, based on their knowledge of the application domain [10].
From a different perspective, maintainers use concept location on terms extracted from bug reports
and change requests to identify the parts of the system where changes need to be performed [22]. And
finally, at a higher level, software architects are interested in maintaining a consistent mapping between
the static structure and the domain knowledge. For each of these tasks, an initial step is to locate a
particular term or set of terms in the system and assess its dispersion.

A2.2 Task. Look for the term T2 in the names of the classes and their attributes and methods, and describe
the spread of these classes in the system.
Concern & Rationale. See task A2.1.
Note. The term T2 was chosen such that it had a different type of spread than the one of term T1.

A3 Task. Evaluate the change impact of class C defined in package P, by considering its callee classes
(classes invoking any of its methods). The assessment is done in terms of both intensity (number of
potentially affected classes) and dispersion (how these classes are distributed in the package struc-
ture).
Concern. Impact Analysis.
Rationale. Impact analysis provides the means to estimate how a change to a restricted part of the sys-
tem would impact the rest of the system. Although extensively used in maintenance activities, impact
analysis may also be performed by developers when estimating the effort needed to perform a change.
It also gives an idea of the quality of the system: A part of the system which requires a large effort to
change may be a good candidate for refactoring.

A4.1 Task. Find the three classes with the highest number of methods (NOM) in the system.
Concern. Metric Analysis.
Rationale. Classes in object-oriented systems ideally encapsulate one single responsibility. Given that
the method represents the class’s unit of functionality, the number of methods metric is a measure of
the amount of functionality of a class. Classes with an exceptionally large number of methods make
good candidates for refactoring (e.g., split class), and therefore are of interest to practitioners involved
in either maintenance activities or quality assurance.

A4.2 Task. Find the three classes with the highest average number of lines of code per method in the system.
Concern. Metric Analysis.
Rationale. The number of lines of code (LOC) is a popular and easily accessible software metric for the
size of source code artifacts (e.g., methods, classes, modules, system). Moreover, it has been shown to
be one of the best metrics for fault prediction [9]. A method, as a unit of functionality, should encapsu-
late only one function and should therefore have a reasonable size. Classes with a large ratio of lines of
code per method (i.e., classes containing long and complex methods) represent candidates for refactor-
ing (e.g., extract method), and therefore are of interest to practitioners involved in either maintenance
activities or quality assurance.

B1.1 Task. Identify the package with the highest percentage of god classes in the system. Write down the full
name of the package, the number of god classes in this package, and the total number of classes in the
package.
Concern. Focused Design Problem Analysis.
Rationale. God class is a design problem first described by Riel [32] to characterize classes that tend
to incorporate an overly large amount of intelligence. The size and complexity of god classes makes
them a maintainer’s nightmare. To enable the detection of design problems in source code, Marinescu
provide a formalization called detection strategies [23]. In spite of the fact that the presence alone
of this design problem does not qualify the affected class as harmful [31], keeping these potentially
problematic classes under control is important for the sanity of the system. We raise our analysis at the
package level, because of its logical grouping role in the system. By maintaining the ratio of god classes
in packages to the minimum, the quality assurance engineer keeps this problem at a manageable level.

15

For a project manager, in the context of the software process, packages represent work units assigned
to the developers and assessing the magnitude of this problem allows him to take informed decisions
in assigning resources.

B1.2 Task. Identify the god class containing the largest number of methods in the system.
Concern. Focused Design Problem Analysis.
Rationale. God classes are characterized by a large amount of encapsulated functionality, and thus,
by a large number of methods. The fact that the result of applying the god class strategy on a class is
a boolean indicating that a class is either a god class or not, makes it difficult to prioritize refactoring
candidates in a list of god classes. In the absence of other criteria (such as the stability of a god class
over its entire evolution), the number of methods can be used as a measure of the amount of function-
ality for solving this problem related to maintenance and quality assurance. For the participants of the
experiment, this task is an opportunity to experience how a large amount of functionality encapsulated
in a class is often related the god class design problem.

B2.1 Task. Based on the available design problem information, identify the dominant class-level design
problem (the design problem that affects the largest number of classes) in the system.
Concern. Holistic Design Problem Analysis.
Rationale. God class is only one of the design problems that can affect a class. A similar design problem
is the brain class, which accumulates an excessive amount of intelligence, usually in the form of brain
methods (i.e., methods that tend to centralize the intelligence of their containing class). Finally, data
classes are just “dumb” data holders without complex functionality, but with other classes strongly re-
lying on them. Gaining a “big picture” of the design problems in the system would benefit maintainers,
quality assurance engineers, and project managers.

B2.2 Task. Write an overview of the class-level design problems in the system. Are the design problems af-
fecting many of the classes? Are the different design problems affecting the system in an equal measure?
Are there packages of the system affected exclusively by only one design problem? Are there packages
entirely unaffected by any design problem? Or packages with all classes affected? Describe your most
interesting or unexpected observations about the design problems.
Concern. Holistic Design Problem Analysis.
Rationale. The rationale and targeted user roles are the same as for task B2.1. However, while the pre-
vious one gives an overview of design problems in figures, this task provides qualitative details and has
the potential to reveal the types of additional insights obtained with visualization over raw data.

4.5 Treatments

By combining the two treatments of each of the two independent variables we obtain four treatment com-
binations, illustrated in Table 3.

Treatment combination
Object system size
large medium

Toolset
CodeCity T1 T2
Ecl+Excl T3 T4

Table 3: Independent variables and resulting treatment combinations

We provided the treatments as virtual images for VirtualBox7, which was the only piece of software re-
quired to be installed by each participant. Each virtual image contained only the necessary pieces of software
(i.e., either CodeCity or Eclipse+Excel), installed on a Windows XP SP2 operating system.

Each of the two images corresponding to the experimental groups (i.e., T1 and T2) contained:

1. an installation of CodeCity,

2. the FAMIX model of the object system loaded in CodeCity, and

3. the source code of the object system, directly accessible from the visualizations (i.e., CodeCity allows
the user to view the source code of the class whose representing building is currently selected).

7http://www.virtualbox.org

16

http://www.virtualbox.org

The two images corresponding to the control groups (i.e., T3 and T4) contained:

1. an Eclipse installation with all default development tools,

2. an Eclipse workspace containing the entire source code of the object system in one compilable Eclipse
project, and

3. an Excel installation and a sheet containing all the metrics and design problem data required for solving
the tasks and available to the experimental groups.

4.6 Subjects

We first performed a pilot study with nine participants, followed by the experiment with 45 participants in
several runs. After removing four data points during the outlier analysis, based on the criteria presented
Section 7.2, we were left with 41 subjects, described next.

All 41 subjects are male, and represent 7 countries: Italy (18 subjects), Belgium (12), Switzerland (7), and
Argentina, Canada, Germany, and Romania (1 participant each).

With respect to professional background, our aim was to involve both industry practitioners and people in
academia. We managed to obtain valid data for 41 subjects, of which 20 industry practitioners (all advanced),
and 21 from academia (of which 9 beginners and 12 advanced). For each of the 4 treatment combinations,
we have 8–12 data points.

As for the blocks (See Table 4), we obtained a well-balanced distribution of subjects in the four blocks
within each treatment.

Number of subjects Treatment
Blocks T1 T2 T3 T4 Total

Academy
Beginner 2 3 2 2 9
Advanced 2 2 3 5 12

Industry Advanced 6 7 3 4 20
Total 10 12 8 11 41

Table 4: The number of subjects distributed in treatments and blocks

The random assignments of treatment within blocks led to a fair distribution of the subjects’ expertise
among treatment combinations, as seen in Figure 2.

Experience Level
CodeCity

OOP Java Eclipse Reverse
Engineering

none
beginner
knowledgeable
advanced
expert

0 0 1 0
0 3 5 10
5 4 10 7
9 12 6 4
8 3 0 1 0

3

6

9

12

15

OOP Java Eclipse Reverse Engineering

Fr
eq

ue
nc

y

Expertise field

none
beginner
knowledgeable
advanced
expert

Experience Level
Eclipse+Excel

OOP Java Eclipse Reverse
Engineering

none
beginner
knowledgeable
advanced
expert

0 0 0 0
0 0 0 7
2 2 8 7

12 13 10 4
5 4 1 1 0

3

6

9

12

15

OOP Java Eclipse Reverse Engineering

Fr
eq

ue
nc

y

Expertise field

none
beginner
knowledgeable
advanced
expert

tool = CodeCity

tool = Ecl+Excl

(a) Ecl+Excl

Experience Level
CodeCity

OOP Java Eclipse Reverse
Engineering

none
beginner
knowledgeable
advanced
expert

0 0 1 0
0 3 5 10
5 4 10 7
9 12 6 4
8 3 0 1 0

3

6

9

12

15

OOP Java Eclipse Reverse Engineering

Fr
eq

ue
nc

y

Expertise field

none
beginner
knowledgeable
advanced
expert

Experience Level
Eclipse+Excel

OOP Java Eclipse Reverse
Engineering

none
beginner
knowledgeable
advanced
expert

0 0 0 0
0 0 0 7
2 2 8 7

12 13 10 4
5 4 1 1 0

3

6

9

12

15

OOP Java Eclipse Reverse Engineering

Fr
eq

ue
nc

y

Expertise field

none
beginner
knowledgeable
advanced
expert

tool = CodeCity

tool = Ecl+Excl

(b) CodeCity

Figure 2: Expertise histograms

Only in a few cases we intervened in the assignment process. First, when one researcher expressed his
wish to be part of a control group, we allowed him to do so. This kept him motivated and he proved to

17

be the fastest subject from a control group. Second, in one of the early experimental runs, we randomly
assigned a subject with no Eclipse experience to a Ecl+Excl group. Later, we had to exclude his data point
from the analysis (See Section 7.2). We learned our lesson from this and later assigned the few subjects with
no experience with Eclipse to one of the experimental groups in order not to penalize the control group.
However, even in these cases we did not assign them manually, but we randomized the other independent
variable, i.e., the object system size. As Figure 2 shows, while some of the subjects assigned with CodeCity
have little or no experience with Eclipse, every subject assigned with Ecl+Excl is at least knowledgeable in
using this IDE.

In spite of the fact that we completely lacked subjects in the industry-beginner group, our rich set of data
points and the design of our experiment allowed us to perform the complementary analyses presented in
Section 8.7 (i.e., academy versus industry) and Section 8.6 (i.e., beginners versus advanced) .

The age of the participants covers the range 21–52, with an average of 29.8, a median of 29 and the in-
terquartile range of 24–34. The box plots in Figure 3 show the age of our participants in each of the three
blocks: academy-beginner, academy-advanced, and industry-advanced.

Block

industry-
advanced

academy-
advanced

academy-
beginner

A
g

e

5 5

5 0

4 5

4 0

3 5

3 0

2 5

2 0

EXAMINE VARIABLES=Age BY Syssize BY Tool
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL.

Explore

Page 22

Figure 3: The age of the participant in absolute, and individually, for each of the three blocks

The age of the academy-beginners has a median of 22 and is fully enclosed in the 21–23 interval (repres-
entative for this category, covered almost exclusively by master students), with the exception of one outlier at
28, representing a Ph.D. student with less experience in the required skills.

The age of the academy-advanced group has a median of 26 and an interquartile range of 24–29.5 (also
representative for the category, made almost entirely of Ph.D. students), with an outlier representing a uni-
versity professor.

Finally, the age of the advanced-industry group described by a minimum of 25, a maximum of 42, a me-
dian of 34, and an interquartile range of 30–38, shows that industry population is also well represented.

5 Operation

The experiment took place between November 2009 and April 2010 and it consisted in a series of runs. A run
consists in a presentation session of about one hour followed by one or more experimental sessions, each
taking up to two hours. A presentation session consists in a talk presenting our approach and concluded
with a CodeCity tool demonstration, while an experimental session consists in the controlled experiment
and a short debriefing. Figure 4 shows the timeline of our experiment. Apart from the dates and locations
of the different experiment runs, the timeline also shows the succession between presentation sessions and
experimental sessions and the distribution of experimental and control units in the experimental session.

18

2009 2010
FebruaryJanuaryDecemberNovember

14 28 18 22 24 252 9 21 2818 24 25

1
Lugano

Bologna

Antwerp

Bern

April
14

..

5
6

1 1
3

3 1
1 1 1

1
1

5 8

2 6
1 1

1
1 1

R

R R

4 1
6

R

Training session

n n subjects with CodeCity (experimental)

Legend:

followed by an experimental session with

m subjects with Eclipse+Excel (control)m

remote, self-controlled sessionR

Pilot Experiment

Figure 4: The experiment’s timeline

Although in an ideal world, the experiment would shortly follow the presentation, due to logistical reasons
(i.e., it is already very difficult to be granted four hours of someone’s spare time, let alone arranging four con-
secutive hours), these two phases of the experimental session were separated by time windows whose length
ranged from 20 minutes to one week of time. The numbers reflect only the participants whose data points
were taken into account during the analysis and do not include the four exceptional conditions excluded
from the analysis, as explained in Section 7.2.

5.1 The Pilot Study

Before taking our experiment design to industry practitioners, we wanted to make it reliable, if not fool-
proof. With this goal in mind we designed a pilot study with the Master students of the University of Lugano
(Switzerland) enrolled in a course of Software Design and Evolution. Improving the questionnaire and solv-
ing problems as they emerged required several iteration. Since we wanted to make the most of our resources,
of which the most important one consisted of the participants, we assigned only two participants per experi-
ment session.

The study was conducted from the 25th of November to the 9th of December 2009, in the window of
four academic hours assigned weekly for the course’s laboratory work. In the first lab session, we presented
the approach and gave a tool demonstration, followed in the next three weeks by experimental sessions.
Before the first of these sessions, we conducted the experiment with a Ph.D. student from our group, who has
extensive experience with Eclipse, to make sure the tasks for the control group are doable in the allotted time.
During these three weeks we managed to obtain a stable form for the questionnaires, to incrementally fix the
encountered problems, and to come up with a reliable and scalable timing solution (i.e., before creating the
timing web application, we used third-party timing software, which did not give enough configurability and
scalability).

Unfortunately, although the design of this study was exactly the same with the one of the experimental
phase, we could not include these data points in our analysis, due to the changes in the questionnaire, which
made the first drafts incompatible with the final version.

19

5.2 The Experimental Runs

At this point in time, we were confident enough to start our experiment. We had the luck to benefit from
the industry contacts of one of the members of our research group, who acted as a mediator between us and
two groups of industry practitioners from Bologna (Italy). Each of these groups were meeting regularly to
discuss various technology-related (and not only) topics. Many of the practitioners of these two groups were
quite enthusiastic about our invitation to attend a CodeCity presentation and volunteered to participate in
our experiment.

The first group was composed of practitioners working for several companies from and around Bologna,
including Cineca8, an italian consortium between several large italian universities (i.e., Bologna, Florence,
Padova, and Venice), founded to support the transfer of technology from academical research to industry.
The subjects of this run were eight practitioners (i.e., developers, software engineers, and software architects)
with 4–10 years of experience in object-oriented software development. During this experimental run, con-
ducted on the Dec 21 2009, we encountered the first scalability challenges, with its eight subjects and two
experimenters. First, due to some OS-related issues of the virtualization software, three of the participants
could not import the virtual images containing their treatments. We provided our only extra machine to one
of them, but unfortunately this subject eventually gave up the experiment, due to fatigue and the late time
(i.e., the experimental session started at 10 pm). The two remaining subjects offered to perform the experi-
ment remotely and to send us the results later. Given the reliability of the persons and the value of their data
points (i.e., one of them was probably the most experienced of the group), we were happy to accept their
offer, despite the lack of “control”. In the end, we got the data points from these experiment runs performed
remotely. Moreover, the more experienced practitioner performed the experiment two times, once with Co-
deCity and once with Ecl+Excl, but every time with a different object system, to avoid any learning effect on
the participant. Of the five subjects that performed the experiment, we had to exclude two from the analysis
because of the reasons detailed in Section 7.2. In spite of all these, the practitioners reacted quite positively,
found CodeCity useful, and were looking forward to use it on their own systems.

The second practitioner group we conducted our experiment with was part of the eXtreme Programming
User Group (XPUG) in Bologna9. This rather heterogeneous group included eight practitioners covering a
wide range of roles at their working places (i.e., developer, consultant, architect, trainer, project manager,
system manager/analyst, CTO) and one student. The practitioners had 7–20 years of experience in object-
oriented programming and up to 10 years in Java programming. During this run, performed in the evening
of the Jan 14 2010, an interesting thing happened. After the presentation, almost the entire audience re-
mained for the experiment, including the enrolled volunteers we were counting on and other practitioners
who wished to assist as spectators. To our surprise, very likely in the vein of their group meetings, these spec-
tators soon formed small groups around a couple of the subjects, mostly working with CodeCity. Although
this unplanned condition was not part of the design of our controlled experiment (i.e., where the unit of the
experiment was the individual), we did not wish to intervene and break the ad-hoc dynamics of the group.
Instead, we chose to observe these enthusiastic groups performing pair-analysis and enjoying every moment,
which was one of the most gratifying experiences throughout the experiment.

In between the two experiment sessions in Bologna, we received in Lugano the visit of a fellow post-
doctoral researcher from Bern (Switzerland), who is also development leader in a successful small company,
and we performed an experiment session with him.

The third group of industry practitioners we approached was the Java User Group (JUG) in Lugano10.
First, we gave a presentation at the end of January 2010 and made contact with potential participants. Later,
we performed two experimental runs (i.e., on the 18th and the 25th of January 2010, respectively) with five
practitioners in total, all Java experts with 10 or more years of experience in both object-oriented and Java
programming, occupying various positions (i.e., architect, head of IT, developer, project manager).

In the week between the two experiment sessions in Lugano, we performed a tour-de-force with stops in
Antwerp (Belgium) and Bern (Switzerland). First, we went to Antwerp, where we were hosted by Prof. Serge
Demeyer and his research group LORE11. We performed the experiment session during the Software Reengin-
eering course with both Master students enrolled in the course and Ph.D. students from our hosting research
group. The first problem we had to deal with was that the low amount of RAM memory on the workstations
would not allow us to run the virtual machines. To solve this problem, during the presentation session, one of

8http://www.cineca.it
9http://bo-xpug.homeip.net

10http://www.juglugano.ch
11http://lore.ua.ac.be

20

http://www.cineca.it
http://bo-xpug.homeip.net
http://www.juglugano.ch
http://lore.ua.ac.be

our hosts copied the content of the virtual machines directly on the workstations hard drives, which allowed
running the tools on the host operating system of the workstations. Later on, some of our subject signaled
us another problem, this time with the spreadsheet. While the data in the spreadsheet has been entered with
a ’.’ separator for decimals, in Belgium the correct separator is ’,’. Due to this incompatibility, some of the
numeric data was by default considered string and would interfere with the sorting operations. The prob-
lem was solved by the participants either by modifying the regional settings in their operating system or by
performing a search and replace operation. Most of the participants of this experimental run were very well
prepared with operating CodeCity, which showed that they have studied the video tutorials in advance.

Only two days after Antwerp, we went to Bern, where we were hosted by Prof. Oscar Nierstrasz and his
research group SCG12. We performed the experiment session with mostly Ph.D. students and a couple of
Master students from the research group. Some of the participants had already seen CodeCity earlier, given
that the underlying platform—Moose—was developed in this research group. With this occasion, we asked
the main developer behind Moose, who is currently working as a consultant and who was not available for
that afternoon, to perform the experiment remotely and send us the result. Eventually, we got this final data
point in April 2010.

6 Data Collection and Marking

Using different mechanisms, we collected several types of information at different moments in time: before,
during the experiment, and after the experiment. We used blind marking for grading the correctness of the
participants’ solutions.

6.1 Personal Information

Before the experiment, we collected both personal information (e.g., gender, age, nationality) used for stat-
istics and professional information (e.g., current job position and experience levels in a set of four skills iden-
tified as important for the experiment) used for the blocking technique, by means of an online questionnaire
presented in Section A. The collected data allowed us to know at all times the number of participants that we
can rely on and to plan our experimental runs.

6.2 Timing Data

To measure the completion time, we asked the participants to log the start time, split times, and end time.
We learned that this measure alone was not a reliable solution, when several participants who, excited by the
upcoming task, simply forgot to write down the split times. In addition, we needed to make sure that none of
them would use more than 10 minutes per task, which was not something we could ask them to watch for.

To tackle this issue, we developed a timing web application in Smalltalk using the Seaside framework13.
During the experimental sessions, the timing application would run on the experimenter’s computer and
project the current time. The displayed time was used as common reference by the participants whenever
they were required in the questionnaire to log the time. In addition, the application displayed for each parti-
cipant: the name, the current task, and the maximum remaining time for the current task (See Figure 5).

The subjects were asked to announce the experimenter every time they log the time, so that the experi-
menter could reset their personal timer by clicking on the hyperlink marked with the name of the subject. If a
subject was unable to finish a task in the allotted time, the message “overtime” would appear beside his name
and the experimenter would ask the subject to immediately pass to the next task and would reset his timer.

Since most of the times the experimenter would only get to meet the subjects just before the experiment,
associating names with the persons was not something we wanted to rely on. Therefore, the experimenter
would always bring with him a set of name tags which would be placed near the corresponding subject and
would thus help the experimenter to quickly identify the subjects.

At the end of an experimental session, the experimenter would export the recorded times of every par-
ticipant. This apparently redundant measure allowed us to recover the times of participants who either for-
got to log the time, or logged it with insufficient details (i.e., only hours and minutes) in spite of the clear
guidelines. Conversely, relying completely on the timing application would have also been suboptimal: On
one occasion, the timing application froze and the only timing information available for the particular tasks

12http://scg.unibe.ch
13http://www.seaside.st

21

http://scg.unibe.ch
http://www.seaside.st

Figure 5: Our timing web application

the participants were solving were their own logs. On another isolated occasion, a participant raised a hand
to ask a question and the experimenter assumed that the participant announced his move to the next task
and reset his timer. In this case, the incident was noted by the experimenter and the time was later recovered
from the participant’s questionnaire. The timing data we collected is presented in Table 10 in Section D.

6.3 Correctness Data

The first step towards obtaining the correctness data points was to collect the solutions of our subjects using
the questionnaires presented in detail in Section A.

Then, to convert task solutions into quantitative information, we needed an oracle set, which provides
both the superset of correct answers and the grading scheme for each task. However, given the complexity of
our experiment’s design, one single oracle set was not enough. On the one hand we needed a separate oracle
for each of the two object systems. On the other hand, we needed separate oracles for the solutions obtained
by analyzing an object system with different tools. This happens because for the first few tasks, the control
groups use source code, while the experimental groups use a FAMIX model of the object system extracted
from the source code, which in practice is never 100% accurate. To obtain the four oracle sets, two of the
authors and a third experimenter solved the tasks with each combination of treatments (i.e., on the assigned
object system, using the assigned tool) and came up with a grading scheme for each task. In addition, for the
two experimental groups, we computed the results using queries on the model of the object system, to make
sure that we do not miss any information because they are not visible due to the visual presentation (e.g.,
occlusion, too small buildings, etc.). Eventually, by merging the solution and after discussing the divergences,
we obtained the four oracle sets, presented in Section E.

Finally, we needed to grade the solution of the subjects. To remove subjectivity when grading, we em-
ployed blinding, which implies that when grading a solution the experimenter does not know whether the
subject that provided the solution has used an experimental treatment or a control treatment. For this, one
of the authors created four code names for the groups and created a mapping between groups and code
names, known only by him. Then he provided the other two experimenters the encoded data, which allowed
them to perform blind grading. In addition, the first author performed his grading unblinded. Eventually, the
authors discussed the differences and converged to the final grading, presented in Table 9 of Section D.

6.4 Participants’ Feedback

The questionnaire handout ends with a debriefing section, in which the participants are asked to assess the
level of difficulty for each task and the overall time pressure, to give us feedback that could potentially help
us improve the experiment, and optionally, interesting insights they encountered during their analysis they
wanted to share with us.

22

7 Data Analysis

7.1 Preliminary Data Analysis

On a first look at the data, we observed an exceptional condition related to task A4.2. The data points for this
task showed that the experimental group were not able to solve this task, while the control group was quite
successful at solving it.

The experimental group had an average correctness score of 0.06. Out of 22 solutions of the experimental
group only one achieved a perfect score for this task, while 19 achieved a null score (see the individual scores
in Table 9), in spite of the fact that most of the participants used up the entire ten minutes window allotted
for the task (see the completion times in Figure 10). It turned out that the only perfect score was provided by
a participant who had used CodeCity on several previous occasions and he, as a central figure in the Moose
community, had a deep knowledge of CodeCity’s underlying meta-model. Therefore, he was the only one
in the experimental group able to access CodeCity functionality beyond the features presented during the
tutorial sessions.

The control groups, on the other hand, had an average correctness score of 0.86, with 15 perfect scores
and only 2 null ones. They were able to complete the task in roughly half the allotted time for the task.

This task had the highest discrepancy in correctness between control and experimental groups and the
participants also perceived its difficulty accordingly. According to the subjects’ feedback, most of the subjects
in the experimental group described the task as “impossible”, while the majority of subjects in the control
group described it as “simple” (See Figure 6).

Difficulty A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2
trivial
simple
intermediate
difficult
impossible

7 7 5 1 2 0 2 4 8 1
7 10 12 11 7 0 2 11 9 4
3 4 3 5 11 3 6 5 3 6
4 0 1 4 1 8 9 1 1 8
0 0 0 0 0 10 2 0 0 2

0

3

6

9

12

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2

Fr
eq

ue
nc

y

Task

trivial simple intermediate difficult impossible

Difficulty A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2
trivial
simple
intermediate
difficult
impossible

3 1 1 1 9 4 1 5 1 0
6 10 8 2 7 9 7 6 6 0
8 8 10 7 3 4 5 8 10 6
2 0 0 5 0 2 4 0 1 8
0 0 0 4 0 0 2 0 1 5

0

3

6

9

12

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2

Fr
eq

ue
nc

y

Task

trivial simple intermediate difficult impossible

tool = CodeCity

tool = Ecl+Excl

(a) Ecl+Excl

Difficulty A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2
trivial
simple
intermediate
difficult
impossible

7 7 5 1 2 0 2 4 8 1
7 10 12 11 7 0 2 11 9 4
3 4 3 5 11 3 6 5 3 6
4 0 1 4 1 8 9 1 1 8
0 0 0 0 0 10 2 0 0 2

0

3

6

9

12

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2

Fr
eq

ue
nc

y

Task

trivial simple intermediate difficult impossible

Difficulty A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2
trivial
simple
intermediate
difficult
impossible

3 1 1 1 9 4 1 5 1 0
6 10 8 2 7 9 7 6 6 0
8 8 10 7 3 4 5 8 10 6
2 0 0 5 0 2 4 0 1 8
0 0 0 4 0 0 2 0 1 5

0

3

6

9

12

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 B2.2

Fr
eq

ue
nc

y

Task

trivial simple intermediate difficult impossible

tool = CodeCity

tool = Ecl+Excl

(b) CodeCity

Figure 6: Task perceived difficulty histograms

The reason for this is that we underestimated the knowledge of CodeCity required to perform this task.
Solving this task with CodeCity implied using its customization features, which require a deep knowledge
of CodeCity and of the underlying Smalltalk programming language, as demonstrated by the only subject
that managed to solve the task in the experimental group. These were unreasonable requirements to expect
from the experimental subjects. To eliminate this unusually large discrepancy between the two groups, we
excluded the task from the analysis.

7.2 Outlier Analysis

Before performing our statistical test, we also followed the suggestion of Wohlin et al. [49] regarding the
removal of outliers caused by exceptional conditions, in order to enable us to draw valid conclusion from
our data. During the first experiment run in Bologna, one of the participants experienced serious perform-
ance slowdowns, due to the relative low performance of the computer. One of the experimenters made a

23

note about this fact during the experiment and the participant himself complained about it in the debriefing
questionnaire. Although this participant was not the only one reporting performance slowdowns, he was by
far the slowest as measured by the completion time and therefore, we excluded his data from the analysis.
In the same session, another participant got assigned to a Ecl+Excl treatment by mistake, although he spe-
cified he did not have any experience with Eclipse, but with another IDE. For this reason, this subject took
more time in the first tasks than the others, because of his complete lack of experience with Eclipse. Since
we did not want to compromise the analysis by disfavoring any of the groups (i.e., this data point provided
the highest completion time and would have biased the analysis by disadvantaging one of the control groups
using Ecl+Excl), we excluded also this data point from the analysis.

During the second Bologna run, two of the participants had incompatibility problems with the virtualiz-
ation software under the operating system on their machines. After unsuccessfully trying for a while to make
it work on their machines, they eventually were given our two replacement machines. However, due to these
delays and to the tight schedule of the meeting room, we were not able to wait for them to finish the last
couple of tasks. We decided to also exclude these two data points from our analysis, for we consider these to
be conditions that are unlikely to happen again.

7.3 Analysis Techniques

Based on the design of our experiment, i.e., a between-subjects design with two independent variables, the
suitable parametric test for hypothesis testing is a two-way ANalysis Of VAriance (ANOVA). We performed
this test for both correctness and completion time, using the SPSS14 statistical package. Before looking at the
results of our analysis, we made sure that our data fulfills the three assumptions of the ANOVA test:

1. Homogeneity of variances of the dependent variables. We tested our data for homogeneity of both
correctness and completion time, using Levene’s test [19] and in both cases the assumption was met.

2. Normality of the dependent variable across levels of the independent variables. We tested the normality
of correctness and completion time across the two levels of tool and object system size using the Shapiro-
Wilk test for normality [34], and also this assumption was met in all cases.

3. Independence of observations. This assumption is implicitly met through the choice of a between-
subjects design.

We chose a typical significance level of .05 (i.e., α= .05), which corresponds to a 95% confidence interval.

8 Results

We present the results of the analysis separately for each of the two dependent variables, i.e., correctness and
completion time. Apart from the effect of the main factors, i.e., tool and system size, the ANOVA test allows
one to test the interaction between the two factors.

8.1 Analysis Results on Correctness

First, it is important that there is no interaction between the two factors, that could have affected the cor-
rectness. The interaction effect of tool and system size on correctness was not significant, F (1, 37) = .034,
p = .862. According to the data, there is no evidence that the variation in correctness between CodeCity and
Ecl+Excl depends on the size of the system, which strengthens any observed effect of the tool factor on the
correctness.

There was a significant main effect of the tool on the correctness of the solutions, F (1, 37) = 14.722, p =
.001, indicating that the mean correctness score for CodeCity users was significantly higher than the one for
Ecl+Excl users, regardless of the object system’s size. Overall, there was an increase in correctness of 24.26%
for CodeCity users (M = 5.968, SD = 1.294) over Ecl+Excl users (M = 4.803, SD = 1.349). In the case of the
medium size system, there was a 23.27% increase in correctness of CodeCity users (M = 6.733, SD = .959) over
Ecl+Excl users (M = 5.462, SD = 1.147), while in the case of the large size system, the increase in correctness
was 29.62% for CodeCity users (M = 5.050, SD = 1.031) over Ecl+Excl users (M = 3.896, SD = 1.085). The data
shows that the increase in correctness for CodeCity over Ecl+Excl was higher for the larger system.

14http://www.spss.com

24

http://www.spss.com

Object system size

LargeMedium

C
o

rr
ec

tn
es

s
(p

o
in

ts
)

7.00

6.00

5.00

4.00

3.00

2.00

1.00

0.00

5.05

6.73

3.90

5.46

CodeCity
Eclipse+Excel

Tool

UNIANOVA Time.minutes BY Tool Syssize
 /METHOD=SSTYPE(3)
 /INTERCEPT=INCLUDE
 /PLOT=PROFILE(Syssize*Tool)
 /CRITERIA=ALPHA(0.05)
 /DESIGN=Tool Syssize Tool*Syssize.

Univariate Analysis of Variance

Page 14

(a) Means, overall

Object system size

LargeMedium

C
o

rr
ec

tn
es

s
(p

o
in

ts
)

8.00

7.00

6.00

5.00

4.00

3.00

2.00

CodeCity
Eclipse+Excel

Tool

EXAMINE VARIABLES=Time.minutes BY Syssize BY Tool
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL.

Explore

Page 10

(b) Box plots, across treatment combinations

Figure 7: Graphs for correctness

System size medium large any
Tool Ecl+Excl CodeCity Ecl+Excl CodeCity Ecl+Excl CodeCity
mean 5.462 6.733 3.896 5.050 4.803 5.968
difference +23.27% +29.62% +24.26%
min 3.500 5.000 2.270 3.00 2.270 3.000
max 6.500 8.000 6.000 6.30 6.500 8.000
median 5.800 6.585 3.900 5.100 4.430 6.065
stdev 1.147 0.959 1.085 1.031 1.349 1.294

Table 5: Descriptive statistics related to correctness

The analyzed data allows us to reject the first null hypothesis H10 in favor of the alternative hypothesis H1,
which states that the tool impacts the correctness of the solutions to program comprehension tasks. Overall,
CodeCity enabled an increase in correctness of 24.26% over Ecl+Excl.

Although not the object of the experiment, an expected significant main effect of system size on the cor-
rectness of the solutions was observed, F (1, 37) = 26.453, p < .001, indicating that the correctness score was
significantly higher for users performing the analysis on the medium size system than for users performing
the analysis on the large size system, regardless of the tool they used to solve the tasks.

The main effect of both tool and object system size on correctness, as well as the lack of the effect of
interaction between tool and object system size on correctness, are illustrated in Figure 7(a). The correctness
box plots for each combination of treatments are presented in Figure 7(b) and a detailed description of the
statistics related to correctness is given in Table 5.

8.2 Analysis Results on Completion Time

Similarly, it is important that there is no interaction between the two factors, that could have affected the
completion time. The interaction effect of tool and system size on completion time was not significant,
F (1, 37) = .057, p = .813. According to the data, there is no evidence that the variation in completion time
between CodeCity and Ecl+Excl depends on the size of the system, which strengthens any observed effect of
the tool factor on the completion time.

There was a significant main effect of the tool on the completion time F (1, 37) = 4.392, p = .043, indicating
that the mean completion time, expressed in seconds, was significantly lower for CodeCity users than for

25

Object system size

LargeMedium

C
o

m
p

le
ti

o
n

 t
im

e
 (

m
in

u
te

s
)

50.00

40.00

30.00

20.00

10.00

0.00

39.64

33.18

44.13

38.81

CodeCity
Eclipse+Excel

Tool

Page 16

(a) Means, overall

Object system size

LargeMedium

C
o

m
p

le
ti

o
n

 t
im

e
 (

m
in

u
te

s
)

60.00

50.00

40.00

30.00

20.00

CodeCity
Eclipse+Excel

Tool

UNIANOVA Correctness BY Tool Syssize
 /METHOD=SSTYPE(3)
 /INTERCEPT=INCLUDE
 /PLOT=PROFILE(Syssize*Tool)
 /CRITERIA=ALPHA(0.05)
 /DESIGN=Tool Syssize Tool*Syssize.

Univariate Analysis of Variance

Page 12

(b) Box plots, across treatment combinations

Figure 8: Graphs for completion time

System size medium large any
Tool Ecl+Excl CodeCity Ecl+Excl CodeCity Ecl+Excl CodeCity
mean 38.809 33.178 44.128 39.644 41.048 36.117
difference -14.51% -10.16% -12.01%
min 31.92 24.67 22.83 27.08 22.83 24.67
max 53.08 39.50 55.92 48.55 55.92 48.55
median 38.000 35.575 48.260 40.610 40.080 36.125
stdev 6.789 5.545 11.483 6.963 9.174 6.910

Table 6: Descriptive statistics related to completion time, in minutes

Ecl+Excl users. Overall, there was a decrease in completion time of 12.01% for CodeCity users (M = 36.117,
SD = 6.910) over Ecl+Excl users (M = 41.048, SD = 9.174). In the case of the medium size system, there
was a 14.51% decrease in completion time of CodeCity users (M = 33.178, SD = 5.545) over Ecl+Excl users
(M = 38.809, SD = 6.789), while in the case of the large size system, there is a 10.16% decrease in completion
time for CodeCity users (M = 39.644, SD = 6.963) over Ecl+Excl users (M = 44.128, SD = 11.483). The data
shows indicates that the time decrease for CodeCity users over Ecl+Excl users is only slightly lower in the case
of the larger system compared to the time decrease obtained on the medium sized one.

The analyzed data allows us to reject the second null hypothesis H20 in favor of the alternative hypothesis
H2, which states that the tool impacts the time required to complete program comprehension tasks. Overall,
CodeCity enabled a reduction of the completion time of 12.01% over Ecl+Excl.

Although not the object of the experiment, an expected significant main effect of system size on the com-
pletion time was observed, F (1, 37) = 5.962, p = .020, indicating that the completion time was significantly
lower for the users performing the analysis on the medium size system than for users performing the analysis
on the large size system.

The main effect of both tool and object system size on completion time, as well as the lack of the effect
of interaction between tool and object system size on completion time, are illustrated in Figure 8(a). The
completion time box plots for each combination of treatments are presented in Figure 8(b), while a detailed
description of the statistics related to completion time is given in Table 8(b).

26

Correctness A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

0.10 0.86 0.75 0.54 1.00 0.00 0.10 0.90 0.80
1.00 0.96 0.98 0.62 1.00 0.11 0.33 0.83 1.00
0.50 0.78 0.46 0.04 0.75 0.67 0.00 0.75 0.63
0.55 0.95 0.62 0.26 1.00 1.00 0.17 1.00 0.91

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.00

0.83

0.33

0.11

1.00

0.62

0.980.961.00
0.91

1.00

0.17

1.001.00

0.26

0.62

0.95

0.55
A

ve
ra

ge
 c

or
re

ct
ne

ss
 (p

oi
nt

s)

Task

tool = Ecl+Excl tool = CodeCity

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

0.80
0.90

0.10
0

1.00

0.54

0.75
0.86

0.10

0.63

0.75

0

0.67
0.75

0.04

0.46

0.78

0.50

A
ve

ra
ge

 c
or

re
ct

ne
ss

 (p
oi

nt
s)

Task

tool = Ecl+Excl tool = CodeCity

Time A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

7.22 5.49 2.95 7.66 5.63 9.35 6.86 2.14 1.69
4.82 3.53 4.76 6.32 4.41 8.74 4.94 1.88 2.52
7.29 6.51 3.56 7.95 5.14 7.33 7.13 2.65 3.91
5.39 4.34 5.54 7.75 4.30 4.50 6.23 2.10 3.14

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

2.52
1.88

4.94

8.74

4.41

6.32

4.76

3.53

4.82

3.14
2.10

6.23

4.504.30

7.75

5.54

4.34
5.39

A
ve

ra
ge

 t
im

e
(m

in
ut

es
)

Task

tool = Ecl+Excl tool = CodeCity

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.692.14

6.86

9.35

5.63

7.66

2.95

5.49

7.22

3.91

2.65

7.137.33

5.14

7.95

3.56

6.51
7.29

A
ve

ra
ge

 t
im

e
(m

in
ut

es
)

Task

tool = Ecl+Excl tool = CodeCity

system size = large

system size = medium system size = medium

system size = large

(a) System size =medium

Correctness A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

0.10 0.86 0.75 0.54 1.00 0.00 0.10 0.90 0.80
1.00 0.96 0.98 0.62 1.00 0.11 0.33 0.83 1.00
0.50 0.78 0.46 0.04 0.75 0.67 0.00 0.75 0.63
0.55 0.95 0.62 0.26 1.00 1.00 0.17 1.00 0.91

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.00

0.83

0.33

0.11

1.00

0.62

0.980.961.00
0.91

1.00

0.17

1.001.00

0.26

0.62

0.95

0.55
A

ve
ra

ge
 c

or
re

ct
ne

ss
 (p

oi
nt

s)

Task

tool = Ecl+Excl tool = CodeCity

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

0.80
0.90

0.10
0

1.00

0.54

0.75
0.86

0.10

0.63

0.75

0

0.67
0.75

0.04

0.46

0.78

0.50

A
ve

ra
ge

 c
or

re
ct

ne
ss

 (p
oi

nt
s)

Task

tool = Ecl+Excl tool = CodeCity

Time A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

7.22 5.49 2.95 7.66 5.63 9.35 6.86 2.14 1.69
4.82 3.53 4.76 6.32 4.41 8.74 4.94 1.88 2.52
7.29 6.51 3.56 7.95 5.14 7.33 7.13 2.65 3.91
5.39 4.34 5.54 7.75 4.30 4.50 6.23 2.10 3.14

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

2.52
1.88

4.94

8.74

4.41

6.32

4.76

3.53

4.82

3.14
2.10

6.23

4.504.30

7.75

5.54

4.34
5.39

A
ve

ra
ge

 t
im

e
(m

in
ut

es
)

Task

tool = Ecl+Excl tool = CodeCity

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.692.14

6.86

9.35

5.63

7.66

2.95

5.49

7.22

3.91

2.65

7.137.33

5.14

7.95

3.56

6.51
7.29

A
ve

ra
ge

 t
im

e
(m

in
ut

es
)

Task

tool = Ecl+Excl tool = CodeCity

system size = large

system size = medium system size = medium

system size = large

(b) System size = large

Figure 9: Average correctness per task

8.3 Task Analysis

One of the research goals of our experiment was to identify the types of tasks for which CodeCity provides an
advantage over Ecl+Excl. To this end, we compared for each task described in Section 4.4 the performances
(i.e., in terms of correctness and time) of the two levels of the tool and reasoned about the potential causes
behind the differences. See Figure 9 and Figure 10 for a graphical overview supporting our task analysis.

A1 - Identifying the convention used to organize unit tests with respect to the tested classes. While
Ecl+Excl performed constantly, CodeCity outperformed it on the medium system and underperformed it on
the large system. The difference in performance is partially owed to the lack of unit tests in the large system, in
spite of the existence of a number of classes named *Test. Only a small number of CodeCity users examined
closer the inheritance relations; the majority relied only on the name. The completion time is slightly better
for the CodeCity subjects, because they could look at the overview of the system, while in the case of Eclipse,
the subjects needed to scroll through the package structure, which rarely fits into one screen.

A2.1 - Determining the spread of a term among the classes. CodeCity performed only marginally better
than Eclipse in both correctness and completion time. In CodeCity once the search for the term is completed,
finding any kind of spread is straightforward with the overview. In Eclipse, the search for a term produces a
list of the containing classes, including the packages where these are defined. Given that in this case the list
showed many packages belonging to different hierarchies, a dispersed spread is a safe guess.

A2.2 - Determining the spread of a term among the classes. Although the task is similar to the previous,
the results in correctness are quite different: CodeCity outperformed Eclipse by 29–38%. The list of classes
and packages in Eclipse, without the context provided by an overview (i.e., How many other packages are
there in the system?) deceived some of the subjects into believing that the spread of the term is dispersed,
while the CodeCity users took advantage of the “big picture” and identified the localized spread of this term.

A3 - Estimating impact. CodeCity outperformed Eclipse in correctness by 40–50%, while for completion
time CodeCity was again slightly faster than Eclipse. Finding the callee classes of a given class in Eclipse, as
opposed to CodeCity, is not straightforward and the result list provides no overview.

27

Correctness A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

0.10 0.86 0.75 0.54 1.00 0.00 0.10 0.90 0.80
1.00 0.96 0.98 0.62 1.00 0.11 0.33 0.83 1.00
0.50 0.78 0.46 0.04 0.75 0.67 0.00 0.75 0.63
0.55 0.95 0.62 0.26 1.00 1.00 0.17 1.00 0.91

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.00

0.83

0.33

0.11

1.00

0.62

0.980.961.00
0.91

1.00

0.17

1.001.00

0.26

0.62

0.95

0.55

A
ve

ra
ge

 c
or

re
ct

ne
ss

 (p
oi

nt
s)

Task

tool = Ecl+Excl tool = CodeCity

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

0.80
0.90

0.10
0

1.00

0.54

0.75
0.86

0.10

0.63

0.75

0

0.67
0.75

0.04

0.46

0.78

0.50

A
ve

ra
ge

 c
or

re
ct

ne
ss

 (p
oi

nt
s)

Task

tool = Ecl+Excl tool = CodeCity

Time A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

7.22 5.49 2.95 7.66 5.63 9.35 6.86 2.14 1.69
4.82 3.53 4.76 6.32 4.41 8.74 4.94 1.88 2.52
7.29 6.51 3.56 7.95 5.14 7.33 7.13 2.65 3.91
5.39 4.34 5.54 7.75 4.30 4.50 6.23 2.10 3.14

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

2.52
1.88

4.94

8.74

4.41

6.32

4.76

3.53

4.82

3.14
2.10

6.23

4.504.30

7.75

5.54

4.34
5.39

A
ve

ra
ge

 t
im

e
(m

in
ut

es
)

Task

tool = Ecl+Excl tool = CodeCity

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.692.14

6.86

9.35

5.63

7.66

2.95

5.49

7.22

3.91

2.65

7.137.33

5.14

7.95

3.56

6.51
7.29

A
ve

ra
ge

 t
im

e
(m

in
ut

es
)

Task

tool = Ecl+Excl tool = CodeCity

system size = large

system size = medium system size = medium

system size = large

(a) System size =medium

Correctness A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

0.10 0.86 0.75 0.54 1.00 0.00 0.10 0.90 0.80
1.00 0.96 0.98 0.62 1.00 0.11 0.33 0.83 1.00
0.50 0.78 0.46 0.04 0.75 0.67 0.00 0.75 0.63
0.55 0.95 0.62 0.26 1.00 1.00 0.17 1.00 0.91

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.00

0.83

0.33

0.11

1.00

0.62

0.980.961.00
0.91

1.00

0.17

1.001.00

0.26

0.62

0.95

0.55

A
ve

ra
ge

 c
or

re
ct

ne
ss

 (p
oi

nt
s)

Task

tool = Ecl+Excl tool = CodeCity

0

0.20

0.40

0.60

0.80

1.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

0.80
0.90

0.10
0

1.00

0.54

0.75
0.86

0.10

0.63

0.75

0

0.67
0.75

0.04

0.46

0.78

0.50

A
ve

ra
ge

 c
or

re
ct

ne
ss

 (p
oi

nt
s)

Task

tool = Ecl+Excl tool = CodeCity

Time A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1
T1: CodeCity, large
T2: CodeCity, medium
T3: Ecl+Excl, large
T4: Ecl+Excl, medium

7.22 5.49 2.95 7.66 5.63 9.35 6.86 2.14 1.69
4.82 3.53 4.76 6.32 4.41 8.74 4.94 1.88 2.52
7.29 6.51 3.56 7.95 5.14 7.33 7.13 2.65 3.91
5.39 4.34 5.54 7.75 4.30 4.50 6.23 2.10 3.14

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

2.52
1.88

4.94

8.74

4.41

6.32

4.76

3.53

4.82

3.14
2.10

6.23

4.504.30

7.75

5.54

4.34
5.39

A
ve

ra
ge

 t
im

e
(m

in
ut

es
)

Task

tool = Ecl+Excl tool = CodeCity

0

2.00

4.00

6.00

8.00

10.00

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1

1.692.14

6.86

9.35

5.63

7.66

2.95

5.49

7.22

3.91

2.65

7.137.33

5.14

7.95

3.56

6.51
7.29

A
ve

ra
ge

 t
im

e
(m

in
ut

es
)

Task

tool = Ecl+Excl tool = CodeCity

system size = large

system size = medium system size = medium

system size = large

(b) System size = large

Figure 10: Average time per task

A4.1 - Identifying the classes with the highest number of methods. In terms of correctness, CodeCity was
on a par with Excel for the medium size and slightly better than it for the large size. In terms of completion
time, the spreadsheet was slightly faster than CodeCity. We learned that, while CodeCity is faster at building
an approximate overview of systems, a spreadsheet is faster at finding precise answers in large data sets.

A4.2 - Identifying the classes with the highest ratio of lines of code per method. This task was discarded
from the analysis based on the impartiality criteria detailed in Section 7.1. We failed to provide the subjects
in the experimental groups the knowledge required to solve this task. The task could not be solved visually,
because this would have implied performing an imaginary division between two metrics, i.e., one depicted by
size and another by color. Although CodeCity provides a mechanism which allows advanced users to define
complex mappings programmatically, by writing Smalltalk code snippets (i.e., this is what subject IE13 did to
get his perfect score), we did not cover this feature in our tutorial.

B1.1 - Identifying the package with the highest percentage of god classes. In both correctness and com-
pletion time, CodeCity slightly outperformed Excel on this task. The low correctness scores of both tools
shows that none of them is good enough to solve the problem alone, although they would complement each
other: CodeCity lacks Excel’s precision, while Excel would benefit from CodeCity’s overview abilities.

B1.2 - Identifying the god class with the highest number of methods. Both tools obtain very good cor-
rectness scores, i.e., over 75% in average. Excel is slightly better than CodeCity in the case of the medium
size system, while CodeCity outperforms Excel in the case of the large system. While CodeCity’s performance
is consistent across systems with different sizes, Excel’s support is slightly more error-prone in the case of a
larger system, i.e., when handling more data.

B2.1 - Identifying the dominant class-level design. In terms of correctness, CodeCity outperforms Excel
regardless of the system size. The aggregated information found in CodeCity’s disharmony map was less
error-prone than counting rows in Excel. In terms of correctness, CodeCity slightly outperforms Excel and
the difference is probably owed to the scrolling required for solving the task with Excel.

28

8.3.1 Conclusions of the Quantitative Task-Based Analysis

As expected, at focused tasks such as A4.1, A4.2, or B1.1 CodeCity does not perform better than Ecl+Excl,
because Excel is extremely efficient in finding precise answers (e.g., the largest, the top 3, etc.). However,
it is surprising that, in most of these tasks, CodeCity managed to be on a par with Ecl+Excl. At tasks that
benefit from an overview, such as A2.1, A3, or B1.2, CodeCity constantly outperformed Ecl+Excl, in particular
in terms of correctness, mainly because the overview allowed for a more confident and quicker answer in the
case of the experimental group compared to the control group.

8.4 Qualitative Analysis

Task B2.2, which dealt with a high-level design problem assessment, is the only qualitative task. The task
was excluded from the analysis upfront, given the difficulty of modeling a right answer, let alone to grade
the participants’ solutions.The qualitative task was the last one to solve in the experiment, to avoid any side-
effects it could place (i.e., fatigue, frustration) on the quantitative tasks. The goal we had in mind when
designing the task was to compare the solutions obtained with CodeCity with the ones obtained with Eclipse
and see whether we can spot some insights exclusively supported by our visual approach.

Although we provided a set of guidance questions for the subjects that needed a starting point for the
assessment (see Section 4.4), we encouraged the subjects to share with us the most interesting or unexpected
observations regarding the design problems, in this open-ended task.

8.4.1 Ecl+Excl

As expected, many of the the subjects working with Ecl+Excl, limited by the lack of overview, could not
provide any insights. Some subjects used the guiding questions as a starting point, and were able to address
them partially, as the following examples illustrate:

• “Many packages suffer only of data class and also of god class.” (IA01)

• “The design problems do not affect many of the classes. Many god classes are also brain classes. It’s
hard to get a clear overview by using the spreadsheet. So I don’t have any interesting observation to
report.” (AB07)

• “data classes: 65, god classes: 60, brain classes: 9, on total: 1208.” (AA14)

• “Relatively few classes are affected: 64 data classes, 60 god classes, 9 brain classes, out of 1208 classes.”
(AB09)

• “The majority of the problems seems concentrated in a few packages. Package findbugs.detect has
a large number of god classes and data classes. 15% of the classes in this package have one of the two
problems (30 classes).” (IA20)

• “Only a few classes are affected by any design problem (10%). The design problems affect the system in
specific packages; some parts of the system do not show design problems. There are packages without
any design problems. Could not find a package of which all classes are affected.” (AA06)

Only very few of the subjects in an experimental group managed to build some insights, either by using
advanced functionality of the spreadsheet or by using experience to overcome the limitations of the tool:

• “Most of the god class and data class problems appear in the findbugs and findbugs.detect pack-
ages. Probably the detection algorithms are complex and procedural.” (AA12)

• “High correlation of God and Brain class, low correlation of Data class.” (AA07) Observation. The parti-
cipant enriched his observations with graphs, probably synthesizing the ones he produced with Excel.

• “There are many design problems. I can’t really say how big the problems are, because I don’t know
the purpose of the specific class or if the class is in USE. detect seems to be a HOTSPOT for possible
defect search.” (IA19)

29

8.4.2 CodeCity

Similarly, many of the subjects in the experimental groups followed the guiding questions. However, they
were able to address most of the questions:

• “Almost all the packages are affected by design problems. The only package that seems to be well built
is org.gudy.azureus2.plugins. The god class and brain class problems are very spread.” (IA01)

• “brain classes: 9, god classes: 20, data classes: 67. Most problems seem to occur in the GUI classes,
which is not really a surprise. The detect and workflow classes are also affected, these packages
seem to be core packages. There’s only 1 brain class located in the detect core package. The following
packages are not affected: jaif, xml, bcel, bcp.” (AA04)

• “About 10% of the classes have design problems. Data classes are the most frequent problem, but those
classes are not very big. Packages not affected by this are findbugs.detect, findbugs.workflow,
and findbugs.classfile.analysis. I think the god classes are a bigger problem, 62 god classes is a lot, and
most packages are affected.” (AB05)

• “The biggest problem according to the method are god classes and brain classes. There are 110 god
classes and 54 brain classes. The problems affect most of the system, but not all. Notably, the packages
org.gudy.azureus2 and org.bouncy.castle aren’t affected. Of the infected packages, none really
stands out (I think, not sure). The design problem is near ubiquitous!” (AA01)

• “Brain classes are only 16 and mostly limited to a few packages, and only 1 or 2 per package. God classes:
72; also spread out. More god+brain in az1 than az2; in az2 in peer.impl and disk.impl. Pack-
ages org.gudy.az2.plugins and edu.harvard... are mostly unaffected. org.bouncycastle
has mostly only data classes” (AA02)

• “The biggest part of the classes (>90%) are not affected by any design problem. The most relevant
design problem is the huge percentage of data classes (256). There are packages in the system affected
by only data class problem.” (IA06)

Many of the subjects in the experimental groups provided interesting insights into the analyzed system’s
design problems. The different approaches to gain the insights (i.e., semantics, dependencies), often revealed
within the answers, lead to a wide range of points of view:

• “Data classes are far more apparent than god/brain classes. There’s about 256 data classes, ca. 55 brain
classes and 111 god classes. Most data classes can be found in the ui.swt.views.stats package,
which isn’t very surprising, considering the nature of stats. However, the number of classes using these
data suppliers is quite limited (15). The org.gudy.core3.peer and org.gudy.core3.download
packages contain a high concentration of god classes. The packages org.gudy.azureus2.platform
and org.plugins.* seem to be mostly free of problem classes.” (AB02)

• “The three types of problems are distributed in all the packages of the project. In particular, data classes
are uniformly distributed, while the god classes, having a presence, are being identified as the largest
classes of the main packages. There are no packages with all the classes affected by problems, but there
are packages with no design problems. As an observation about the project, I observed that the largest
and most problematic classes are those which implement the GUI, but also the access to the DB and
command-line, hence the parts of the system interfaced with other external software.” (IA07)

• “MainBugFrame and MainFrame are obviously god classes that would be worth refactoring. The detect
package seems to be a data package, but it’s ok. DBCloud seems odd, could not understand what it does
based on outgoing/incoming calls. anttask could be improved. BugInstance has lots of incoming
calls, and is yet a god class which can introduce fragility in the design.” (AA04)

• “As the name says, package detect is the central package with most classes. It also concentrates the
most design problems and it manages to feature all of these: GodClasses, BrainClasses, DataClasses.
The most problematic BrainClass is DBCloud. The rest 7 BrainClasses are either in the UI, which is
partly expected, or in the detect package, which should define mostly standalone detection compon-
ents. The most interesting DataClass is ba.vna.ValueNumber because it is accessed by many classes
also from the outside of the ba.vna package. It looks like the most important packages feature one
Brain Class. Only small/marginal packages are unaffected by design problems.” (IA13)

30

8.4.3 Conclusions of the Qualitative Task-Based Analysis

Quite as expected, the lack of the overview in the control group is strongly felt. The answers in the exper-
imental groups are visibly richer and contain more insights, while the ones in the control groups, with few
exceptions, only prove that having the raw data is far from “seeing”.

8.5 Debriefing Questionnaire

In the following we briefly summarize formal and informal feedback obtained during the debriefing.
Four subjects in the experimental group complained about the fact that they were not shown how to

access the advanced mapping customization features in CodeCity, which caused their frustration in front
of the task A4.2, which was one failure of our design. One subject in the experimental group suggested a
shortcomings of the tool, i.e., “small buildings are barely visible”.

Eight subjects in the control group complained about the fact that the pre-experiment assessment did
not contain a question about the skills with Excel. We discuss this threat to validity in Section 9. Two other
subjects in the control group said they hated the search functionality in Eclipse.

Two subjects praised the setup and the organization of the experimental runs. One subject found the
experiment very stimulating. Several industry developers expressed their interest in using CodeCity in their
line of work after the experiment.

Two participants, one in the experimental group and one in the control group, expressed their concern
about the fact that Eclipse was not an appropriate baseline for our high-level analysis and suggested Sonar or
a UML tool as alternative. One other participant wondered about the practical relevance of the results.

A subject in the experimental group suggested another debriefing question: “What have you learned
about the system?”. He shared with us that: “I gave the stats, but learned 0”.

One subject in the experimental group had several suggestions: “The experiment does not evaluate Co-
deCity in the presence of deeper knowledge about the system. However, I believe it can prove useful in the
more advanced steps of analysis, because a map becomes more useful as we get more comfortable with the
larger parts[...]”

8.6 Experience Level

Experience

AdvancedBeginner

C
o

rr
ec

tn
es

s
(p

o
in

ts
)

8.00

7.00

6.00

5.00

4.00

3.00

2.00

CodeCity
Eclipse+Excel

Tool

EXAMINE VARIABLES=Time.minutes BY Experience BY Tool
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL.

Explore

Page 6

(a) Correctness

Experience

AdvancedBeginner

C
o

m
p

le
ti

o
n

 t
im

e
 (

m
in

u
te

s
)

60.00

50.00

40.00

30.00

20.00

CodeCity
Eclipse+Excel

Tool

EXAMINE VARIABLES=Correctness BY Syssize BY Tool
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL.

Explore

Page 8

(b) Time

Figure 11: Beginner versus Advanced

31

We compared the correctness and time scores across the two levels of experience, i.e., beginner and ad-
vanced. The data shows that CodeCity outperforms Ecl+Excl in both correctness and completion time, re-
gardless of the experience level, as shown in Figure 11.

An interesting observation is that CodeCity users have much less variability in performance than the users
of Ecl+Excl, which shows a more consistent performance of CodeCity compared to Ecl+Excl. This can be
assessed visually, as the boxes of the box plots for CodeCity are much smaller than the one for the baseline.

The correctness data shows that the difference with which CodeCity outperforms Ecl+Excl is slightly
higher for beginners than for advanced users. Moreover, among CodeCity users, the beginners slightly out-
perform the advanced. One possible explanation is that our only beginners were the students from Antwerp,
which have used the video tutorials prior to the experiment and were therefore very well prepared in using
CodeCity.

The time data shows that the difference with which CodeCity outperforms Ecl+Excl is higher for begin-
ners than for advanced. While among CodeCity users the time performance is almost constant across exper-
ience levels, among Ecl+Excl users the advanced outperform the beginners.

These results are an indication of the ease of use and the usability of CodeCity, which supports obtaining
better results than with conventional non-visual approaches, even without extensive training.

8.7 Background

Background

IndustryAcademy

C
o

rr
ec

tn
es

s
(p

o
in

ts
)

8.00

7.00

6.00

5.00

4.00

3.00

2.00

CodeCity
Eclipse+Excel

Tool

EXAMINE VARIABLES=Time.minutes BY Background BY Tool
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL.

Explore

Page 2

(a) Correctness

Background

IndustryAcademy

C
o

m
p

le
ti

o
n

 t
im

e
 (

m
in

u
te

s
)

60.00

50.00

40.00

30.00

20.00

CodeCity
Eclipse+Excel

Tool

EXAMINE VARIABLES=Correctness BY Experience BY Tool
 /PLOT=BOXPLOT
 /STATISTICS=NONE
 /NOTOTAL.

Explore

Page 4

(b) Time

Figure 12: Academy versus Industry

We also compared the correctness and time scores across the two levels of background, i.e., academy and
industry. The performance for CodeCity is better in both correctness and completion time, regardless of the
background, as shown in Figure 12.

Again, the box plots of CodeCity users (in particular the ones from academy) have shorter boxes than the
ones of Ecl+Excl, which shows a more consistent performance of CodeCity compared to Ecl+Excl.

In terms of correctness, the difference with which CodeCity outperforms Ecl+Excl is only slightly higher
for academy than for industry.

In terms of completion time, the difference between CodeCity and Ecl+Excl is minimal in the case of
academy and more consistent for industry practitioners.

The results show that in terms of correctness the benefits of CodeCity over the non-visual approach are
visible for both academics and industry practitioners, while in terms of completion time CodeCity provides a
boost in particular to the industry practitioners.

32

9 Threats to Validity

In this section, we discuss the threats to our experiment’s validity. For experiments validating applied research
the categories are—in decreasing order of importance: internal, external, construct and conclusion validity
[49].

9.1 Internal Validity

The internal validity refers to uncontrolled factors that may influence the effect of the treatments on the
dependent variables.

Subjects. Several of the threats to internal validity refer to the experiment’s subjects. A first threat was that
subjects may not have been competent enough. To reduce this threat, before the experiment we analyzed the
subjects’ competence in several relevant fields and made sure that the subjects had at least a minimal know-
ledge of object-oriented programming, Java, and for the subjects assigned with Ecl+Excl, of Eclipse. A second
threat was that the expertise of the subjects may not have been fairly distributed across the control and ex-
perimental groups. We mitigate this threat by using blocking and randomization when assigning treatments
to subjects. A third internal threat is that the subjects may not have been properly motivated. This treatment
is diminished by the fact that all the subjects’ volunteered to participate in the experiment, by filling out the
online questionnaire.

Tasks. First, the choice of tasks may have been biased to the advantage of CodeCity. We alleviate this threat
by presenting the tasks in context, with rationale and targeted users. Moreover, we tried to include tasks
which clearly do not advantage CodeCity (e.g., any task which focuses on precision, rather than on locality),
which is visible from the per-task results and from the perceived difficulty of the subjects in the experimental
groups. Another threat is that the tasks may have been too difficult or that not enough time was allotted for
them. To alleviate this threat we performed a pilot study and we collected feedback about the perceived task
difficulty and time pressure. As a consequence, we excluded one task which was extremely difficult and, in
addition, showed a ceiling effect (i.e., most subjects used up the entire time) for one group and rather trivial
for the other.

Baseline. The baseline was composed of two different tools (i.e., Eclipse and Excel), while CodeCity is one
tool, and this might have affected the performance of the control group. We attenuate this threat by designing
the task such that no task requires the use of both tools. Moreover, all the tasks that were to be solved with Ec-
lipse were grouped in the first half of the experiment, while all the tasks that were to be solved with Excel were
grouped in the second half of the experiment. This allowed us to minimize the effect of switching between
tools to only one time, between tasks A3 and A4.1. The good scores obtained by the Ecl+Excl subjects on task
A4.1, in both correctness and time, do not provide any indication of such a negative effect.

Data differences. CodeCity works with a FAMIX model of the system, while Eclipse works with the source
code (although in reality Eclipse has its own proprietary model). These data differences might have an effect
on the results of the two groups and this represents a threat to internal validity. To alleviate it, we accurately
produced the answer model based on the available artifact, i.e., source code or FAMIX model, and made sure
that the slight differences between the two data sources do not lead to incompatible answers.

Session differences. There were seven sessions and the differences among them may have influenced the
result. To mitigate this threat, we performed four different sessions with nine subjects in total during a pre-
experiment pilot phase and obtained a stable and reliable experimental setup (i.e., instrumentation, ques-
tionnaires, experimental kit, logistics). Even so, there were some inconsistencies among sessions. For in-
stance the fact that some of the participants in the Bologna XPUG paired to perform the experiment was an
unexpected factor, but watching them in a real work-like situation was more valuable for us than imposing
the experiment’s constraints at all costs. Moreover, there were four industry practitioners who performed the
experiment remotely, controlled merely by their conscience. Given the value of data points from these prac-
titioners and the reliability of these particular persons (i.e., one of the experimenters knew them personally),
we trusted them without reservation.

33

Training. The fact that we only trained the subjects with the experimental treatment may have influenced
the result of the experiment. We afforded to do that because we chose a strong baseline tool set, composed of
two state-of-the-practice tools, and we made sure that the control subjects had a minimum of knowledge with
Eclipse. Although many of the Ecl+Excl subjects remarked the fact that we should have included Excel among
the assessed competencies, they scored well on the tasks with Excel, due to the rather simple operations (i.e.,
sorting, arithmetic operations between two columns) required to solve the tasks. As many of the CodeCity
subjects observed, one hour of demonstration of a new and mostly unknown tool will never leverage years of
use, even if sparse, of popular tools such as Eclipse or Excel.

Paper support. From our experience and from the feedback of some of our subjects, we have indications
that the fact that the answers had to be written on paper may have influenced the results. The influence of
this threat is not changing the result, but it reduces the effect of the tool, since for some of the tasks (i.e., the
one requiring writing down some package or class names) the writing part takes longer than the operations
required to reach the solution. If this effect does exist, it affects all subjects regardless of the tool treatment.
Removing it would only increase the difference with which CodeCity outperformed Ecl+Excl.

9.2 External Validity

The external validity refers to the generalizability of the experiment’s results.

Subjects. A threat to external validity is the representativeness of the subjects for the targeted population.
To mitigate this threat, we categorized our subjects in four categories along two axes (i.e., background and ex-
perience level) and strived to cover all these categories. Eventually, we obtained a balanced mix of academics
(both beginners and advanced) and industry practitioners (only advanced). The lack of industry beginners
may have an influence on the results. However, our analysis of the performances across experience levels
indicates that CodeCity supported well beginner users, who obtained even better results than the advanced
users in outperforming Ecl+Excl. Therefore, we believe that the presence of industry beginners could have
only strengthen these results.

Tasks. Another external validity threat is the representativeness of the tasks, i.e., that the tasks may not
reflect real reverse engineering situations. We could not match our analysis with none of the existing frame-
works, because they do not support design problem assessment and, in addition, they are either a) too low-
level, such as the set of questions asked by practitioners during a programming change task set synthesized
by Sillito et al. [35], or b) biased towards dynamic analysis tools as the framework of comprehension activ-
ities compiled by Pacione et al. [26]. To alleviate this threat, we described the tasks in the context of reverse
engineering and high-level program comprehension scenarios.

Object systems. The representativeness of the object systems is another threat. In spite of the increased
complexity in the organization and analysis of the experiment introduced by a second independent variable,
we chose to perform the experiment with two different object systems. Besides our interest in analyzing the
effect of the object system size on the performance of CodeCity’s users, we also applied the lessons learned
from Quante’s experiment [30] that the results obtained on a single object system are not reliable. The two
object systems we opted for are well-known open-source systems of different, realistic sizes (see Table 2)
and of orthogonal application domains. It is not known how appropriate these systems are for the reverse-
engineering tasks we designed, but the variation in the solutions to the same task shows that the systems are
quite different.

Experimenter effect. One of the experimenters is also the author of the approach and of the tool. This
may have influenced any subjective aspect of the experiment. However, we mitigate this threat in several
ways. When building the oracle set, three experimenters created their own oracle set independently and then
converged through discussions to a common set. When grading the correctness scores, three experimenters
independently graded the solutions and again converged to a common set through discussions. Moreover,
two of the three performed the grading blinded, i.e., without knowing whether they are grading a solution
obtained with CodeCity or with Ecl+Excl.

34

9.3 Construct Validity

The construct validity concerns generalizing the result of the experiment to the concepts or theories behind
the experiment.

Hypothesis guessing. Another threat to internal validity is that the subjects were aware of the fact that we
were the authors of CodeCity and that the purpose of the experiment was to compare the performance of
CodeCity with a baseline. To alleviate this threat, we clearly explained them before each experiment session
that it is the tool’s support that is being measured and not the subjects’ performances and we asked them
to do their best in solving the tasks, regardless of the tool they have been assigned with. An indication that
this was clearly understood by the participants is that the absolute best completion time was obtained by a
control subject (i.e., AA07) and one of the best correctness scores in the case of the large object system was
obtained by another control subject (i.e., AA05).

9.4 Conclusion Validity

The conclusion validity refers to the ability to draw the correct conclusions about the relation between the
treatment and the experiment’s outcome.

Fishing for results. Searching for a specific result is a threat to conclusion validity, for it may influence the
result. In this context, a threat is that task solutions may not have been graded correctly. To mitigate this
threat, the three authors built a model of the answers and a grading scheme and then reached consensus.
Moreover, the grading was performed in a similar manner and two of the three experimenters graded the
solutions blinded, i.e., without knowing the treatments (e.g., tool) used to obtain the solutions.

10 Conclusions

The contributions of this paper are threefold:

1. We performed a literature study and extracted a wish list for our experiment, which allowed us to put
in practice the lessons we learned from the body of related work.

2. We designed and performed a controlled experiment for the evaluation of our approach, which showed
that, at least for the tasks assigned to our subjects, our approach outperforms in both correctness and
completion time the combination of two state-of-the-practice exploration tools, Besides an aggregated
analysis, we provide a detailed analysis of each task, as well as comments on the last task of the experi-
ment, which was more qualitative in nature, as it was focused on gathering unexpected insights about
the systems under study.

3. Since we believe that other researchers interested in evaluating their tools should benefit from our ex-
perience, we provided the complete raw data and other details (i.e., the pre-experiment questionnaire,
the experiment questionnaires, solution oracles and grading systems), which allow reviewers to better
evaluate the experiment and fellow researchers to repeat the experiment or start from its design as a
base for their own experiment.

Acknowledgements

We thank Prof. Radu Marinescu, Mircea Lungu, Alberto Bacchelli, and Lile Hattori for helping us with the
design of the experiment. We also thank Prof. Oscar Nierstrasz, Prof. Serge Demeyer, Fabrizio Perin, Quinten
Soetens, Alberto Bacchelli, and Sebastiano Cobianco for helping us with the local organization of the exper-
imental sessions. Last, but not least, we thank all the subjects of our experiment: the developers in Bologna
and Lugano, the Software Composition Group in Bern, and the Master students in both Lugano and Antwerp.

35

References

[1] E. Arisholm, L. C. Briand, S. E. Hove, and Y. Labiche. The impact of uml documentation on software maintenance:
An experimental evaluation. IEEE Transactions on Software Engineering, 32(6):365–381, 2006.

[2] T. Barlow and P. Neville. A comparison of 2-d visualizations of hierarchies. In InfoVis ’01: Proceedings of the 2001
IEEE Symposium on Information Visualization, pages 131–138. IEEE Computer Society Press, 2001.

[3] A. Cooper and R. Reimann. About Face 2.0 - The Essentials of Interaction Design. Wiley, 2003.

[4] B. Cornelissen, A. Zaidman, B. V. Rompaey, and A. van Deursen. Trace visualization for program comprehension: A
controlled experiment. In ICPC ’09: Proceedings of the 17th IEEE International Conference on Program Comprehen-
sion, pages 100–109. IEEE Computer Society Press, 2009.

[5] B. Cornelissen, A. Zaidman, A. van Deursen, and B. Van Rompaey. Trace visualization for program comprehension:
A controlled experiment. Technical Report TUD-SERG-2009-001, Delft University of Technology, 2009.

[6] S. Demeyer, S. Tichelaar, and S. Ducasse. FAMIX 2.1 — The FAMOOS Information Exchange Model. Technical report,
University of Bern, 2001.

[7] G. Ellis and A. Dix. An explorative analysis of user evaluation studies in information visualisation. In BELIV ’06:
Proceedings of the 2006 AVI workshop on BEyond time and errors, pages 1–7. ACM Press, 2006.

[8] M. Granitzer, W. Kienreich, V. Sabol, K. Andrews, and W. Klieber. Evaluating a system for interactive exploration of
large, hierarchically structured document repositories. In InfoVis ’04: Proceedings of the 2004 IEEE Symposium on
Information Visualization, pages 127–134. IEEE Computer Society Press, 2004.

[9] T. Gyimóthy, R. Ferenc, and I. Siket. Empirical validation of object-oriented metrics on open source software for
fault prediction. IEEE Transactions on Software Engineering, 31(10):897–910, October 2005.

[10] S. Haiduc and A. Marcus. On the use of domain terms in source code. In ICPC ’08: Proceedings of the 16th IEEE
International Conference on Program Comprehension, pages 113–122. IEEE Computer Society Press, 2008.

[11] D. Hovemeyer and W. Pugh. Finding bugs is easy. ACM SIGPLAN Notices, 39(12):92–106, December 2004.

[12] B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. E. Emam, and J. Rosenberg. Preliminary
guidelines for empirical research in software engineering. IEEE Transactions on Software Engineering, 28(8):721–734,
2002.

[13] J. Knodel, D. Muthig, and M. Naab. An experiment on the role of graphical elements in architecture visualization.
Empirical Software Engineering, 13(6):693–726, 2008.

[14] A. Kobsa. An empirical comparison of three commercial information visualization systems. In InfoVis ’01: Pro-
ceedings of the 2001 IEEE Symposium on Information Visualization, pages 123–130. IEEE Computer Society Press,
2001.

[15] A. Kobsa. User experiments with tree visualization systems. In InfoVis ’04: Proceedings of the 2004 IEEE Symposium
on Information Visualization, pages 9–16. IEEE Computer Society Press, 2004.

[16] R. Kosara, C. Healey, V. Interrante, D. Laidlaw, and C. Ware. User studies: Why, how, and when? IEEE Computer
Graphics and Applications, 23(4):20–25, July-Aug. 2003.

[17] R. Koschke. Software visualization in software maintenance, reverse engineering, and re-engineering: a research
survey. Journal of Software Maintenance, 15(2):87–109, 2003.

[18] C. F. J. Lange and M. R. V. Chaudron. Interactive views to improve the comprehension of uml models - an experi-
mental validation. In ICPC ’07: Proceedings of the 15th International Conference on Program Comprehension, pages
221–230. IEEE Computer Society Press, 2007.

[19] H. Levene. Robust tests for equality of variances. In I. Olkin, editor, Contributions to Probability and Statistics: Essays
in Honor of Harold Hotelling, pages 278–292. Stanford University Press, 1960.

[20] J. Maletic and A. Marcus. CFB: A call for benchmarks - for software visualization. In VISSOFT ’03: Proceedings of the
2nd IEEE International Workshop on Visualizing Software for Understanding and Analysis. IEEE Computer Society
Press, 2003.

[21] A. Marcus, D. Comorski, and A. Sergeyev. Supporting the evolution of a software visualization tool through usability
studies. In IWPC ’05: Proceedings of the 13th International Workshop on Program Comprehension, pages 307–316.
IEEE Computer Society Press, 2005.

[22] A. Marcus, V. Rajlich, J. Buchta, M. Petrenko, and A. Sergeyev. Static techniques for concept location in object-
oriented code. In IWPC ’05: Proceedings of the 13th International Workshop on Program Comprehension, pages
33–42. IEEE Computer Society Press, 2005.

[23] R. Marinescu. Measurement and Quality in Object-Oriented Design. PhD thesis, “Politehnica” University of Tim-
işoara, 2004.

[24] O. Nierstrasz, S. Ducasse, and T. Gîrba. The story of Moose: an agile reengineering environment. In ESEC/FSE-13:
Proceedings of the 10th European software engineering conference held jointly with 13th ACM SIGSOFT international
symposium on Foundations of software engineering, pages 1–10. ACM Press, 2005.

36

[25] R. O’Donnell, A. Dix, and L. J. Ball. Exploring the pietree for representing numerical hierarchical data. In HCI ’06:
Proceedings of International Workshop on Human-Computer Interaction, pages 239–254. Springer, 2006.

[26] M. J. Pacione, M. Roper, and M. Wood. A novel software visualisation model to support software comprehension. In
WCRE ’04: Proceedings of the 11th Working Conference on Reverse Engineering, pages 70–79. IEEE Computer Society
Press, 2004.

[27] M. D. Penta, R. Stirewalt, and E. Kraemer. Designing your next empirical study on program comprehension. In ICPC
’07: Proceedings of the 15th International Conference on Program Comprehension, pages 281–285. IEEE Computer
Society Press, 2007.

[28] M. Petre. Why looking isn’t always seeing: readership skills and graphical programming. Commun. ACM, 38(6):33–
44, 1995.

[29] C. Plaisant. The challenge of information visualization evaluation. In AVI ’04: Proceedings of the Working Conference
on Advanced Visual Interfaces, pages 109–116. ACM Press, 2004.

[30] J. Quante. Do dynamic object process graphs support program understanding? - a controlled experiment. In ICPC
’08: Proceedings of the 16th IEEE International Conference on Program Comprehension, pages 73–82. IEEE Computer
Society Press, 2008.

[31] D. Raţiu, S. Ducasse, T. Gîrba, and R. Marinescu. Using history information to improve design flaws detection. In
CSMR ’04: Proceedings of the 8th European Conference on Software Maintenance and Reengineering, pages 223–232.
IEEE Computer Society Press, 2004.

[32] A. Riel. Object-Oriented Design Heuristics. Addison-Wesley, 1996.

[33] M. Sensalire, P. Ogao, and A. Telea. Evaluation of software visualization tools: Lessons learned. In VISSOFT ’09:
Proceedings of the 5th IEEE International Workshop on Visualizing Software for Understanding and Analysis, 2009.

[34] S. Shapiro and M. Wilk. An analysis of variance test for normality (complete samples). Biometrika, 52(3–4):591–611,
1965.

[35] J. Sillito, G. C. Murphy, and K. De Volder. Questions programmers ask during software evolution tasks. In SIGSOFT
’06/FSE-14: Proceedings of the 14th ACM SIGSOFT international symposium on Foundations of Software Engineering,
pages 23–34. ACM Press, 2006.

[36] J. Stasko. An evaluation of space-filling information visualizations for depicting hierarchical structures. Int. J. Hum.-
Comput. Stud., 53(5):663–694, 2000.

[37] M.-A. Storey. Theories, tools and research methods in program comprehension: past, present and future. Software
Quality Control, 14(3):187–208, 2006.

[38] M.-A. D. Storey, H. Müller, and K. Wong. Manipulating and documenting software structures. In P. D. Eades and
K. Zhang, editors, Software Visualisation, volume 7, pages 244–263. World Scientific Publishing Co., 1996.

[39] M.-A. D. Storey, K. Wong, and H. A. Müller. How do program understanding tools affect how programmers under-
stand programs? In WCRE ’97: Proceedings of the Fourth Working Conference on Reverse Engineering, pages 12–21.
IEEE Computer Society Press, 1997.

[40] Y. Wang, S. T. Teoh, and K.-L. Ma. Evaluating the effectiveness of tree visualization systems for knowledge discovery.
In In Proceedings of Eurographics Visualization Symposium, pages 67–74. Eurographics Association, 2006.

[41] R. Wettel. Scripting 3d visualizations with codecity. In FAMOOSr ’08: Proceedings of the 2nd Workshop on FAMIX and
Moose in Reengineering, 2008.

[42] R. Wettel and M. Lanza. Program comprehension through software habitability. In ICPC ’07: Proceedings of the 15th
International Conference on Program Comprehension, pages 231–240. IEEE Computer Society Press, 2007.

[43] R. Wettel and M. Lanza. Visualizing software systems as cities. In VISSOFT ’07: Proceedings of the 4th IEEE Interna-
tional Workshop on Visualizing Software for Understanding and Analysis, pages 92–99. IEEE Computer Society Press,
2007.

[44] R. Wettel and M. Lanza. CodeCity. In WASDeTT ’08: In Proceedings of the 1st International Workshop on Advanced
Software Development Tools and Techniques, 2008.

[45] R. Wettel and M. Lanza. Codecity: 3d visualization of large-scale software. In ICSE ’08: Proceedings of the 30th
International Conference on Software Engineering, Tool Demo, pages 921–922. ACM Press, 2008.

[46] R. Wettel and M. Lanza. Visual exploration of large-scale system evolution. In WCRE ’08: Proceedings of the 15th
Working Conference on Reverse Engineering, pages 219–228. IEEE Computer Society Press, 2008.

[47] R. Wettel and M. Lanza. Visually localizing design problems with disharmony maps. In SoftVis ’08: Proceedings of
the 4th ACM Symposium on Software Visualization, pages 155–164. ACM Press, 2008.

[48] U. Wiss, D. Carr, and H. Jonsson. Evaluating three-dimensional information visualization designs: A case study of
three designs. In IV ’98: Proceedings of the International Conference on Information Visualisation, pages 137–145.
IEEE Computer Society Press, 1998.

37

[49] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, and A. Wesslén. Experimentation in software engineering:
an introduction. Kluwer Academic Publishers, 2000.

[50] Y. Zhu. Measuring effective data visualization. In ISVC (2), volume 4842 of Lecture Notes in Computer Science, pages
652–661. Springer, 2007.

38

A Pre-Experiment Questionnaire

Using Google Docs15, we designed an online questionnaire that served both to provide an easily accessible
platform for the volunteers to enroll and to allow capturing the personal information that we used to assign
the subjects to blocks and treatments (See Figure 13).

Figure 13: The enrollment online questionnaire we used for collecting personal information about the participants

B Experiment Questionnaire

The content of the questionnaires, with all the variations due to the different treatment combinations, is
presented in the following. The actual form and presentation of the questionnaire is presented in Figure 14
and Figure 15, which shows a series of the actual pages of the questionnaires for the T1 combination of treat-
ments.

B.1 Introduction

The aim of this experiment is to compare tool efficiency in supporting software practitioners analyzing me-
dium to large-scale software systems.

You will use<toolset>16 to analyze<object system name>17, a<object system description>18 written in Java.

You are given maximum 100 minutes for solving 10 tasks (10 minutes per task).

You are asked:

• not to consult any other participant during the experiment;

• to perform the tasks in the specified order;

• to write down the current time each time before starting to read a task and once after completing all
the tasks;

15http://docs.google.com
16CodeCity for treatments 1 and 2, Eclipse + Excel with CSV data concerning metrics and design problems for treatments 3 and 4
17Azureus for treatments 1 and 3, FindBugs for treatments 2 and 4
18a BitTorrent client for treatments 1 and 3, a bug searching tool based on static analysis for treatments 2 and 4

39

http://docs.google.com

• to announce the experimenter that you are moving on to another task, in order to reset your 10-minutes-
per-task allocated timer;

• not to return to earlier tasks, because it affects the timing;

• for each task, to fill in the required information. In the case of multiple choices check the most appro-
priate answer and provide additional information, if requested.

The experiment is concluded with a short debriefing questionnaire.

Thank you for participating in this experiment!
Richard Wettel, Michele Lanza, Romain Robbes

B.2 Tasks

A1 [Structural Understanding]

Task
Locate all the unit test classes of the system (typically called *Test in Java) and identify the convention
(or lack of convention) used by the system’s developers to organize the unit tests.

Solution (multiple choice)

◦ Centralized. There is a single package hierarchy, whose root package is (write down the full name
of the package): . . . 19.

◦ Dispersed. The test classes are located in the same package as the tested classes.

◦ Hybrid. Some test classes are defined in the central test package hierarchy, with the root in pack-
age (provide the full name of the package) . . . , while some test classes are defined elsewhere. An
example of such a test class is: . . . , defined in package (write down the full name):

◦ Other. Detail your answer:

A2.1 [Concept Location]

Task
Using the <feature name>20 (and any other) feature in <toolset>, look for the term <term 1>21 in the
names of the classes and their attributes and methods, and describe the spread of these classes in the
system.

Solution (multiple choice)

◦ Localized. All the classes related to this term are located in one or two packages. Provide the full
name of these packages:

◦ Dispersed. Many packages in the system contain classes related to the given term. Indicated 5
packages (or all of them if there are less than 5) writing their full names:

A2.2 [Concept Location]

Task
Using the <feature name> (and any other) feature in <toolset>, look for the term <term 2>22 in the
names of the classes and their attributes and methods, and describe the spread of these classes in the
system23.

19The placeholders presented here are not proportional in length to the variable-size blanks used in the actual questionnaires.
20search by term for treatments 1 and 2, Java search for treatments 3 and 4
21skin for treatments 1 and 3, annotate for treatments 2 and 4
22tracker for treatments 1 and 3, infinite for treatments 2 and 4
23The task is similar to the previous one, but the terms are chosen such that they cover the opposite solution.

40

Solution (multiple choice)

◦ Localized. All the classes related to this term are located in one or two packages. Provide the full
name of these packages:

◦ Dispersed. Many packages in the system contain classes related to the given term. Indicated 5
packages (or all of them if there are less than 5) writing their full names:

A3 [Impact Analysis]

Task
Evaluate the change impact of class <class A3>24, by considering its callee classes (classes invoking
any of its methods). The assessment is done in terms of both intensity (number of potentially affected
classes) and dispersion (how these classes are distributed in the package structure).

Solution (multiple choice)

◦ Unique location. There are . . . classes potentially affected by a change in the given class, all
defined in a single package, whose full name is

◦ Global. Most of the system’s packages (more than half) contain at least one of the . . . classes that
would be potentially affected by a change in the given class.

◦ Multiple locations. There are . . . classes potentially affected by a change in the given class,
defined in several packages, but less than half of the system’s packages. Indicate up to 5 packages
containing the most of these classes:

A4.1 [Metric Analysis]

Task
Find the 3 classes with the highest number of methods in the system.

Solution (ranking)
The classes with the highest number of methods are (in descending order):

1. class . . . defined in package (full name) . . . , containing . . . methods.

2. class . . . defined in package (full name) . . . , containing . . . methods.

3. class . . . defined in package (full name) . . . , containing . . . methods.

A4.2 [Metric Analysis]

Task
Find the 3 classes with the highest average number of lines of code per method in the system. The value
of this metric is computed as:

lines of code per method= number of lines of code
number of methods

Solution (ranking)
The classes with the highest average number of lines of code per methods are (in descending order):

1. class . . . defined in package (full name) . . . , has an average of . . . lines of code per method.

2. class . . . defined in package (full name) . . . , has an average of . . . lines of code per method.

3. class . . . defined in package (full name) . . . , has an average of . . . lines of code per method.

24org.gudy.azureus2.ui.swt.Utils for treatments 1 and 3, edu.umd.cs.findbugs.OpcodeStack for treatments 2 and 4

41

B1.1 [God Class Analysis]

Task
Identify the package with the highest percentage of god classes in the system. Write down the full name
of the package, the number of god classes in this package, and the total number of classes in the pack-
age.

Solution
The highest percentage of god classes in the system is found in package . . . , which contains . . . god
classes out of . . . classes.

B1.2 [God Class Analysis]

Task
Identify the god class containing the largest number of methods in the system.

Solution
The god class with the largest number of methods in the system is class . . . , defined in package (write
down the full name) . . . , which contains . . . methods.

B2.1 [Design Problem Assessment]

Task
Based on the design problem information available in <toolset>25, identify the dominant class-level
design problem (i.e., the design problem that affects the largest number of classes) in the system.

Solution (multiple choice)
The dominant class-level design problem is

◦ Brain Class, which affects a number of . . . classes.

◦ Data Class, which affects a number of . . . classes.

◦ God Class, which affects a number of . . . classes.

B2.2 [Design Problem Assessment]

Task
Write an overview of the class-level design problems in the system. Are the design problems affecting
many of the classes? Are the different design problems affecting the system in an equal measure? Are
there packages of the system affected exclusively by only one design problem? Are there packages en-
tirely unaffected by any design problem? Or packages with all classes affected? Describe your most
interesting or unexpected observations about the design problems.

Solution (free form)
. . .

C Debriefing Questionnaire

Time pressure. On a scale from 1 to 5, how did you feel about the time pressure? Please write in the box
below the answer that matches your opinion the most:
. . .
The time pressure scale corresponds to:

1. Too much time pressure. I could not cope with the tasks, regardless of their difficulty.

25CodeCity for treatments 1 and 2, the spreadsheet for treatments 3 and 4

42

2. Fair amount of pressure. I could certainly have done better with more time.

3. Not so much time pressure. I had to hurry a bit, but it was OK.

4. Very little time pressure. I felt quite comfortable with the time given.

5. No time pressure at all.

Difficulty. Regardless of the given time, how difficult would you rate this task? Please mark the appropriate
difficulty for each of the tasks26:
. . .

Comments. Enter comments and/or suggestions you may have about the experiment, which could help us
improve it.
. . .

Miscellaneous. It is possible that you have discovered some interesting insights about the system during
the experiment and that the format of the answer did not allow you to write it, or that it was not related to the
question. In this case, please share with us what you discovered (optional).
. . .

D Data

To provide a fully transparent experimental setup, we make available the entire data set of our experiment.
In Table 7 we present the subjects and the personal information that we relied on when we assigned them

to the different blocks (i.e., based on experience and background).
Once the subjects were assigned to the three blocks (i.e., we did not have any subjects in the industry-

beginner block), within each block we assigned the subjects to treatment combinations using randomiza-
tion. The assignment of subjects to treatments and blocks is presented in Table 8, clustered by the treatment
combination, to ease comparison between the different levels of the independent variables.

Using the criteria described in detail in Section 6.3, we obtained the correctness levels presented in Table 9.
Based on the reasoning presented in the Section 7.2, we decided to eliminate the correctness and timing res-
ults for task A4.2. Therefore, the last column of the table, which represents the correctness after discarding
the aforementioned task, presents the data that we used for our analysis on correctness.

The completion times for each tasks and overall are presented in Table 10. Since we discarded the cor-
rectness results for task A4.2, we also discard the completion time data for the same task. The last column
of the table, which represents the overall completion time after discarding the aforementioned task, presents
the data that we used for our analysis on completion time.

Finally, Table 11 presents the data we collected from the subjects regarding the perceived time pressure
and the difficulty level per task, as experienced by our subjects. This data allowed us to determine whether
there was a task which was highly unfair for one of the groups. Moreover, it provided us important hints on
the type of tasks where CodeCity is most beneficial and for which type of users.

26The scale for difficulty was, in decreasing order: impossible, difficult, intermediate, simple, trivial

43

C
o

d
e

A
ge

Jo
b

P
o

si
ti

o
n

E
xp

er
ie

n
ce

L
ev

el
N

u
m

b
er

o
fY

ea
rs

O
O

P
Ja

va
E

cl
ip

se
R

ev
.E

n
g.

O
O

P
Ja

va
E

cl
ip

se
R

ev
.E

n
g.

IA
01

30
D

ev
el

o
p

er
kn

ow
le

d
ge

ab
le

ad
va

n
ce

d
kn

ow
le

d
ge

ab
le

b
eg

in
n

er
7–

10
7–

10
4–

6
1–

3
IA

02
34

D
ev

el
o

p
er

ad
va

n
ce

d
ad

va
n

ce
d

kn
ow

le
d

ge
ab

le
kn

ow
le

d
ge

ab
le

7–
10

4–
6

1–
3

4–
6

IA
03

42
C

T
O

,D
ev

el
o

p
er

ex
p

er
t

kn
ow

le
d

ge
ab

le
b

eg
in

n
er

kn
ow

le
d

ge
ab

le
>

10
1–

3
1–

3
>

10
IA

04
37

D
ev

el
o

p
er

ad
va

n
ce

d
ad

va
n

ce
d

kn
ow

le
d

ge
ab

le
b

eg
in

n
er

7–
10

7–
10

4–
6

1–
3

A
B

01
21

M
as

te
r

St
u

d
en

t
ad

va
n

ce
d

ad
va

n
ce

d
ad

va
n

ce
d

b
eg

in
n

er
4–

6
4–

6
4–

6
<

1
A

B
02

21
M

as
te

r
St

u
d

en
t

ad
va

n
ce

d
ad

va
n

ce
d

ad
va

n
ce

d
b

eg
in

n
er

1–
3

1–
3

1–
3

<
1

IA
05

29
C

o
n

su
lt

an
t,

P
h

.D
.S

tu
d

en
t

ex
p

er
t

b
eg

in
n

er
b

eg
in

n
er

kn
ow

le
d

ge
ab

le
7–

10
7–

10
4–

6
4–

6
A

A
01

26
P

h
.D

.S
tu

d
en

t
ex

p
er

t
ex

p
er

t
kn

ow
le

d
ge

ab
le

b
eg

in
n

er
>

10
>

10
1–

3
<

1
A

A
02

26
P

h
.D

.S
tu

d
en

t
ex

p
er

t
ad

va
n

ce
d

kn
ow

le
d

ge
ab

le
kn

ow
le

d
ge

ab
le

4–
6

1–
3

1–
3

1–
3

IA
06

35
H

ea
d

o
fI

T
ex

p
er

t
ex

p
er

t
ad

va
n

ce
d

ad
va

n
ce

d
>

10
>

10
4–

6
7–

10
IA

07
27

So
ft

w
ar

e
E

n
gi

n
ee

r
kn

ow
le

d
ge

ab
le

kn
ow

le
d

ge
ab

le
b

eg
in

n
er

kn
ow

le
d

ge
ab

le
7–

10
7–

10
1–

3
4–

6
IA

08
25

So
ft

w
ar

e
E

n
gi

n
ee

r
kn

ow
le

d
ge

ab
le

ad
va

n
ce

d
kn

ow
le

d
ge

ab
le

b
eg

in
n

er
4–

6
4–

6
1–

3
<

1
IA

09
32

D
ev

el
o

p
m

en
tL

ea
d

er
,R

es
ea

rc
h

er
ad

va
n

ce
d

b
eg

in
n

er
n

o
n

e
ad

va
n

ce
d

7–
10

7–
10

<
1

4–
6

A
B

03
28

St
u

d
en

t
kn

ow
le

d
ge

ab
le

kn
ow

le
d

ge
ab

le
b

eg
in

n
er

b
eg

in
n

er
4–

6
1–

3
1–

3
1–

3
IA

10
39

P
ro

je
ct

M
an

ag
er

ex
p

er
t

ad
va

n
ce

d
kn

ow
le

d
ge

ab
le

kn
ow

le
d

ge
ab

le
>

10
7–

10
7–

10
4–

6
IA

11
38

C
o

n
su

lt
an

t,
Sy

st
em

M
an

ag
er
/A

n
al

ys
t

kn
ow

le
d

ge
ab

le
b

eg
in

n
er

b
eg

in
n

er
ad

va
n

ce
d

7–
10

7–
10

1–
3

7–
10

IA
12

34
Se

n
io

r
Ja

va
A

rc
h

it
ec

t
ex

p
er

t
ex

p
er

t
ad

va
n

ce
d

ad
va

n
ce

d
>

10
>

10
>

10
>

10
A

B
04

22
M

as
te

r
St

u
d

en
t

ad
va

n
ce

d
ad

va
n

ce
d

ad
va

n
ce

d
kn

ow
le

d
ge

ab
le

4–
6

1–
3

1–
3

<
1

A
A

03
22

M
as

te
r

St
u

d
en

t
ad

va
n

ce
d

ad
va

n
ce

d
ad

va
n

ce
d

b
eg

in
n

er
7–

10
4–

6
4–

6
<

1
A

B
05

22
M

as
te

r
St

u
d

en
t

ad
va

n
ce

d
ad

va
n

ce
d

kn
ow

le
d

ge
ab

le
b

eg
in

n
er

4–
6

1–
3

1–
3

1–
3

A
A

04
29

P
h

.D
.S

tu
d

en
t

ad
va

n
ce

d
ad

va
n

ce
d

kn
ow

le
d

ge
ab

le
b

eg
in

n
er

4–
6

4–
6

1–
3

<
1

IA
13

32
C

o
n

su
lt

an
t

ex
p

er
t

kn
ow

le
d

ge
ab

le
kn

ow
le

d
ge

ab
le

ex
p

er
t

7–
10

4–
6

1–
3

7–
10

IA
14

31
So

ft
w

ar
e

A
rc

h
it

ec
t

ad
va

n
ce

d
kn

ow
le

d
ge

ab
le

kn
ow

le
d

ge
ab

le
b

eg
in

n
er

7–
10

7–
10

1–
3

1–
3

A
B

06
23

M
as

te
r

St
u

d
en

t
ad

va
n

ce
d

ad
va

n
ce

d
ad

va
n

ce
d

b
eg

in
n

er
4–

6
1–

3
1–

3
<

1
A

B
07

23
M

as
te

r
St

u
d

en
t

ad
va

n
ce

d
ad

va
n

ce
d

ad
va

n
ce

d
b

eg
in

n
er

4–
6

1–
3

1–
3

<
1

A
A

05
30

P
h

.D
.S

tu
d

en
t

ad
va

n
ce

d
ad

va
n

ce
d

ad
va

n
ce

d
kn

ow
le

d
ge

ab
le

7–
10

7–
10

7–
10

4–
6

A
A

06
26

P
h

.D
.S

tu
d

en
t

ex
p

er
t

kn
ow

le
d

ge
ab

le
ad

va
n

ce
d

ex
p

er
t

7–
10

7–
10

4–
6

4–
6

A
A

07
30

P
h

.D
.S

tu
d

en
t

ad
va

n
ce

d
ad

va
n

ce
d

kn
ow

le
d

ge
ab

le
kn

ow
le

d
ge

ab
le

7–
10

7–
10

1–
3

1–
3

IA
15

40
P

ro
je

ct
M

an
ag

er
ex

p
er

t
ex

p
er

t
ad

va
n

ce
d

ad
va

n
ce

d
>

10
>

10
7–

10
4–

6
IA

16
39

So
ft

w
ar

e
A

rc
h

it
ec

t
ad

va
n

ce
d

ad
va

n
ce

d
kn

ow
le

d
ge

ab
le

kn
ow

le
d

ge
ab

le
4–

6
4–

6
4–

6
1–

3
IA

01
30

D
ev

el
o

p
er

kn
ow

le
d

ge
ab

le
ad

va
n

ce
d

kn
ow

le
d

ge
ab

le
b

eg
in

n
er

7–
10

7–
10

4–
6

1–
3

IA
17

27
So

ft
w

ar
e

E
n

gi
n

ee
r

kn
ow

le
d

ge
ab

le
ad

va
n

ce
d

kn
ow

le
d

ge
ab

le
b

eg
in

n
er

4–
6

4–
6

4–
6

<
1

IA
19

39
C

o
n

su
lt

an
t,

P
ro

je
ct

M
an

ag
er

,A
rc

h
it

ec
t

ex
p

er
t

ex
p

er
t

kn
ow

le
d

ge
ab

le
ad

va
n

ce
d

>
10

7–
10

7–
10

4–
6

A
B

08
21

M
as

te
r

St
u

d
en

t
ad

va
n

ce
d

ad
va

n
ce

d
ad

va
n

ce
d

b
eg

in
n

er
1–

3
1–

3
1–

3
<

1
A

B
09

23
P

h
.D

.S
tu

d
en

t
ad

va
n

ce
d

ad
va

n
ce

d
ad

va
n

ce
d

kn
ow

le
d

ge
ab

le
4–

6
1–

3
1–

3
1–

3
A

A
10

24
P

h
.D

.S
tu

d
en

t
ad

va
n

ce
d

ad
va

n
ce

d
ad

va
n

ce
d

ad
va

n
ce

d
4–

6
4–

6
4–

6
1–

3
A

A
11

23
P

h
.D

.S
tu

d
en

t
ad

va
n

ce
d

ad
va

n
ce

d
ad

va
n

ce
d

kn
ow

le
d

ge
ab

le
4–

6
4–

6
4–

6
1–

3
A

A
12

52
P

ro
fe

ss
o

r
ex

p
er

t
ad

va
n

ce
d

kn
ow

le
d

ge
ab

le
ad

va
n

ce
d

>
10

>
10

4–
6

>
10

A
A

13
28

P
h

.D
.S

tu
d

en
t

ad
va

n
ce

d
ad

va
n

ce
d

kn
ow

le
d

ge
ab

le
kn

ow
le

d
ge

ab
le

4–
6

4–
6

4–
6

1–
3

A
A

14
24

M
as

te
r

St
u

d
en

t
ex

p
er

t
ex

p
er

t
ex

p
er

t
kn

ow
le

d
ge

ab
le

4–
6

4–
6

4–
6

1–
3

IA
20

36
D

ev
el

o
p

er
ad

va
n

ce
d

ex
p

er
t

ad
va

n
ce

d
b

eg
in

n
er

>
10

7–
10

7–
10

1–
3

Ta
bl

e
7:

T
h

e
su

b
je

ct
s’

p
er

so
n

al
in

fo
rm

at
io

n
,c

lu
st

er
ed

b
y

tr
ea

tm
en

tc
o

m
b

in
at

io
n

s.

44

Code
Treatment Blocking Criteria

Number Tool System size Background Experience
IA01 1 CodeCity large industry advanced
IA02 1 CodeCity large industry advanced
IA03 1 CodeCity large industry advanced
IA04 1 CodeCity large industry advanced
AB01 1 CodeCity large academy beginner
AB02 1 CodeCity large academy beginner
IA05 1 CodeCity large industry advanced
AA01 1 CodeCity large academy advanced
AA02 1 CodeCity large academy advanced
IA06 1 CodeCity large industry advanced
IA07 2 CodeCity medium industry advanced
IA08 2 CodeCity medium industry advanced
IA09 2 CodeCity medium industry advanced
AB03 2 CodeCity medium academy beginner
IA10 2 CodeCity medium industry advanced
IA11 2 CodeCity medium industry advanced
IA12 2 CodeCity medium industry advanced
AB04 2 CodeCity medium academy beginner
AA03 2 CodeCity medium academy advanced
AB05 2 CodeCity medium academy beginner
AA04 2 CodeCity medium academy advanced
IA13 2 CodeCity medium industry advanced
IA14 3 Ecl+Excl large industry advanced
AB06 3 Ecl+Excl large academy beginner
AB07 3 Ecl+Excl large academy beginner
AA05 3 Ecl+Excl large academy advanced
AA06 3 Ecl+Excl large academy advanced
AA07 3 Ecl+Excl large academy advanced
IA15 3 Ecl+Excl large industry advanced
IA16 3 Ecl+Excl large industry advanced
IA01 4 Ecl+Excl medium industry advanced
IA18 4 Ecl+Excl medium industry advanced
IA19 4 Ecl+Excl medium industry advanced
AB08 4 Ecl+Excl medium academy beginner
AB09 4 Ecl+Excl medium academy beginner
AA10 4 Ecl+Excl medium academy advanced
AA11 4 Ecl+Excl medium academy advanced
AA12 4 Ecl+Excl medium academy advanced
AA13 4 Ecl+Excl medium academy advanced
AA14 4 Ecl+Excl medium academy advanced
IA20 4 Ecl+Excl medium industry advanced

Table 8: Subjects assigned to treatments and blocks

45

Code
Correctness Per Task

Total
Correctness

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 (excl. A4.2)
IA01 0.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 6.00 6.00
IA02 1.00 0.80 0.50 1.00 1.00 0.00 0.00 1.00 1.00 6.30 6.30
IA03 0.00 0.00 1.00 0.00 1.00 0.00 0.00 1.00 0.00 3.00 3.00
IA04 0.00 1.00 0.00 1.00 1.00 0.00 0.00 1.00 1.00 5.00 5.00
AB01 0.00 1.00 1.00 0.80 1.00 0.00 0.00 1.00 1.00 5.80 5.80
AB02 0.00 1.00 1.00 0.70 1.00 0.00 0.00 0.00 1.00 4.70 4.70
IA05 0.00 1.00 1.00 0.20 1.00 0.00 0.00 1.00 1.00 5.20 5.20
AA01 0.00 0.80 1.00 0.40 1.00 0.00 0.00 1.00 0.00 4.20 4.20
AA02 0.00 1.00 1.00 0.00 1.00 0.00 1.00 1.00 1.00 6.00 6.00
IA06 0.00 1.00 0.00 0.30 1.00 0.00 0.00 1.00 1.00 4.30 4.30
IA07 1.00 1.00 1.00 0.17 1.00 0.00 0.00 1.00 1.00 6.17 6.17
IA08 1.00 0.50 1.00 0.83 1.00 0.00 1.00 1.00 1.00 7.33 7.33
IA09 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 8.00 8.00
AB03 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 8.00 8.00
IA10 1.00 1.00 1.00 0.17 1.00 0.00 0.00 1.00 1.00 6.17 6.17
IA11 1.00 1.00 1.00 0.00 1.00 0.16 0.00 0.00 1.00 5.16 5.00
IA12 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 8.00 8.00
AB04 1.00 1.00 1.00 0.67 1.00 0.00 0.00 1.00 1.00 6.67 6.67
AA03 1.00 1.00 0.80 0.33 1.00 0.16 0.00 1.00 1.00 6.29 6.13
AB05 1.00 1.00 1.00 1.00 1.00 0.00 0.00 1.00 1.00 7.00 7.00
AA04 1.00 1.00 1.00 0.50 1.00 0.00 0.00 1.00 1.00 6.50 6.50
IA13 1.00 1.00 1.00 0.83 1.00 1.00 0.00 0.00 1.00 6.83 5.83
IA14 0.00 0.80 0.33 0.30 1.00 0.67 0.00 1.00 1.00 5.10 4.43
AB06 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 0.00 4.00 4.00
AB07 0.00 0.60 0.67 0.00 0.00 0.00 0.00 0.00 1.00 2.27 2.27
AA05 1.00 1.00 1.00 0.00 1.00 1.00 0.00 1.00 1.00 7.00 6.00
AA06 0.00 1.00 0.00 0.00 1.00 1.00 0.00 0.00 1.00 4.00 3.00
AA07 1.00 1.00 0.00 0.00 1.00 1.00 0.00 1.00 0.00 5.00 4.00
IA15 1.00 0.80 0.00 0.00 1.00 1.00 0.00 1.00 0.00 4.80 3.80
IA16 0.00 0.00 0.67 0.00 1.00 0.67 0.00 1.00 1.00 4.34 3.67
IA01 1.00 1.00 1.00 0.50 1.00 1.00 0.00 1.00 1.00 7.50 6.50
IA18 1.00 1.00 1.00 0.50 1.00 1.00 0.00 1.00 1.00 7.50 6.50
IA19 0.00 1.00 0.60 0.00 1.00 1.00 0.00 1.00 0.00 4.60 3.60
AB08 0.00 1.00 0.40 0.38 1.00 1.00 1.00 1.00 1.00 6.78 5.78
AB09 1.00 1.00 0.60 0.50 1.00 1.00 0.00 1.00 1.00 7.10 6.10
AA10 1.00 1.00 0.80 0.38 1.00 1.00 0.00 1.00 1.00 7.18 6.18
AA11 1.00 1.00 0.80 0.00 1.00 1.00 0.00 1.00 1.00 6.80 5.80
AA12 0.00 0.50 0.00 0.00 1.00 1.00 0.00 1.00 1.00 4.50 3.50
AA13 0.00 1.00 0.00 0.25 1.00 1.00 0.00 1.00 1.00 5.25 4.25
AA14 1.00 1.00 0.60 0.00 1.00 1.00 0.90 1.00 1.00 7.50 6.50
IA20 0.00 1.00 1.00 0.38 1.00 1.00 0.00 1.00 1.00 6.38 5.38

Table 9: Correctness of subjects’ solutions to the tasks

46

Code
Completion Time Per Task

Total
Compl. Time

A1 A2.1 A2.2 A3 A4.1 A4.2 B1.1 B1.2 B2.1 (excl. A4.2)
IA01 8.80 4.32 5.38 10.00 7.28 4.42 9.85 1.90 1.02 52.97 48.55
IA02 2.42 6.08 1.75 8.58 5.33 10.00 5.25 2.92 2.33 44.67 34.67
IA03 6.25 6.92 2.42 9.43 5.62 9.37 2.55 2.95 1.83 47.33 37.97
IA04 9.08 6.00 4.00 6.08 7.92 10.00 10.00 1.33 1.08 55.50 45.50
AB01 1.33 4.83 3.92 4.75 6.25 10.00 6.92 2.25 2.58 42.83 32.83
AB02 10.00 5.58 1.67 4.25 8.08 10.00 9.42 2.58 1.67 53.25 43.25
IA05 6.33 3.67 1.33 4.75 3.50 10.00 3.75 1.58 2.17 37.08 27.08
AA01 9.67 4.42 2.08 8.75 3.17 10.00 5.17 1.33 1.42 46.00 36.00
AA02 8.33 7.17 2.50 10.00 5.00 9.75 8.33 3.25 1.33 55.67 45.92
IA06 10.00 5.92 4.42 10.00 4.17 10.00 7.33 1.33 1.50 54.67 44.67
IA07 7.25 5.67 6.25 6.33 4.58 10.00 2.42 1.42 2.33 46.25 36.25
IA08 2.67 2.25 2.95 4.55 3.75 10.00 3.33 4.00 1.17 34.67 24.67
IA09 10.00 3.67 3.00 10.00 5.25 7.83 3.67 2.50 1.42 47.33 39.50
AB03 6.33 2.00 9.33 5.00 5.00 8.50 7.17 1.50 1.25 46.08 37.58
IA10 3.25 3.67 7.33 6.83 3.83 7.75 3.08 1.75 8.08 45.58 37.83
IA11 3.83 2.40 5.92 7.17 4.00 6.92 7.42 2.83 1.75 42.23 35.32
IA12 3.75 2.67 4.17 5.58 5.17 10.00 5.75 2.00 1.25 40.33 30.33
AB04 2.67 3.92 2.58 3.67 5.58 9.75 2.00 0.50 3.83 34.50 24.75
AA03 2.50 3.17 3.75 10.00 3.17 6.33 4.08 1.25 2.58 36.83 30.50
AB05 5.50 4.67 4.33 5.58 5.83 10.00 9.58 1.83 1.67 49.00 39.00
AA04 7.08 3.67 5.17 6.33 3.50 7.83 6.00 1.25 2.83 43.67 35.83
IA13 3.00 4.67 2.33 4.75 3.25 10.00 4.83 1.67 2.08 36.58 26.58
IA14 6.67 9.00 2.42 10.00 4.50 5.83 5.33 1.83 4.17 49.75 43.92
AB06 5.67 5.75 2.05 6.95 10.00 10.00 10.00 3.85 2.00 56.27 46.27
AB07 8.75 9.33 4.67 10.00 6.83 10.00 10.00 3.67 2.67 65.92 55.92
AA05 7.00 6.08 3.75 8.42 5.25 4.42 10.00 3.17 6.67 54.75 50.33
AA06 6.83 2.00 3.67 6.58 3.25 6.75 5.33 1.58 1.58 37.58 30.83
AA07 3.67 3.67 2.50 2.17 2.92 5.17 2.75 3.33 1.83 28.00 22.83
IA15 9.75 8.83 5.08 10.00 4.33 10.00 5.08 1.75 7.83 62.67 52.67
IA16 10.00 7.42 4.33 9.50 4.00 6.50 8.50 2.00 4.50 56.75 50.25
IA01 2.55 3.90 4.38 9.20 4.03 4.30 9.92 2.10 2.93 43.32 39.02
IA18 5.28 5.13 4.58 9.82 4.72 3.98 9.77 4.13 3.12 50.53 46.55
IA19 3.33 3.83 4.50 3.50 3.83 5.08 6.58 1.92 5.58 38.17 33.08
AB08 6.08 1.08 10.00 8.83 3.50 5.92 9.42 3.58 1.92 50.33 44.42
AB09 5.83 4.83 4.33 10.00 3.42 6.00 2.00 1.92 1.50 39.83 33.83
AA10 3.17 6.08 5.08 7.33 8.00 3.33 4.83 1.17 2.33 41.33 38.00
AA11 6.17 4.08 6.08 3.83 3.50 5.17 3.67 1.67 2.92 37.08 31.92
AA12 6.75 4.75 3.92 4.75 5.25 3.33 4.42 1.42 3.00 37.58 34.25
AA13 7.00 7.00 10.00 10.00 5.92 5.67 6.33 1.42 5.42 58.75 53.08
AA14 6.33 1.50 3.33 10.00 2.83 3.25 9.17 2.42 4.50 43.33 40.08
IA20 6.83 5.58 4.75 8.00 2.33 3.42 2.42 1.42 1.33 36.08 32.67

Table 10: Completion time in minutes

47

C
o

d
e

D
if

fi
cu

lt
y

L
ev

el
P

er
Ta

sk
T

im
e

P
re

ss
u

re
A

1
A

2.
1

A
2.

2
A

3
A

4.
1

A
4.

2
B

1.
1

B
1.

2
B

2.
1

B
2.

2
IA

01
d

if
fi

cu
lt

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

si
m

p
le

si
m

p
le

im
p

o
ss

ib
le

d
if

fi
cu

lt
tr

iv
ia

l
tr

iv
ia

l
in

te
rm

ed
ia

te
fa

ir
am

o
u

n
t

IA
02

fa
ir

am
o

u
n

t
IA

03
d

if
fi

cu
lt

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

d
if

fi
cu

lt
in

te
rm

ed
ia

te
d

if
fi

cu
lt

si
m

p
le

si
m

p
le

si
m

p
le

im
p

o
ss

ib
le

fa
ir

am
o

u
n

t
IA

04
si

m
p

le
si

m
p

le
si

m
p

le
si

m
p

le
in

te
rm

ed
ia

te
im

p
o

ss
ib

le
d

if
fi

cu
lt

si
m

p
le

tr
iv

ia
l

d
if

fi
cu

lt
to

o
m

u
ch

A
B

01
tr

iv
ia

l
tr

iv
ia

l
tr

iv
ia

l
si

m
p

le
si

m
p

le
in

te
rm

ed
ia

te
d

if
fi

cu
lt

si
m

p
le

si
m

p
le

in
te

rm
ed

ia
te

ve
ry

li
tt

le
A

B
02

tr
iv

ia
l

tr
iv

ia
l

tr
iv

ia
l

tr
iv

ia
l

si
m

p
le

d
if

fi
cu

lt
im

p
o

ss
ib

le
si

m
p

le
tr

iv
ia

l
si

m
p

le
fa

ir
am

o
u

n
t

IA
05

si
m

p
le

si
m

p
le

si
m

p
le

si
m

p
le

in
te

rm
ed

ia
te

im
p

o
ss

ib
le

d
if

fi
cu

lt
d

if
fi

cu
lt

tr
iv

ia
l

si
m

p
le

n
o

t
so

m
u

ch
A

A
01

in
te

rm
ed

ia
te

tr
iv

ia
l

si
m

p
le

in
te

rm
ed

ia
te

tr
iv

ia
l

im
p

o
ss

ib
le

im
p

o
ss

ib
le

tr
iv

ia
l

si
m

p
le

tr
iv

ia
l

ve
ry

li
tt

le
A

A
02

tr
iv

ia
l

tr
iv

ia
l

tr
iv

ia
l

si
m

p
le

si
m

p
le

im
p

o
ss

ib
le

d
if

fi
cu

lt
si

m
p

le
tr

iv
ia

l
in

te
rm

ed
ia

te
n

o
t

so
m

u
ch

IA
06

in
te

rm
ed

ia
te

si
m

p
le

si
m

p
le

si
m

p
le

si
m

p
le

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

si
m

p
le

si
m

p
le

d
if

fi
cu

lt
fa

ir
am

o
u

n
t

IA
07

d
if

fi
cu

lt
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
si

m
p

le
si

m
p

le
d

if
fi

cu
lt

si
m

p
le

si
m

p
le

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

n
o

t
so

m
u

ch
IA

08
tr

iv
ia

l
tr

iv
ia

l
si

m
p

le
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
im

p
o

ss
ib

le
d

if
fi

cu
lt

in
te

rm
ed

ia
te

si
m

p
le

in
te

rm
ed

ia
te

ve
ry

li
tt

le
IA

09
d

if
fi

cu
lt

si
m

p
le

si
m

p
le

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

d
if

fi
cu

lt
in

te
rm

ed
ia

te
si

m
p

le
tr

iv
ia

l
d

if
fi

cu
lt

n
o

t
so

m
u

ch
A

B
03

si
m

p
le

si
m

p
le

si
m

p
le

si
m

p
le

si
m

p
le

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

si
m

p
le

si
m

p
le

in
te

rm
ed

ia
te

ve
ry

li
tt

le
IA

10
si

m
p

le
si

m
p

le
si

m
p

le
si

m
p

le
d

if
fi

cu
lt

im
p

o
ss

ib
le

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

d
if

fi
cu

lt
n

o
t

so
m

u
ch

IA
11

si
m

p
le

si
m

p
le

si
m

p
le

d
if

fi
cu

lt
in

te
rm

ed
ia

te
d

if
fi

cu
lt

d
if

fi
cu

lt
si

m
p

le
si

m
p

le
d

if
fi

cu
lt

fa
ir

am
o

u
n

t
IA

12
si

m
p

le
si

m
p

le
si

m
p

le
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
d

if
fi

cu
lt

tr
iv

ia
l

si
m

p
le

si
m

p
le

d
if

fi
cu

lt
n

o
n

e
A

B
04

tr
iv

ia
l

tr
iv

ia
l

tr
iv

ia
l

si
m

p
le

in
te

rm
ed

ia
te

d
if

fi
cu

lt
tr

iv
ia

l
tr

iv
ia

l
si

m
p

le
d

if
fi

cu
lt

ve
ry

li
tt

le
A

A
03

tr
iv

ia
l

tr
iv

ia
l

tr
iv

ia
l

d
if

fi
cu

lt
tr

iv
ia

l
im

p
o

ss
ib

le
d

if
fi

cu
lt

tr
iv

ia
l

tr
iv

ia
l

si
m

p
le

n
o

t
so

m
u

ch
A

B
05

si
m

p
le

si
m

p
le

si
m

p
le

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

im
p

o
ss

ib
le

d
if

fi
cu

lt
in

te
rm

ed
ia

te
tr

iv
ia

l
si

m
p

le
n

o
t

so
m

u
ch

A
A

04
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
d

if
fi

cu
lt

d
if

fi
cu

lt
in

te
rm

ed
ia

te
im

p
o

ss
ib

le
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
d

if
fi

cu
lt

im
p

o
ss

ib
le

fa
ir

am
o

u
n

t
IA

13
tr

iv
ia

l
si

m
p

le
si

m
p

le
si

m
p

le
in

te
rm

ed
ia

te
d

if
fi

cu
lt

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

d
if

fi
cu

lt
n

o
n

e
IA

14
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
fa

ir
am

o
u

n
t

A
B

06
si

m
p

le
si

m
p

le
si

m
p

le
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
d

if
fi

cu
lt

im
p

o
ss

ib
le

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

fa
ir

am
o

u
n

t
A

B
07

in
te

rm
ed

ia
te

si
m

p
le

si
m

p
le

im
p

o
ss

ib
le

tr
iv

ia
l

d
if

fi
cu

lt
si

m
p

le
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
d

if
fi

cu
lt

to
o

m
u

ch
A

A
05

si
m

p
le

si
m

p
le

si
m

p
le

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

d
if

fi
cu

lt
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
fa

ir
am

o
u

n
t

A
A

06
in

te
rm

ed
ia

te
si

m
p

le
si

m
p

le
d

if
fi

cu
lt

tr
iv

ia
l

in
te

rm
ed

ia
te

si
m

p
le

si
m

p
le

in
te

rm
ed

ia
te

d
if

fi
cu

lt
ve

ry
li

tt
le

A
A

07
tr

iv
ia

l
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
tr

iv
ia

l
tr

iv
ia

l
si

m
p

le
in

te
rm

ed
ia

te
tr

iv
ia

l
si

m
p

le
in

te
rm

ed
ia

te
n

o
n

e
IA

15
d

if
fi

cu
lt

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

d
if

fi
cu

lt
si

m
p

le
si

m
p

le
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
im

p
o

ss
ib

le
im

p
o

ss
ib

le
fa

ir
am

o
u

n
t

IA
16

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

im
p

o
ss

ib
le

si
m

p
le

si
m

p
le

in
te

rm
ed

ia
te

si
m

p
le

in
te

rm
ed

ia
te

d
if

fi
cu

lt
fa

ir
am

o
u

n
t

IA
01

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

d
if

fi
cu

lt
tr

iv
ia

l
si

m
p

le
im

p
o

ss
ib

le
tr

iv
ia

l
si

m
p

le
d

if
fi

cu
lt

n
o

t
so

m
u

ch
IA

18
in

te
rm

ed
ia

te
si

m
p

le
in

te
rm

ed
ia

te
d

if
fi

cu
lt

si
m

p
le

si
m

p
le

d
if

fi
cu

lt
in

te
rm

ed
ia

te
si

m
p

le
d

if
fi

cu
lt

fa
ir

am
o

u
n

t
IA

19
si

m
p

le
si

m
p

le
in

te
rm

ed
ia

te
si

m
p

le
tr

iv
ia

l
si

m
p

le
si

m
p

le
si

m
p

le
in

te
rm

ed
ia

te
im

p
o

ss
ib

le
fa

ir
am

o
u

n
t

A
B

08
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
si

m
p

le
in

te
rm

ed
ia

te
tr

iv
ia

l
tr

iv
ia

l
d

if
fi

cu
lt

tr
iv

ia
l

si
m

p
le

in
te

rm
ed

ia
te

n
o

t
so

m
u

ch
A

B
09

tr
iv

ia
l

si
m

p
le

si
m

p
le

im
p

o
ss

ib
le

si
m

p
le

si
m

p
le

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

si
m

p
le

d
if

fi
cu

lt
fa

ir
am

o
u

n
t

A
A

10
si

m
p

le
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
tr

iv
ia

l
tr

iv
ia

l
si

m
p

le
si

m
p

le
in

te
rm

ed
ia

te
im

p
o

ss
ib

le
ve

ry
li

tt
le

A
A

11
d

if
fi

cu
lt

si
m

p
le

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

si
m

p
le

si
m

p
le

si
m

p
le

in
te

rm
ed

ia
te

in
te

rm
ed

ia
te

im
p

o
ss

ib
le

n
o

t
so

m
u

ch
A

A
12

si
m

p
le

si
m

p
le

si
m

p
le

si
m

p
le

si
m

p
le

in
te

rm
ed

ia
te

si
m

p
le

si
m

p
le

in
te

rm
ed

ia
te

d
if

fi
cu

lt
n

o
t

so
m

u
ch

A
A

13
si

m
p

le
in

te
rm

ed
ia

te
in

te
rm

ed
ia

te
d

if
fi

cu
lt

si
m

p
le

si
m

p
le

si
m

p
le

si
m

p
le

si
m

p
le

in
te

rm
ed

ia
te

n
o

t
so

m
u

ch
A

A
14

tr
iv

ia
l

tr
iv

ia
l

tr
iv

ia
l

im
p

o
ss

ib
le

tr
iv

ia
l

tr
iv

ia
l

d
if

fi
cu

lt
tr

iv
ia

l
d

if
fi

cu
lt

im
p

o
ss

ib
le

n
o

t
so

m
u

ch
IA

20
in

te
rm

ed
ia

te
si

m
p

le
si

m
p

le
in

te
rm

ed
ia

te
tr

iv
ia

l
tr

iv
ia

l
tr

iv
ia

l
tr

iv
ia

l
tr

iv
ia

l
d

if
fi

cu
lt

n
o

t
so

m
u

ch

Ta
bl

e
11

:
T

h
e

su
b

je
ct

s’
p

er
ce

iv
ed

ti
m

e
p

re
ss

u
re

an
d

ta
sk

d
if

fi
cu

lt
y.

48

E Task Solution Oracles

The four oracles we used to grade the task solutions of our subjects are presented in the following.

E.1 T1: Azureus, analyzed with CodeCity

A1

Either
There are no unit tests in the system [1pt],
or
Centralized in a single package hierarchy whose root is in org.gudy.azureus2.ui.console.multiuser [1pt].
Since there is only one test class (i.e., TestUserManager), if they don’t give the full correct answer, the answer
is completely wrong.

A2.1

Dispersed [0pts otherwise]
in the following (max. 5) packages [0.2pts for each] :

• com.aelitis.azureus.core

• com.aelitis.azureus.core.content

• com.aelitis.azureus.core.download

• com.aelitis.azureus.core.impl

• com.aelitis.azureus.core.lws

• com.aelitis.azureus.core.peermanager.peerdb

• com.aelitis.azureus.core.stats

• com.aelitis.azureus.core.torrent

• com.aelitis.azureus.plugins.net.buddy

• com.aelitis.azureus.plugins.net.buddy.swt

• com.aelitis.azureus.plugins.net.buddy.tracker

• com.aelitis.azureus.plugins.removerules

• com.aelitis.azureus.plugins.sharing.hoster

• com.aelitis.azureus.plugins.startstoprules.defaultplugin

• com.aelitis.azureus.plugins.tracker.dht

• com.aelitis.azureus.plugins.tracker.local

• com.aelitis.azureus.plugins.tracker.peerauth

• com.aelitis.azureus.ui.swt.content.columns

• com.aelitis.azureus.ui.swt.shells.main

• com.aelitis.azureus.util

• org.gudy.azureus2.core3.download

• org.gudy.azureus2.core3.download.impl

• org.gudy.azureus2.core3.global

49

• org.gudy.azureus2.core3.global.impl

• org.gudy.azureus2.core3.ipfilter.impl.tests

• org.gudy.azureus2.core3.logging

• org.gudy.azureus2.core3.peer

• org.gudy.azureus2.core3.peer.impl.control

• org.gudy.azureus2.core3.tracker.client

• org.gudy.azureus2.core3.tracker.client.impl

• org.gudy.azureus2.core3.tracker.client.impl.bt

• org.gudy.azureus2.core3.tracker.client.impl.dht

• org.gudy.azureus2.core3.tracker.host

• org.gudy.azureus2.core3.tracker.host.impl

• org.gudy.azureus2.core3.tracker.protocol.udp

• org.gudy.azureus2.core3.tracker.server

• org.gudy.azureus2.core3.tracker.server.impl

• org.gudy.azureus2.core3.tracker.server.impl.dht

• org.gudy.azureus2.core3.tracker.server.impl.tcp

• org.gudy.azureus2.core3.tracker.server.impl.udp

• org.gudy.azureus2.core3.tracker.util

• org.gudy.azureus2.core3.util

• org.gudy.azureus2.plugins

• org.gudy.azureus2.plugins.download

• org.gudy.azureus2.plugins.torrent

• org.gudy.azureus2.plugins.tracker

• org.gudy.azureus2.plugins.tracker.web

• org.gudy.azureus2.plugins.ui.config

• org.gudy.azureus2.plugins.ui.tables

• org.gudy.azureus2.pluginsimpl.local

• org.gudy.azureus2.pluginsimpl.local.download

• org.gudy.azureus2.pluginsimpl.local.torrent

• org.gudy.azureus2.pluginsimpl.local.tracker

• org.gudy.azureus2.pluginsimpl.remote

• org.gudy.azureus2.pluginsimpl.remote.download

• org.gudy.azureus2.pluginsimpl.remote.tracker

• org.gudy.azureus2.ui.console.commands

50

• org.gudy.azureus2.ui.swt

• org.gudy.azureus2.ui.swt.mainwindow

• org.gudy.azureus2.ui.swt.maketorrent

• org.gudy.azureus2.ui.swt.views

• org.gudy.azureus2.ui.swt.views.configsections

• org.gudy.azureus2.ui.swt.views.stats

• org.gudy.azureus2.ui.swt.views.tableitems.mytorrents

• org.gudy.azureus2.ui.swt.views.tableitems.mytracker

• org.gudy.azureus2.ui.webplugin

A2.2

Either
Localized in:

• com.aelitis.azureus.ui.skin [0.5pts]

• com.aelitis.azureus.ui.swt [0.5pts]

or
Localized in com.aelitis.azureus.ui [1pt].

A3

Multiple locations.
There are 211/212 classes [0.5pts]
defined in the following (max. 5) packages [0.1 for each] :
either aggregated

• com.aelitis.azureus.core.metasearch.impl

• com.aelitis.azureus.plugins.net.buddy.swt

• com.aelitis.azureus.ui.swt

• org.gudy.azureus2.plugins.ui.tables

• org.gudy.azureus2.ui

– org.gudy.azureus2.ui.common.util

– org.gudy.azureus2.ui.swt

– org.gudy.azureus2.ui.systray

or detailed

• com.aelitis.azureus.core.metasearch.impl

• com.aelitis.azureus.plugins.net.buddy.swt

• com.aelitis.azureus.ui.swt

• com.aelitis.azureus.ui.swt.browser

• com.aelitis.azureus.ui.swt.browser.listener

• com.aelitis.azureus.ui.swt.browser.msg

51

• com.aelitis.azureus.ui.swt.columns.torrent

• com.aelitis.azureus.ui.swt.columns.vuzeactivity

• com.aelitis.azureus.ui.swt.content

• com.aelitis.azureus.ui.swt.content.columns

• com.aelitis.azureus.ui.swt.devices

• com.aelitis.azureus.ui.swt.devices.add

• com.aelitis.azureus.ui.swt.devices.columns

• com.aelitis.azureus.ui.swt.imageloader

• com.aelitis.azureus.ui.swt.shells

• com.aelitis.azureus.ui.swt.shells.main

• com.aelitis.azureus.ui.swt.shells.uiswitcher

• com.aelitis.azureus.ui.swt.skin

• com.aelitis.azureus.ui.swt.subscriptions

• com.aelitis.azureus.ui.swt.uiupdater

• com.aelitis.azureus.ui.swt.utils

• com.aelitis.azureus.ui.swt.views

• com.aelitis.azureus.ui.swt.views.skin

• com.aelitis.azureus.ui.swt.views.skin.sidebar

• org.gudy.azureus2.plugins.ui.tables

• org.gudy.azureus2.ui.common.util

• org.gudy.azureus2.ui.swt

• org.gudy.azureus2.ui.swt.associations

• org.gudy.azureus2.ui.swt.auth

• org.gudy.azureus2.ui.swt.components

• org.gudy.azureus2.ui.swt.components.graphics

• org.gudy.azureus2.ui.swt.components.shell

• org.gudy.azureus2.ui.swt.config

• org.gudy.azureus2.ui.swt.config.generic

• org.gudy.azureus2.ui.swt.donations

• org.gudy.azureus2.ui.swt.help

• org.gudy.azureus2.ui.swt.ipchecker

• org.gudy.azureus2.ui.swt.mainwindow

• org.gudy.azureus2.ui.swt.maketorrent

• org.gudy.azureus2.ui.swt.nat

52

• org.gudy.azureus2.ui.swt.networks

• org.gudy.azureus2.ui.swt.osx

• org.gudy.azureus2.ui.swt.pluginsimpl

• org.gudy.azureus2.ui.swt.progress

• org.gudy.azureus2.ui.swt.sharing.progress

• org.gudy.azureus2.ui.swt.shells

• org.gudy.azureus2.ui.swt.speedtest

• org.gudy.azureus2.ui.swt.update

• org.gudy.azureus2.ui.swt.views

• org.gudy.azureus2.ui.swt.views.clientstats

• org.gudy.azureus2.ui.swt.views.columnsetup

• org.gudy.azureus2.ui.swt.views.configsections

• org.gudy.azureus2.ui.swt.views.file

• org.gudy.azureus2.ui.swt.views.peer

• org.gudy.azureus2.ui.swt.views.piece

• org.gudy.azureus2.ui.swt.views.stats

• org.gudy.azureus2.ui.swt.views.table.impl

• org.gudy.azureus2.ui.swt.views.tableitems.mytorrents

• org.gudy.azureus2.ui.swt.views.tableitems.peers

• org.gudy.azureus2.ui.swt.views.utils

• org.gudy.azureus2.ui.swt.welcome

• org.gudy.azureus2.ui.swt.wizard

• org.gudy.azureus2.ui.systray

A4.1

The 3 classes with the highest number of methods are [1
3

pts each correctly placed and 1
6

pts each misplaced] :

1. class PEPeerTransportProtocol
defined in package org.gudy.azureus2.core3.peer.impl.transport
contains 161 methods;

2. class DownloadManagerImpl
defined in package org.gudy.azureus2.core3.download.impl
contains 156 methods;

3. class PEPeerControlImpl
defined in package org.gudy.azureus2.core3.peer.impl.control
contains 154 methods.

53

A4.2

The 3 classes with the highest average number of lines of code per method are [1
3

pts each correctly placed and
1
6

pts each misplaced] :

1. class BouncyCastleProvider
defined in package org.bouncycastle.jce.provider
has an average of 547 lines of code per method;

2. class 9 (anonymous)
defined in package com.aelitis.azureus.core.dht.nat.impl
has an average of 222 lines of code per method;

3. class MetaSearchListener
defined in package com.aelitis.azureus.ui.swt.browser.listener
has an average of 219 lines of code per method.

Just in case the participant thought class 9 must be an error, the 4th classified is
class MultiPartDecoder
defined in package com.aelitis.azureus.core.util
has an average of 211 lines of code per method.

B1.1

The package with the highest percentage of god classes in the system is
com.aelitis.azureus.core.metasearch.impl.web.rss [0.8pts]
which contains 1 [0.1pts] god classes
out of a total of 1 [0.1pts] classes.

B1.2

The god class containing the largest number of methods in the system is
class PEPeerTransportProtocol [0.8pts]
defined in package org.gudy.azureus2.core3.peer.impl.transport [0.1pts]
which contains 161 [0.1pts] methods.

B2.1

The dominant class-level design problem is
DataClass [0.5pts]
which affects a number of 256 [0.5pts] classes.

54

E.2 T2: Findbugs, analyzed with CodeCity

A1

Dispersed. [1pt]

A2.1

Localized [0.5pts]
in package edu.umd.cs.findbugs.detect [0.5pts].

A2.2

Dispersed [0pts otherwise]
in the following (max. 5) packages [0.2pts for each] :

• edu.umd.cs.findbugs

• edu.umd.cs.findbugs.anttask

• edu.umd.cs.findbugs.ba

• edu.umd.cs.findbugs.ba.deref

• edu.umd.cs.findbugs.ba.jsr305

• edu.umd.cs.findbugs.ba.npe

• edu.umd.cs.findbugs.ba.vna

• edu.umd.cs.findbugs.bcel

• edu.umd.cs.findbugs.classfile

• edu.umd.cs.findbugs.classfile.analysis

• edu.umd.cs.findbugs.classfile.engine

• edu.umd.cs.findbugs.classfile.impl

• edu.umd.cs.findbugs.cloud

• edu.umd.cs.findbugs.cloud.db

• edu.umd.cs.findbugs.detect

• edu.umd.cs.findbugs.gui

• edu.umd.cs.findbugs.gui2

• edu.umd.cs.findbugs.jaif

• edu.umd.cs.findbugs.model

• edu.umd.cs.findbugs.visitclass

• edu.umd.cs.findbugs.workflow

A3

Multiple locations.
There are 40/41 [0.5pts] classes
defined in the following 3 packages [1/6pts for each] :

• edu.umd.cs.findbugs

• edu.umd.cs.findbugs.bcel

• edu.umd.cs.findbugs.detect

55

A4.1

The 3 classes with the highest number of methods are [1
3

pts each correctly placed and 1
6

pts each misplaced] :

1. class AbstractFrameModelingVisitor
defined in package edu.umd.cs.findbugs.ba
contains 195 methods;

2. class MainFrame
defined in package edu.umd.cs.findbugs.gui2
contains 119 methods;

3. class BugInstance
defined in package edu.umd.cs.findbugs
contains 118 methods
or
class TypeFrameModelingVisitor
defined in package edu.umd.cs.findbugs.ba.type
contains 118 methods.

A4.2

The 3 classes with the highest average number of lines of code per method are [1
3

pts each correctly placed and
1
6

pts each misplaced] :

1. class DefaultNullnessAnnotations
defined in package edu.umd.cs.findbugs.ba
has an average of 124 lines of code per method;

2. class DBCloud.PopulateBugs
defined in package edu.umd.cs.findbugs.cloud.db
has an average of 114.5 lines of code per method;

3. class BytecodeScanner
defined in package edu.umd.cs.findbugs.ba
has an average of 80.75 lines of code per method.

B1.1

The package with the highest percentage of god classes in the system is
edu.umd.cs.findbugs.ba.deref [0.8pts]
which contains 1 [0.1pts] god classes
out of a total of 3 [0.1pts] classes.

B1.2

The god class containing the largest number of methods in the system is
class MainFrame [0.8pts]
defined in package edu.umd.cs.findbugs.gui2 [0.1pts]
which contains 119 [0.1pts] methods.

B2.1

The dominant class-level design problem is
DataClass [0.5pts]
which affects a number of 67 [0.5pts] classes.

56

E.3 T3: Azureus, analyzed with Eclipse + Spreadsheet with metrics

A1

Either
There are no unit tests in the system [1pt],
or
Centralized in a single package hierarchy whose root is in org.gudy.azureus2.ui.console.multiuser [1pt].
Since there is only one test class (i.e., TestUserManager), if they don’t give the full correct answer, the answer
is completely wrong.

A2.1

Dispersed
in the following (max. 5) packages [0.2pts each] :

• com.aelitis.azureus.core

• com.aelitis.azureus.core.content

• com.aelitis.azureus.core.download

• com.aelitis.azureus.core.impl

• com.aelitis.azureus.core.lws

• com.aelitis.azureus.core.peermanager.peerdb

• com.aelitis.azureus.core.stats

• com.aelitis.azureus.core.torrent

• com.aelitis.azureus.plugins.net.buddy

• com.aelitis.azureus.plugins.net.buddy.swt

• com.aelitis.azureus.plugins.net.buddy.tracker

• com.aelitis.azureus.plugins.removerules

• com.aelitis.azureus.plugins.sharing.hoster

• com.aelitis.azureus.plugins.startstoprules.defaultplugin

• com.aelitis.azureus.plugins.tracker.dht

• com.aelitis.azureus.plugins.tracker.peerauth

• com.aelitis.azureus.ui

• com.aelitis.azureus.ui.swt.content.columns

• com.aelitis.azureus.ui.swt.shells.main

• com.aelitis.azureus.util

• org.gudy.azureus2.core3.download

• org.gudy.azureus2.core3.download.impl

• org.gudy.azureus2.core3.global

• org.gudy.azureus2.core3.global.impl

• org.gudy.azureus2.core3.logging

• org.gudy.azureus2.core3.peer

57

• org.gudy.azureus2.core3.peer.impl.control

• org.gudy.azureus2.core3.tracker.client

• org.gudy.azureus2.core3.tracker.client.impl

• org.gudy.azureus2.core3.tracker.client.impl.bt

• org.gudy.azureus2.core3.tracker.client.impl.dht

• org.gudy.azureus2.core3.tracker.host

• org.gudy.azureus2.core3.tracker.host.impl

• org.gudy.azureus2.core3.tracker.protocol.udp

• org.gudy.azureus2.core3.tracker.server

• org.gudy.azureus2.core3.tracker.server.impl

• org.gudy.azureus2.core3.tracker.util

• org.gudy.azureus2.core3.util

• org.gudy.azureus2.plugins

• org.gudy.azureus2.plugins.download

• org.gudy.azureus2.plugins.torrent

• org.gudy.azureus2.plugins.tracker

• org.gudy.azureus2.plugins.tracker.web

• org.gudy.azureus2.plugins.ui.config

• org.gudy.azureus2.plugins.ui.tables

• org.gudy.azureus2.pluginsimpl.local

• org.gudy.azureus2.pluginsimpl.local.download

• org.gudy.azureus2.pluginsimpl.local.tracker

• org.gudy.azureus2.pluginsimpl.remote

• org.gudy.azureus2.pluginsimpl.remote.download

• org.gudy.azureus2.pluginsimpl.remote.tracker

• org.gudy.azureus2.ui.console.commands

• org.gudy.azureus2.ui.swt

• org.gudy.azureus2.ui.swt.mainwindow

• org.gudy.azureus2.ui.swt.maketorrent

• org.gudy.azureus2.ui.swt.views

• org.gudy.azureus2.ui.swt.views.configsections

• org.gudy.azureus2.ui.swt.views.tableitems.mytorrents)

• org.gudy.azureus2.ui.webplugin

58

A2.2

Localized in
com.aelitis.azureus.ui [1pt].

To ease the grading for the case in which the answer is incomplete, here is the complete hierarchy:

• com.aelitis.azureus.ui.common.viewtitleinfo

• com.aelitis.azureus.ui.skin

• com.aelitis.azureus.ui.swt

– com.aelitis.azureus.ui.swt.content

– com.aelitis.azureus.ui.swt.devices

∗ com.aelitis.azureus.ui.swt.devices.add

– com.aelitis.azureus.ui.swt.imageloader

– com.aelitis.azureus.ui.swt.shells.main

– com.aelitis.azureus.ui.swt.skin

– com.aelitis.azureus.ui.swt.subscription

– com.aelitis.azureus.ui.swt.toolbar

– com.aelitis.azureus.ui.swt.views

∗ com.aelitis.azureus.ui.swt.views.skin

· com.aelitis.azureus.ui.swt.views.skin.sidebar

A3

Multiple locations [0pts otherwise]
There are 220/221 classes [0.5pts]
defined in the following (max. 5) packages [0.1 each] :

• com.aelitis.azureus.core.metasearch.impl

• com.aelitis.azureus.plugins.net.buddy.swt

• com.aelitis.azureus.plugins.startstoprules.defaultplugin.ui.swt

• com.aelitis.azureus.ui.swt

• com.aelitis.azureus.ui.swt.browser

• com.aelitis.azureus.ui.swt.browser.listener

• com.aelitis.azureus.ui.swt.browser.msg

• com.aelitis.azureus.ui.swt.columns.torrent

• com.aelitis.azureus.ui.swt.columns.vuzeactivity

• com.aelitis.azureus.ui.swt.content

• com.aelitis.azureus.ui.swt.content.columns

• com.aelitis.azureus.ui.swt.devices

• com.aelitis.azureus.ui.swt.devices.add

• com.aelitis.azureus.ui.swt.devices.columns

• com.aelitis.azureus.ui.swt.imageloader

59

• com.aelitis.azureus.ui.swt.shells

• com.aelitis.azureus.ui.swt.shells.main

• com.aelitis.azureus.ui.swt.shells.uiswitcher

• com.aelitis.azureus.ui.swt.skin

• com.aelitis.azureus.ui.swt.subscriptions

• com.aelitis.azureus.ui.swt.uiupdater

• com.aelitis.azureus.ui.swt.utils

• com.aelitis.azureus.ui.swt.views

• com.aelitis.azureus.ui.swt.views.skin

• com.aelitis.azureus.ui.swt.views.skin.sidebar

• org.gudy.azureus2.plugins.ui.tables

• org.gudy.azureus2.ui.common.util

• org.gudy.azureus2.ui.swt

• org.gudy.azureus2.ui.swt.associations

• org.gudy.azureus2.ui.swt.auth

• org.gudy.azureus2.ui.swt.components

• org.gudy.azureus2.ui.swt.components.graphics

• org.gudy.azureus2.ui.swt.components.shell

• org.gudy.azureus2.ui.swt.config

• org.gudy.azureus2.ui.swt.config.generic

• org.gudy.azureus2.ui.swt.config.wizard

• org.gudy.azureus2.ui.swt.donations

• org.gudy.azureus2.ui.swt.help

• org.gudy.azureus2.ui.swt.ipchecker

• org.gudy.azureus2.ui.swt.mainwindow

• org.gudy.azureus2.ui.swt.maketorrent

• org.gudy.azureus2.ui.swt.minibar

• org.gudy.azureus2.ui.swt.nat

• org.gudy.azureus2.ui.swt.networks

• org.gudy.azureus2.ui.swt.osx

• org.gudy.azureus2.ui.swt.pluginsimpl

• org.gudy.azureus2.ui.swt.progress

• org.gudy.azureus2.ui.swt.sharing.progress

• org.gudy.azureus2.ui.swt.shells

60

• org.gudy.azureus2.ui.swt.speedtest

• org.gudy.azureus2.ui.swt.update

• org.gudy.azureus2.ui.swt.views

• org.gudy.azureus2.ui.swt.views.clientstats

• org.gudy.azureus2.ui.swt.views.columnsetup

• org.gudy.azureus2.ui.swt.views.configsections

• org.gudy.azureus2.ui.swt.views.file

• org.gudy.azureus2.ui.swt.views.peer

• org.gudy.azureus2.ui.swt.views.piece

• org.gudy.azureus2.ui.swt.views.stats

• org.gudy.azureus2.ui.swt.views.table.impl

• org.gudy.azureus2.ui.swt.views.tableitems.mytorrents

• org.gudy.azureus2.ui.swt.views.tableitems.peers

• org.gudy.azureus2.ui.swt.views.utils

• org.gudy.azureus2.ui.swt.welcome

• org.gudy.azureus2.ui.swt.wizard

• org.gudy.azureus2.ui.systray

A4.1

The 3 classes with the highest number of methods are [1
3

pts each correctly placed and 1
6

pts each misplaced] :

1. class PEPeerTransportProtocol
defined in package org.gudy.azureus2.core3.peer.impl.transport
contains 161 methods;

2. class DownloadManagerImpl
defined in package org.gudy.azureus2.core3.download.impl
contains 156 methods;

3. class PEPeerControlImpl
defined in package org.gudy.azureus2.core3.peer.impl.control
contains 154 methods.

A4.2

The 3 classes with the highest average number of lines of code per method are [1
3

pts each correctly placed and
1
6

pts each misplaced] :

1. class BouncyCastleProvider
defined in package org.bouncycastle.jce.provider
has an average of 547 lines of code per method;

2. class 9 (anonymous)
defined in package com.aelitis.azureus.core.dht.nat.impl
has an average of 222 lines of code per method;

61

3. class MetaSearchListener
defined in package com.aelitis.azureus.ui.swt.browser.listener
has an average of 219 lines of code per method.

Just in case the participant thought class 9 must be an error, the 4th classified is
class MultiPartDecoder
defined in package com.aelitis.azureus.core.util
has an average of 211 lines of code per method.

B1.1

The package with the highest percentage of god classes in the system is
com.aelitis.azureus.core.metasearch.impl.web.rss [0.8pts]
which contains 1 [0.1pts] god classes
out of a total of 1 [0.1pts] classes.

B1.2

The god class containing the largest number of methods in the system is
class PEPeerTransportProtocol [0.8pts]
defined in package org.gudy.azureus2.core3.peer.impl.transport [0.1pts]
which contains 161 [0.1pts] methods.

B2.1

The dominant class-level design problem is
DataClass [0.5pts]
which affects a number of 255 [0.5pts] classes.

62

E.4 T4: Findbugs, analyzed with Eclipse + Spreadsheet with metrics

A1

Dispersed. [1pt]

A2.1

Localized [0.5pts]
in package edu.umd.cs.findbugs.detect [0.5pts].

A2.2

Dispersed
in the following 5 packages [0.2pts each] :

• edu.umd.cs.findbugs.ba

• edu.umd.cs.findbugs.ba.jsr305

• edu.umd.cs.findbugs.classfile.analysis

• edu.umd.cs.findbugs.detect

• edu.umd.cs.findbugs.gui

A3

Multiple locations. [0pts otherwise]
There are 41/42 [0.5pts] classes
defined in the following 4 packages [0.125pts each] :

• edu.umd.cs.findbugs

• edu.umd.cs.findbugs.ba

• edu.umd.cs.findbugs.bcel

• edu.umd.cs.findbugs.detect

A4.1

The 3 classes with the highest number of methods are [1
3

pts each correctly placed and 1
6

pts each misplaced] :

1. class MainFrame
defined in package edu.umd.cs.findbugs.gui2
contains 119 methods;

2. class BugInstance
defined in package edu.umd.cs.findbugs
contains 118 methods;

3. class TypeFrameModelingVisitor
defined in package edu.umd.cs.findbugs.ba.type
contains 118 methods;

63

A4.2

The 3 classes with the highest average number of lines of code per method are [1
3

pts each correctly placed and
1
6

pts each misplaced] :

1. class DefaultNullnessAnnotations
defined in package edu.umd.cs.findbugs.ba
has an average of 124 lines of code per method;

2. class DBCloud.PopulateBugs
defined in package edu.umd.cs.findbugs.cloud.db
has an average of 114.5 lines of code per method;

3. class BytecodeScanner
defined in package edu.umd.cs.findbugs.ba
has an average of 80.75 lines of code per method.

B1.1

The package with the highest percentage of god classes in the system is
edu.umd.cs.findbugs.ba.deref [0.8pts]
which contains 1 [0.1pts] god classes
out of a total of 3 [0.1pts] classes.

B1.2

The god class containing the largest number of methods in the system is
class MainFrame [0.8pts]
defined in package edu.umd.cs.findbugs.gui2 [0.1pts]
which contains 119 [0.1pts] methods.

B2.1

The dominant class-level design problem is
DataClass [0.5pts]
which affects a number of 65 [0.5pts] classes.

64

Introduction

The aim of this experiment is to compare tool efficiency in supporting software
practitioners analyzing medium to large-scale software systems.

You will use CodeCity to analyze Azureus, a BitTorrent client written in Java.

You are given maximum 100 minutes for solving 10 tasks (10 minutes per task).

You are asked:
• not to consult any other participant during the experiment;
• to perform the tasks in the specified order;
• to write down the current time each time before starting to read a task and once

after completing all the tasks;
• to announce the experimenter that you are moving on to another task, in order

to reset your 10-minutes-per-task allocated timer;
• not to return to earlier tasks because it affects the timing;
• for each task, to fill in the required information. In the case of multiple choices

check the most appropriate answer and provide additional information, if
requested.

The experiment is concluded with a short debriefing questionnaire.

Thank you for participating in this experiment!

	 	 	 	 Richard Wettel, Michele Lanza, Romain Robbes

CodeCity Experiment

Participant:

T1

Tasks

Current Time - Notify the experimenter

_ _ : _ _ : _ _
 hours minutes seconds

(c) Start time

Structural Understanding

Locate all the unit test classes of the system (typically called *Test in Java) and
identify the convention (or lack of convention) used by the system’s developers to
organize the unit tests.

Centralized. There is a single package hierarchy, whose root package is (write down the
full name of the package):

_ .

Dispersed. The test classes are located in the same package as the tested classes.

Hybrid. Some test classes are defined in the central test package hierarchy, with the root
in package (provide the full name of the package):

_ _ ,

while some test classes are defined elsewhere. An example of such a class is:

_

defined in package (write down the full name):

_ .

Task A1

There are no unit tests in the system.

Current Time - Notify the experimenter

_ _ : _ _ : _ _
 hours minutes seconds

(e) Time split (repeated after each task)

Concept Location Task A2.1

Using the “search by term” (and any other) feature in CodeCity, look for the term
‘tracker’ in the names of classes and their attributes and methods, and describe
the spread of these classes in the system.

Localized. All the classes related to this term are located in one or two packages.
Provide the full name of these packages:

_

_ .

Dispersed. Many packages in the system contain classes related to the given term.
Indicate 5 packages (or all of them if there are less than 5) writing their full names:

_ _

_ _

_ _

_ _

_ _ .

Concept Location Task A2.2

Using the “search by term” (and any other) feature in CodeCity, look for the term
‘skin’ in the names of classes and their attributes and methods, and describe the
spread of these classes in the system.

Localized. All the classes related to this term are located in one or two packages.
Provide the full name of these packages:

_

_ .

Dispersed. Many packages in the system contain classes related to the given term.
Indicate 5 packages (or all of them if there are less than 5) writing their full names:

_ _

_ _

_ _

_ _

_ _ .

Impact Analysis Task A3

Evaluate the change impact of class Utils defined in package
org.gudy.azureus2.ui.swt, by considering its callee classes (classes invoking any
of its methods). The assessment is done in terms of both intensity (number of
potentially affected classes) and dispersion (how these classes are distributed in the
package structure).

Unique location. There are _ _ _ _ _ classes potentially affected by a change in the
given class, all defined in a single package, whose full name is:

_ .

Multiple locations. There are _ _ _ _ _ classes potentially affected by a change in the
given class, defined in several packages, but less than half of the system’s packages.
Indicate up to 5 packages containing the most of these classes:

_

_

_

_

_

Global. Most of the system’s packages (more than half) contain at least one of the
_ _ _ _ _ classes that would be potentially affected by a change in the given class.

Metric Analysis Task A4.1

Find the 3 classes with the highest number of methods (NOM) in the system.

The classes with the highest number of methods are (in descending order):

1. class _

 defined in package (full name):

 _

 contains _ _ _ methods;

2. class _

 defined in package (full name):

 _

 contains _ _ _ methods;

3. class _

 defined in package (full name):

 _

 contains _ _ _ methods.

Figure 14: Handout for Treatment 1 (1/2)

65

Find the 3 classes with the highest average number of lines of code per method in
the system. The value of this metric is computed as:

Metric Analysis Task A4.2

The classes with the highest number of lines of code per method are (in descending order):

1. class _

 defined in package (full name):

 _

 	 has an average of _ _ _ _ lines of code per method

2. class _

 defined in package (full name):

 _

 	 has an average of _ _ _ _ lines of code per method

3. class _

 defined in package (full name):

 _

 	 has an average of _ _ _ _ lines of code per method

God Class Analysis Task B1.1

Identify the package with the highest percentage of god classes in the system. Write
down the full name of the package, the number of god classes in this package, and
the total number of classes in the package.

The highest percentage of god classes in the entire system is found in package:

_ _

which contains _ _ _ _ god classes out of a total of _ _ _ _ classes.

God Class Analysis Task B1.2

Identify the god class containing the largest number of methods in the system.

The god class with the largest number of methods in the system is class:

_ _

defined in package (write down the full name):

_ _

which contains _ _ _ _ methods.

Design Problem Assessment Task B2.1

Based on the design problem information available in CodeCity, identify the
dominant class-level design problem (the design problem that affects the largest
number of classes) in the system.

The dominant class-level design problem is Brain Class, which affects a number of

_ _ _ _ _ _ _ _ classes.

The dominant class-level design problem is Data Class, which affects a number of

_ _ _ _ _ _ _ _ classes.

The dominant class-level design problem is God Class, which affects a number of

_ _ _ _ _ _ _ _ classes.

Design Problem Assessment Task B2.2

Write an overview of the class-level design problems in the system. Are the design
problems affecting many of the classes? Are the different design problems affecting
the system in an equal measure? Are there packages of the system affected
exclusively by only one design problem? Are there packages entirely unaffected by
any design problem? Or packages with all classes affected? Describe your most
interesting or unexpected observations about the design problems.

(e) Qualitative task

Current Time - Notify the experimenter

_ _ : _ _ : _ _
 hours minutes seconds

(f) End time

Debriefing

On a scale from 1 to 5, how did you feel about the time pressure? Please write in
the box below the answer that matches your opinion the most:

1. Too much time pressure. I could not cope with the tasks, regardless of their
difficulty

2. Fair amount of pressure. I could certainly have done better with more time.
3. Not so much time pressure. I had to hurry a bit, but it was ok
4. Very little time pressure. I felt quite comfortable with the time given
5. No time pressure at all

Regardless of the given time, how difficult would you rate the tasks? Please mark
the appropriate difficulty for each of the tasks:

impossible difficult intermediate simple trivial

Task A1

Task A2.1

Task A2.2

Task A3

Task A4.1

Task A4.2

Task B1.1

Task B1.2

Task B2.1

Task B2.2

Enter comments and/or suggestions you may have about the experiment, which
could help us improve it.

It is possible that you have discovered some interesting insights about the system
during the experiment and that the format of the answer did not allow you to write it,
or that it was not related to the question. In this case, please share with us what you
discovered. (optional)

Figure 15: Handout for Treatment 1 (2/2)

66

	Introduction
	Software Systems as Cities
	CodeCity
	The Experiment in a Nutshell

	Related Work
	Guidelines for Information Visualization Evaluation
	Empirical Evaluation in Information Visualization
	The Challenges of Software Visualization
	Program Comprehension Tasks
	Guidelines for Software Visualization Evaluation
	Empirical Evaluation in Software Visualization

	Wish List Extracted from the Literature
	Experimental Design
	Research Questions & Hypotheses
	Dependent & Independent Variables
	Finding a Baseline
	Objects

	Controlled Variables
	Tasks
	Treatments
	Subjects

	Operation
	The Pilot Study
	The Experimental Runs

	Data Collection and Marking
	Personal Information
	Timing Data
	Correctness Data
	Participants' Feedback

	Data Analysis
	Preliminary Data Analysis
	Outlier Analysis
	Analysis Techniques

	Results
	Analysis Results on Correctness
	Analysis Results on Completion Time
	Task Analysis
	Conclusions of the Quantitative Task-Based Analysis

	Qualitative Analysis
	Ecl+Excl
	CodeCity
	Conclusions of the Qualitative Task-Based Analysis

	Debriefing Questionnaire
	Experience Level
	Background

	Threats to Validity
	Internal Validity
	External Validity
	Construct Validity
	Conclusion Validity

	Conclusions
	Pre-Experiment Questionnaire
	Experiment Questionnaire
	Introduction
	Tasks

	Debriefing Questionnaire
	Data
	Task Solution Oracles
	T1: Azureus, analyzed with CodeCity
	T2: Findbugs, analyzed with CodeCity
	T3: Azureus, analyzed with Eclipse + Spreadsheet with metrics
	T4: Findbugs, analyzed with Eclipse + Spreadsheet with metrics

