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Abstract
In this paper, we introduce a mixed general type of variational relation problems, and
establish the existence theorem of solutions of mixed general types of variational
relation problems. Moreover, we study the stability of a solution set of mixed general
types of variational relation problems. We prove that most of mixed general types of
variational relation problems (in the sense of Baire category) are essential and, for any
mixed general type of variational relation problems, there exists at least one essential
connected component of its solution set.
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1 Introduction
It is well known that the equilibrium problems are unified models of several problems,
namely optimization problems, saddle point problems, variational inequalities, fixed point
problems, Nash equilibrium problems etc. Recently, Luc [] introduced a more general
model of equilibrium problems, which is called a variational relation problem (VR). The
stability of the solution set of variational relation problems was studied in [, ]. Further
studies of variational relation problems have been done (see [–]). Recently, Agarwal et
al. [] presented a unified approach in studying the existence of solutions for two types
of variational relation problems, which encompass several generalized equilibrium prob-
lems, variational inequalities and variational inclusions investigated in the recent litera-
ture. Balaj and Lin [] established existence criteria for the solutions of two very general
types of variational relation problems.
Motivated and inspired by research works mentioned above, we introduce mixed gen-

eral types of variational relation problems, which is a mixed structure of two general types
of variational relation problems in []. Moreover, we study the stability of a solution set
of mixed general types of variational relation problems.

2 Mixed general types of variational relation problems
In [], let X, Y be convex sets in two Hausdorff topological vector spaces, Z be a topo-
logical space, S,S : X ⇒ X, T : X ⇒ Y , P : X ⇒ Z be set-valued mappings with nonempty
values, and R(x, y, z) be a relation linking elements x ∈ X, y ∈ Y and z ∈ Z. Balaj and Lin
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[] established existence criteria for the solutions of the following variational relation
problems:

(VRP) Find (x∗, y∗) ∈ X ×Y such that x∗ ∈ S(x∗), y∗ ∈ T(x∗) and, ∀u ∈ S(x∗), ∃z ∈ P(x∗)
for which R(u, y∗, z) holds.

(VRP) Find (x∗, y∗) ∈ X × Y such that x∗ ∈ S(x∗), y∗ ∈ T(x∗) and R(u, y∗, z) holds ∀u ∈
S(x∗) and ∀z ∈ P(x∗).

In this paper, we introduce mixed general types of variational relation problems. Let
X, Y be convex sets in two Hausdorff topological vector spaces, Z be a topological space,
S : X×Y ⇒ X,T : X×Y ⇒ Y ,H : X×Y ⇒ X,G : X×Y ⇒ Y , P : X×Y ⇒ Z be set-valued
mappings with nonempty values, and R(x, y, z), Q(y,x, z) be two relations linking elements
x ∈ X, y ∈ Y and z ∈ Z. A mixed general type of variational relation problems (MGVR)
consists in finding (x∗, y∗) ∈ X × Y such that x∗ ∈ S(x∗, y∗), y∗ ∈ T(x∗, y∗) and

∀u ∈H
(
x∗, y∗), ∃z ∈ P

(
x∗, y∗) s.t. R

(
u, y∗, z

)
holds,

Q
(
v,x∗, z

)
holds, ∀v ∈G

(
x∗, y∗),∀z ∈ P

(
x∗, y∗).

Remark . Balaj and Lin [] established existence criteria for the solutions of two very
general types of variational relation problems. The mixed general type of variational rela-
tion problems is a combination of (VRP) and (VRP), and (VRP) and (VRP) are some
special cases of (MGVR).

Theorem . Assume that
(i) X , Y , Z are three nonempty, compact and convex subsets of three Hausdorff linear

topological spaces;
(ii) C = {(x, y) ∈ X × Y : x ∈ S(x, y)} and D = {(x, y) ∈ X × Y : y ∈ T(x, y)} are closed in

X × Y ;
(iii) P is continuous with nonempty compact values;
(iv) for any (x, y) ∈ X × Y , coH(x, y)⊂ S(x, y), coG(x, y)⊂ T(x, y), H , G have open

fibers, and R(x, ·, ·), Q(·, y, ·) are closed;
(v) for any fixed y ∈ Y , any finite subset {u, . . . ,un} of X and any x ∈ co{u, . . . ,un},

there are i ∈ {, . . . ,n} and z ∈ P(x, y) such that R(ui, y, z) holds;
(vi) for any fixed x ∈ X , any finite subset {v, . . . , vn} of Y and any y ∈ co{v, . . . , vn}, there

is i ∈ {, . . . ,n} such that Q(vi,x, z) holds for any z ∈ P(x, y).
Then (MGVR) has at least one solution.

Proof Define A : X × Y ⇒ X and B : X × Y ⇒ Y as follows:

A(x, y) =
{
u ∈ X : R(u, y, z) does not hold ∀z ∈ P(x, y)

}
,

B(x, y) =
{
v ∈ Y :Q(v,x, z) does not hold ∃z ∈ P(x, y)

}
.

As R(x, ·, ·), Q(·, y, ·) are closed for any (x, y) ∈ X × Y , and P is continuous with nonempty
compact values, by Propositions ., . of [], A, B have open fibers.
Suppose that there exists (x, y) ∈ X × Y such that x ∈ coA(x, y), then there is a finite

subset {u, . . . ,un} of A(x, y) such that x ∈ co{u, . . . ,un}. By (v), there are i ∈ {, . . . ,n} and
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z ∈ P(x, y) such that R(ui , y, z) holds, which contradicts the fact that ui ∈ A(x, y) for any
i ∈ {, . . . ,n}, i.e., R(ui, y, z) does not hold for any z ∈ P(x, y) and any i ∈ {, . . . ,n}. Hence
x /∈ coA(x, y) for any (x, y) ∈ X × Y .
Suppose that there exists (x, y) ∈ X ×Y such that y ∈ coB(x, y), then there is a finite sub-

set {v, . . . , vn} of B(x, y) such that y ∈ co{v, . . . , vn}. By (vi), there is i ∈ {, . . . ,n} such that
Q(vi ,x, z) holds, which contradicts the fact that vi ∈ B(x, y) for any i ∈ {, . . . ,n}, i.e., there
is z ∈ P(x, y) such thatQ(vi,x, z) does not hold for any i ∈ {, . . . ,n}. Hence y /∈ coB(x, y) for
any (x, y) ∈ X × Y .
Define A′ : X × Y ⇒ X and B′ : X × Y ⇒ Y as follows:

A′(x, y) =

⎧⎨
⎩
A(x, y)∩H(x, y) if (x, y) ∈ C,

H(x, y) if (x, y) /∈ C,

B′(x, y) =

⎧⎨
⎩
B(x, y)∩G(x, y) if (x, y) ∈D,

G(x, y) if (x, y) /∈D.

For any u ∈ X, A′–(u) = [H–(u) ∩ A–(u)] ∪ [((X × Y )\C) ∩ H–(u)] is open in X × Y .
Similarly, B′–(v) is open for any v ∈ Y . Hence, A′–(u), B′–(v) are open for any (u, v) ∈ X ×
Y , and x /∈ coA′(x, y), y /∈ coB′(x, y) for any (x, y) ∈ X×Y . By Theorem  of [], there exists
(x∗, y∗) ∈ X ×Y such that A′(x∗, y∗) = ∅ and B′(x∗, y∗) = ∅, which implies that x∗ ∈ S(x∗, y∗),
y∗ ∈ T(x∗, y∗) and

∀u ∈H
(
x∗, y∗), ∃z ∈ P

(
x∗, y∗) s.t. R

(
u, y∗, z

)
holds,

Q
(
v,x∗, z

)
holds, ∀v ∈G

(
x∗, y∗),∀z ∈ P

(
x∗, y∗). �

Theorem . Assume that
(i) X , Y , Z are three nonempty, compact and convex subsets of three normed linear

topological spaces;
(ii) S, T are continuous with nonempty convex compact values;
(iii) P is continuous with nonempty compact values;
(iv) R(·, ·, ·) and Q(·, ·, ·) are closed;
(v) for any fixed y ∈ Y , any finite subset {u, . . . ,un} of X and any x ∈ co{u, . . . ,un},

there are i ∈ {, . . . ,n} and z ∈ P(x, y) such that R(ui, y, z) holds;
(vi) for any fixed x ∈ X , any finite subset {v, . . . , vn} of Y and any y ∈ co{v, . . . , vn}, there

is i ∈ {, . . . ,n} such that Q(vi,x, z) holds for any z ∈ P(x, y).
Then there exists (x∗, y∗) ∈ X × Y such that x∗ ∈ S(x∗, y∗), y∗ ∈ T(x∗, y∗) and

∀u ∈ S
(
x∗, y∗), ∃z ∈ P

(
x∗, y∗) s.t. R

(
u, y∗, z

)
holds,

Q
(
v,x∗, z

)
holds, ∀v ∈ T

(
x∗, y∗),∀z ∈ P

(
x∗, y∗).

Proof For any n, define Sn : X×Y ⇒ X,Tn : X×Y ⇒ Y ,Hn : X×Y ⇒ X andGn : X×Y ⇒
Y by

Sn(x, y) =
(
S(x, y) + clVn

) ∩X, Tn(x, y) =
(
T(x, y) + clV ′

n
) ∩ Y ,

Hn(x, y) =
(
S(x, y) +Vn

) ∩X, Gn(x, y) =
(
T(x, y) +V ′

n
) ∩ Y ,
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where Vn = {x ∈ X : ‖x‖ < 
n }, V ′

n = {y ∈ Y : ‖y‖ < 
n }. Since S, T are continuous, Hn, Gn

have open fibers, and Graph(Sn), Graph(Tn) are closed in X × Y , by Theorem ., there
exist xn ∈ Sn(xn, yn), yn ∈ Tn(xn, yn) and

∀u ∈Hn(xn, yn), ∃z ∈ P
(
xn, yn

)
s.t. R

(
u, yn, z

)
holds,

Q
(
v,xn, z

)
holds, ∀v ∈Gn(xn, yn),∀z ∈ P

(
xn, yn

)
.

Since X, Y are nonempty and compact, without loss of generality, we assume that
(xn, yn) → (x, y). Letm >  be arbitrarily fixed and n >  such that Vn +Vn + clVn ⊂ Vm.
Since S is continuous and (xn, yn) → (x, y), there is N >  such that x – xn ∈ Vn and
S(xn, yn) ⊂ S(x, y) +Vn for any n >N. Therefore, for any n >max{N,n},

x = x – xn + xn ∈ x – xn + S
(
xn, yn

)
+ clVn

⊂ Vn + S(x, y) +Vn + clVn ⊂ S(x, y) +Vm.

Hence x ∈ ⋂
m>(S(x, y) +Vm) = clS(x, y) = S(x, y). Similarly, y ∈ T(x, y).

Suppose that there exists u ∈ S(x, y) such that R(u, y,P(x, y)) does not hold. Since R(·, ·, ·)
is closed, there exists k >  such that R(u+Vk , y+Vk ,P(x, y) +Vk) does not hold. Since S is
continuous, there exists a sequence {un} convergent to u with un ∈ S(xn, yn) ⊂ S(xn, yn) +
Vn ⊂ Hn(xn, yn). Since P is continuous, there exists N >  such that, for any n > N,
un ∈ u + Vk , yn ∈ y + Vk , P(xn, yn) ⊂ P(x, y) + Vk , which implies that un ∈ Hn(xn, yn) and
R(un, yn,P(xn, yn)) does not hold. It is a contradiction.
Suppose that there exist v ∈ T(x, y) and z ∈ P(x, y) such thatQ(v,x, z) does not hold. Since

T , P are continuous, there exist two sequences {vn} and {zn} convergent to v and z with
vn ∈ T(xn, yn) ⊂ T(xn, yn) + V ′

n ⊂ Gn(xn, yn) and zn ∈ P(xn, yn). As Q(·, ·, ·) is closed, there
existsN >  such that, for any n >N,Q(vn,xn, zn) does not hold, which is a contradiction.
This completes the proof. �

3 Generic stability analysis
Let X, Y , Z be three nonempty, compact and convex subsets of three normed linear topo-
logical spaces. Denote byM the collection of all (MGVR) such that all conditions of Theo-
rem . hold. For each q ∈ M, denote by F(q) the solution set of q. Thus, a correspondence
F :M ⇒ X × Y is well defined. For each q,q′ ∈ M, define the distance on M by

ρ
(
q,q′) = sup

(x,y)∈X×Y
hX

(
S(x, y),S′(x, y)

)
+ sup

(x,y)∈X×Y
hY

(
T(x, y),T ′(x, y)

)

+ sup
(x,y)∈X×Y

hZ
(
P(x, y),P′(x, y)

)
+H

(
Gr(R),Gr

(
R′)) +H

(
Gr(Q),Gr

(
Q′)),

where Gr(R) = {(x, y, z) ∈ X × Y × Z : R(x, y, z) holds}, Gr(Q) = {(x, y, z) ∈ X × Y × Z :
Q(y,x, z) holds}, hX (hY , hZ) is the Hausdorff distance defined on X (Y , Z), and H is the
Hausdorff distance defined on X × Y × Z.

Definition . Let q ∈ M. An (x, y) ∈ F(q) is said to be an essential point of F(q) if,
for any open neighborhood N(x, y) of (x, y) in X × Y , there is a positive δ such that
N(x, y)∩ F(q′) = ∅ for any q′ ∈ M with ρ(q,q′) < δ. q is said to be essential if each (x, y) ∈
F(q) is essential.
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Definition . Let q ∈ M. A nonempty closed subset e(q) of F(q) is said to be an essential
set of F(q) if, for any open set U , e(q) ⊂U , there is a positive δ such that U ∩ F(q′) = ∅ for
any q′ ∈ M with ρ(q,q′) < δ.

Definition. Let q ∈ M. An essential subsetm(q)⊂ F(q) is said to be aminimal essential
set of F(q) if it is a minimal element of the family of essential sets in F(q) ordered by set
inclusion. A connected component C(q) of F(q) is said to be an essential component of
F(q) if C(q) is essential.

Remark . () It is easy to see that the problem q ∈ M is essential if and only if the
mapping F : M ⇒ X × Y is lower semicontinuous at q. () For two closed e(q) ⊂ e(q) ⊂
F(q), if e(q) is essential, then e(q) is also essential.

Lemma . (. Lemma, . Closed Graph Theorem of []) (i) The image of a com-
pact set under a compact-valued upper semicontinuous set-valued mapping is compact.
(ii) A correspondence with compact Hausdorff range space is closed if and only if it is upper
hemicontinuous and closed-valued.

Lemma . ([]) If X, Y are two metric spaces, X is complete and F : X ⇒ Y is upper
semicontinuous with nonempty compact values, then the set of points, where F is lower
semicontinuous, is a dense residual set in X .

Theorem . (M,ρ) is a complete metric space.

Proof Let {qn}∞n= be any Cauchy sequence in M, then, for any ε > , there is N >  such
that ρ(qn,qm) < ε for any n,m >N , that is, for any n,m >N ,

sup
(x,y)∈X×Y

hX
(
Sn(x, y),Sm(x, y)

)
+ sup

(x,y)∈X×Y
hY

(
Tn(x, y),Tm(x, y)

)

+ sup
(x,y)∈X×Y

hZ
(
Pn(x, y),Pm(x, y)

)

+H
(
Gr

(
Rn),Gr(Rm))

+H
(
Gr

(
Qn),Gr(Qm)) ≤ ε.

() Clearly, we consult Proposition . of []. There are S : X × Y ⇒ X, T : X × Y ⇒ Y
and P : X × Y ⇒ Z such that S, T are continuous with nonempty convex compact values,
and P is continuous with nonempty compact values.
() There exist two closed subsets A, B of X × Y × Z such that Gr(Rn) → A and

Gr(Qn) → B. Denote q = (S,T ,P,R,Q), where

R(x, y, z) holds iff (x, y, z) ∈ A, Q(y,x, v) holds iff (x, y, z) ∈ B.

Clearly R(·, ·, ·) and Q(·, ·, ·) are closed.
() Suppose the existence of y ∈ Y , finite subset {u, . . . ,un} of X and x ∈ co{u, . . . ,un}

such that R(ui, y,P(x, y)) does not hold for any i ∈ {, . . . ,n}, which implies (ui, y,P(x, y)) ∩
Gr(R) = ∅, ∀i ∈ {, . . . ,n}. Since qm → q for enough large m, (ui, y,Pm(x, y)) ∩ Gr(Rm) = ∅,
∀i ∈ {, . . . ,n}, i.e., Rm(ui, y,Pm(x, y)) does not hold for any i ∈ {, . . . ,n}, which is a contra-
diction.
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Suppose the existence of x ∈ X, finite subset {v, . . . , vn} of Y , y ∈ co{v, . . . , vn} and
z ∈ P(x, y) such that Q(vi,x, z) does not hold for any i ∈ {, . . . ,n}, which implies (x, vi, z) /∈
Gr(Q), ∀i ∈ {, . . . ,n}. Since qm → q, there exists a sequence {zm} convergent to z
with zm ∈ Pm(x, y). Hence, for enough large m, (x, vi, zm) /∈ Gr(Qm), ∀i ∈ {, . . . ,n}, i.e.,
Qm(vi,x, zm) does not hold for any i ∈ {, . . . ,n}, which is a contradiction. Hence q ∈ M

and (M,ρ) is complete. �

Theorem . The mapping F : M ⇒ X ×Y is upper semicontinuous with nonempty com-
pact values.

Proof The desired conclusion follows from Lemma . as soon as we show that Graph(F)
is closed. Denote qn = (Sn,Tn,Pn,Rn,Qn) and q = (S,T ,P,R,Q). Let {(qn,xn, yn) ∈ M ×X ×
Y }∞n= be a sequence converging to (q,x, y) such that (xn, yn) ∈ F(qn) for any n. Then xn ∈
Sn(xn, yn) and yn ∈ Tn(xn, yn),

∀u ∈ Sn
(
xn, yn

)
, ∃z ∈ Pn(xn, yn) s.t. Rn(u, yn, z) holds,

Qn(v,xn, z) holds, ∀v ∈ Tn(xn, yn),∀z ∈ Pn(xn, yn).

Clearly, x ∈ S(x, y) and y ∈ T(x, y).
Suppose the existence of u ∈ S(x, y) such that R(u, y,P(x, y)) does not hold, then

(u, y,P(x, y))∩Gr(R) = ∅. Since S, P are continuous, qn → q and

hX
(
Sn

(
xn, yn

)
,S(x, y)

)

≤ hX
(
Sn

(
xn, yn

)
,S

(
xn, yn

))
+ hX

(
S
(
xn, yn

)
,S(x, y)

) → ,

hZ
(
Pn(xn, yn),P(x, y))

≤ hZ
(
Pn(xn, yn),P(

xn, yn
))

+ hZ
(
P
(
xn, yn

)
,P(x, y)

) → ,

then Sn(xn, yn) → S(x, y) and Pn(xn, yn) → P(x, y). Thus, there exists a sequence {un} con-
vergent to uwith un ∈ Sn(xn, yn) such that, for enough large n, (un, yn,Pn(xn, yn))∩Gr(Rn) =
∅, i.e., un ∈ Sn(xn, yn) and Rn(un, yn,Pn(xn, yn)) does not hold, which is a contradiction.
Suppose the existence of v ∈ T(x, y) and z ∈ P(x, y) such thatQ(v,x, z) does not hold, then

(x, v, z) /∈ Gr(Q). Similarly, Tn(xn, yn) → T(x, y) and Pn(xn, yn) → P(x, y). Thus, there exist
two sequences {vn} and {zn} convergent to u and z with vn ∈ Tn(xn, yn) and zn ∈ Pn(xn, yn).
Hence, for enough large n, (xn, vn, zn) /∈ Gr(Qn), i.e., vn ∈ Tn(xn, yn), zn ∈ Pn(xn, yn) and
Qn(vn,xn, zn) does not hold, which is a contradiction. Hence (x, y) ∈ F(q). �

Theorem . (i) There exists a dense residual subset G of M such that q is essential for
each q ∈ G. (ii) For any q ∈ M, there exists at least one minimal essential subset of F(q).

Proof The proofs are similar to those of Theorems . and . of []. Here, we do not
repeat the process. �

4 Existence of essential connected components
In this section, let P : X×Y ⇒ Z be fixed. Assume that (i) P is continuouswith nonempty
compact values; (ii) if W ∩ W = ∅, P(W) ∩ P(W) = ∅; (iii) P–

 (z) = ∅ for any z ∈ Z.
Denote by M the collection of (S,T ,P,R,Q) mixed general types of variational relation

http://www.journalofinequalitiesandapplications.com/content/2014/1/337
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problems such that all conditions of Theorem . hold. Clearly M ⊂ M. For convenience
in the later presentation, for any subset A of X, denote Ac = {x ∈ X : x /∈ A}.

Lemma . ([]) Let C, D be two nonempty, convex and compact subsets of a linear
normed space E. Then h(C,λC +μD)≤ h(C,D), where h is the Hausdorff distance defined
on E, and λ,μ ≥ , λ +μ = .

Lemma . ([]) Let (Y ,ρ) be a metric space, K and K be two nonempty compact sub-
sets of Y , V and V be two nonempty disjoint open subsets of Y . If h(K,K) < ρ(V,V) :=
inf{ρ(x, y)|x ∈ V, y ∈ V}, then

h
(
K, (K\V)∪ (K\V)

) ≤ h(K,K)

where h is the Hausdorff metric defined on Y .

Theorem . For any q ∈ M, every minimal essential subset of F(q) is connected.

Proof For each fixed q ∈ M, letm(q) ⊂ F(q) be a minimal essential subset of F(q). Ifm(q)
is not connected, then there are two nonempty compact subsets c(q), c(q) and two dis-
joint open subsetsV,V ofX×Y such thatm(q) = c(q)∪ c(q) andV ⊃ c(q),V ⊃ c(q).
Sincem(q) is a minimal essential set of F(q), neither c(q) nor c(q) is essential. There exist
two open sets O ⊃ c(q), O ⊃ c(q) such that, for any δ > , there exist q,q ∈ M with

ρ
(
q,q

)
< δ, ρ

(
q,q

)
< δ, F

(
q

) ∩O = ∅, F
(
q

) ∩O = ∅.

DenoteW = V∩O,W = V∩O, we know thatW,W are open,W ⊃ c(q),W ⊃ c(q)
and we may assume that V ⊃W , V ⊃ W . Denote

G = X × Y × (
P

(
Wc


))c, G = X × Y × (

P
(
Wc


))c.

Since P is continuous with nonempty compact values, and Wc
 , Wc

 are nonempty com-
pact in X × Y , by Lemma ., P(Wc

 ), P(Wc
) are nonempty compact in Z. Thus G, G

are open in X × Y × Z.
To prove by contraposition that (P(Wc

 ))c ∩ (P(Wc
))c = ∅, suppose the existence of

z ∈ Z such that z ∈ (P(Wc
 ))c ∩ (P(Wc

))c, which implies that z /∈ P(Wc
 ) and z /∈ P(Wc

),
i.e., Wc

 ∩ P–
 (z) = ∅, Wc

 ∩ P–
 (z) = ∅. It follows that P–

 (z) ⊂ W and P–
 (z) ⊂ W, which

contradicts the fact thatW ∩W = ∅.
Denote inf{d(a,b)|a ∈G,b ∈G} = ε > . Sincem(q) is essential, andm(q)⊂ (W ∪W),

there exists  < δ∗ < ε such that F(q′) ∩ (W ∪ W) = ∅ for any q′ ∈ M with ρ(q,q′) < δ∗.
Since m(q) is a minimal essential set of F(q), neither c(q) nor c(q) is essential. Thus, for
δ∗
 > , there exist two q,q ∈ M such that

F
(
q

) ∩W = ∅, F
(
q

) ∩W = ∅, ρ
(
q,q

)
<

δ∗


, ρ

(
q,q

)
<

δ∗


.

Thus ρ(q,q) < δ∗
 . Next, define q′ = (S′,T ′,P,R′,Q′) as follows:

S′(x, y) = λ(x, y)S(x, y) +μ(x, y)S(x, y),

T ′(x, y) = λ(x, y)T (x, y) +μ(x, y)T(x, y),
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A =
[
Gr

(
R)\G

] ∪ [
Gr

(
R)\G

]
, B =

[
Gr

(
Q)\G

] ∪ [
Gr

(
Q)\G

]
,

R′(u, y, z) holds iff (u, y, z) ∈ A, Q′(v,x, z) holds iff (x, v, z) ∈ B,

where

λ(x, y) =
d((x, y),W )

d((x, y),W ) + d((x, y),W )
, ∀(x, y) ∈ X × Y ,

μ(x, y) =
d((x, y),W )

d((x, y),W ) + d((x, y),W )
, ∀(x, y) ∈ X × Y .

Easily, we check that (i) S′, T ′ are continuous with nonempty compact convex values.
(ii) Since Gr(R) and Gr(R) are closed in X × Y × Z, A is closed in X × Y × Z, which
implies that R′(·, ·, ·) is closed. Similarly, Q′(·, ·, ·) is closed. (iii) Suppose the existence of
y ∈ Y , finite subset {u, . . . ,un} ⊂ X and x ∈ co{u, . . . ,un} such that R′(ui, y,P(x, y)) does
not hold for any i ∈ {, . . . ,n}, i.e., (ui, y,P(x, y))∩Gr(R′) = ∅, ∀i ∈ {, . . . ,n}. Since

Gr
(
R′) = [

Gr
(
R)\G

] ∪ [
Gr

(
R)\G

]

andW∩W = ∅, without loss of generality, wemay assume that (x, y) ∈Wc
 , which implies

P(x, y) ⊂ P(Wc
 ). Since (ui, y,P(x, y))∩ [Gr(R)\G] = ∅ for all i ∈ {, . . . ,n}, that is,

(
y,ui,P(x, y)

) ∩ [
Gr

(
R) ∩ (

X × Y × P
(
Wc


))]

= ∅, ∀i ∈ {, . . . ,n},

then (ui, y,P(x, y))∩Gr(R) = ∅, ∀i ∈ {, . . . ,n}, i.e., R(ui, y,P(x, y)) does not hold for any
i ∈ {, . . . ,n}, which is a contradiction.
(iv) Suppose the existence of x ∈ X, finite subset {v, . . . , vn} ⊂ Y , y ∈ co{v, . . . , vn} and

z ∈ P(x, y) such that Q′(vi,x, z) does not hold for any i ∈ {, . . . ,n}, i.e., (x, vi, z) /∈ Gr(Q′),
∀i ∈ {, . . . ,n}. Since

Gr
(
Q′) = [

Gr
(
Q)\G

] ∪ [
Gr

(
Q)\G

]

andW∩W = ∅, without loss of generality, wemay assume that (x, y) ∈Wc
 , which implies

z ∈ P(x, y) ⊂ P(Wc
 ). Since (x, vi, z) /∈ [Gr(Q)\G] for all i ∈ {, . . . ,n}, that is, (x, vi, z) /∈

[Gr(Q)∩ (X × Y × P(Wc
 ))] for all i ∈ {, . . . ,n}, then

(x, vi, z) /∈Gr
(
Q), ∀i ∈ {, . . . ,n},

that is, there is z ∈ P(x, y) such that Q(vi,x, z) does not hold for any i ∈ {, . . . ,n}, which
is a contradiction. Hence q′ ∈ M.
(v) By Lemmas ., .,

ρ
(
q′,q

)
= sup

(x,y)∈X×Y
hX

(
S(x, y),S′(x, y)

)
+ sup

(x,y)∈X×Y
hY

(
T(x, y),T ′(x, y)

)

+H
(
Gr(R),Gr

(
R′)) +H ′(Gr(Q),Gr(Q′))

≤ sup
(x,y)∈X×Y

hX
(
S(x, y),S(x, y)

)
+ sup

(x,y)∈X×Y
hX

(
S(x, y),S′(x, y)

)
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+ sup
(x,y)∈X×Y

hY
(
T(x, y),T (x, y)

)
+ sup

(x,y)∈X×Y
hY

(
T (x, y),T ′(x, y)

)

+H
(
Gr(R),Gr

(
R)) +H

(
Gr

(
R),Gr(R′))

+H
(
Gr(Q),Gr

(
Q)) +H

(
Gr

(
Q),Gr(Q′))

< δ∗.

Thus q′ ∈ M and ρ(q′,q) < δ∗.
Since (F(q′) ∩ W) ∪ (F(q′) ∩ W) = F(q′) ∩ (W ∪ W) = ∅, without loss of generality,

we assume F(q′) ∩ W = ∅. Then there exists (x, y) ∈ F(q′) ∩ W such that (x, y) ∈ W, x ∈
S′(x, y), y ∈ T ′(x, y), and

∀u ∈ S′(x, y), ∃z ∈ P(x, y) s.t. R′(u, y, z) holds,

Q′(v,x, z) holds, ∀v ∈ T ′(x, y),∀z ∈ P(x, y).

It follows from (x, y) ∈ W that S′(x, y) = S(x, y), T ′(x, y) = T(x, y), P(x, y) ⊂ P(W) and
P(x, y)∩ P(Wc

 ) = ∅. Therefore,

∀u ∈ S(x, y), ∃z ∈ P(x, y) s.t. R(u, y, z) holds,

Q(v,x, z) holds, ∀v ∈ T (x, y),∀z ∈ P(x, y).

Then (x, y) ∈ F(q)∩W, which is a contradiction. This completes the proof. �

Theorem . For any q ∈ M, there exists at least one essential connected component
of F(q).

Proof By Theorem ., there exists at least one connected minimal essential subset m(q)
of F(q). Thus, there is a component C of F(q) such that m(q) ⊂ C. It is obvious that C is
essential by Remark .(). This completes the proof. �
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