
Complex Intell. Syst. (2016) 2:111–124
DOI 10.1007/s40747-016-0020-x

ORIGINAL ARTICLE

Run-time architectural modeling for future internet applications

Marina Mongiello1 · Simona Colucci1 · Elvis Vogli1 · Luigi Alfredo Grieco1 ·
Massimo Sciancalepore1

Received: 10 December 2015 / Accepted: 12 June 2016 / Published online: 24 June 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract Interoperability, flexibility, and adaptability are
key requirements of future internet applications. Conver-
gence of contents, services, things, and networks can be the
cornerstone to fulfill these requirements. Such rich and com-
posite sources of data and processing capabilities call for
a structured and formal approach that manages and capi-
talizes heterogeneous information. This paper proposes an
approach to the run-time composition of software system
architectures, aimed at addressing goals revealed at runtime.
The approach is grounded on a graphmodel characterized by
two control levels: ametamodeling and an instantiation level.
At metamodeling level, the graph describes facts that may
occur in a scenario of interest, processes triggered by facts,
and technologies available to execute processes. The actual
occurrence of facts, together with the deriving processes and
technologies, ismanaged at instantiation level,with reference
to an application-specific model. In particular, the paper pro-
poses an algorithm that determines an optimalway tomanage
a change in the run-time environment, by finding a mini-
mum cost path in the model. The usefulness of the proposed
approach and its applicability to actual scenarios have been
validated in an example smart home environment.

Keywords Internet of things · Self-adaptive systems ·
Architectural modeling · Process composition

Introduction and motivation

Future internet applications should be able to handle dynamic
changes in user experience and interoperability between dif-

B Elvis Vogli
elvis.vogli@poliba.it

1 Politecnico di Bari, Via E. Orabona, 4, 70125 Bari, Italy

ferent technologies, data, and processes. Convergence of
contents, services, things, and networks may be a relevant
direction to follow towards such objectives.

Complex and composite sources of information become
in fact available as data coming from different resources and
devices, signals produced from different entities, and events
detected from signals processing. Moreover, many kinds of
basic events can be combined to detect the occurrence of
relevant conditions in complex situations [17,25]. Processing
and composition of services may really benefit from all such
heterogeneous information.

To address these challenges, adaptive mechanisms for the
development and the interoperation of services and applica-
tions are emerging [9,24].

The complexity of data sources—ranging from signals,
raw data, and simple and complex events—asks for a unique,
flexible, and formal way to describe processes and elements
related to them.

The main contribution of this article is the proposal of a
formal approach to the composition of a software architec-
ture, which is driven by the specification of goals determined
at runtime. In general, a goal may be defined as an objective
that the system is intended to achieve in the envisioned soft-
ware and its environment [31].

The approach is based on amodel and an algorithm for the
automated composition of processes. Moreover, it enables
the automated translation of goals into Operational Require-
ments, i.e., requirements that capture the conditions under
which a system component performs an operation to achieve
a goal.

The model is characterized by two control levels: a
metamodeling and an instantiation level. The metamodel is
general and technology independent, i.e., it models different
configurations of adaptable software and can be instantiated
in different domains. Hence, at the instantiation level, the

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/206529434?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s40747-016-0020-x&domain=pdf
http://orcid.org/0000-0002-9927-3361


112 Complex Intell. Syst. (2016) 2:111–124

model may be implemented in different application contexts
and refers to specific run-time environments.

The separation in two levels is useful for deferring at
run-time decisions that may be affected by the application
context. It also allows for the incremental addition of goals
at runtime.

Generally speaking, the design of a software architec-
ture is guided by the questions: “how well does the chosen
solutions support the satisfaction of each requirement?” and
“which design alternatives were considered?” In a standard
design activity, such questions are answered by a design-time
decision-making process that compares different problems
and solution alternatives. Instead, when a software system
has to be composedon-the-fly, answering the secondquestion
may not be trivial and may depend on the specific run-time
environment.

The model proposed hereby allows for composing, at run-
time, a software architecture which is optimal with respect to
all the other design alternatives satisfying the same require-
ments.

The model is a labeled graph, whose vertexes belong to
one of the three entities: facts (occurring in the scenario of
interest), processes (that may be triggered by facts), and tech-
nologies (in which processes may be implemented). Edges
in the graph trace possible connections between such enti-
ties and are labeled through a function that computes the
cost of such connections. The proposed algorithm finds in
the model a minimum cost path. This path is an optimal way
to orchestrate processes and technologies towards the sat-
isfaction of a goal, which is generated, at runtime, by the
occurrence of a fact. The retrieved path also determines the
operational requirements in which the goal has to be trans-
lated.

The remaining of this paper is organized as follows.
“Background” shortly recalls basic principles of the main
research solutions adopted in the paper. In “Related work”,
related literature is analyzed. “Use case scenario” draws a
systematic example for a use case scenario. The proposed
formal model and composition algorithm are defined in
“Adaptive processes composition”. The model is instanti-
ated in “Model instantiation” with respect to a fragment of
the use case scenario, before discussing conclusion and future
work.

Background

In this section, relevant background notions and technolo-
gies are shortly recalled, to make the paper self-contained.
Specifically, “Self-adaptive systems” introduce self-adaptive
systems, “Goals and operational requirements” describe
goals and operational requirements, and “RESTmiddleware”
reports on REST Middleware.

Self-adaptive systems

A complete and thorough discussion of all issues related to
modeling and verification of self-adaptive systems can be
found in [14,19]. This section just recalls some definitions
and peculiarities of self-adaptive systems which make them
useful for the proposed approach.

Among several existing definitions for self-adaptive soft-
ware, the most significant is probably the one provided in
a DARPA Broad Agency Announcement (BAA-98-12) in
1997 [30]. Anyway, all definitions share some key points:
a self-adaptive system has to be able to react on its own,
by dynamically adapting its behavior, to guarantee a set of
quality of service (QoS) requirements. The definition in [35]
well summarizes such common features: self-adaptive soft-
ware modifies its own behavior in response to changes in its
operating environment. By operating environment, we mean
anything observable by the software system, such as end-
user input, external hardware devices and sensors, or program
instrumentation.

Different approaches and models have been recently pro-
posed in the field of self-adaptive applications [38]. The
purpose of such proposals is modeling the architecture and
verifying the properties of a system. They also share a com-
mon objective: designed systems need to have an acceptable
level of reliability while still preserving dependability and
the flexibility typical of adaptable systems.

Inmodern software systems, it is always difficult to predict
the needs of users and, then, designing a configuration which
is always optimal may be really hard. The active involve-
ment of users for a clear understanding of their needs and
behavior offers a solution, but it is still an open challenge. At
runtime, it may be necessary to vary requirements and then
design system components, on the basis of changes arising
in the external environment. For example, changes in a sen-
sor network might trigger the execution of processes and
the implementation of software components not foreseen at
design time.

The work in [48] sees a self-adaptive system as placed
in an environment made up by physical and software enti-
ties and consisting of a two-layer architecture. It includes a
first, managed, subsystem layer, that embeds the application
logic, and a managing subsystem, on top of the first one,
embedding the adaptation logic. The latter subsystem real-
izes a feedback loop that monitors the environment and the
managed subsystem. The managing subsystem also adapts
the managed one in the following cases: self-healing, when
dealing with particular types of faults, self-optimizing, when
operating conditions change, and self-reconfiguring, when
a goal changes. Typically, the managing subsystem is con-
ceived as a set of interacting feedback loops, one for each
self-adaptation aspect (or concern). Other layers can be hier-
archically added to the system, so that higher level managing

123



Complex Intell. Syst. (2016) 2:111–124 113

subsystems manage directly underlying subsystems, which
in turn can work as managing systems.

Goals and operational requirements

In distributed systems, goals are objectives; the system is
intended to achieve through the cooperation of agents in the
envisioned software and its environment [31]. A requirement
is a goal assigned to an agent in the software design [4].
While functional requirements specify the functionalities to
be implemented, non-functional requirements suggest deci-
sions on the architectural model. For example, if the system
must ensure security, a proxy should be used to access pro-
tected data; if the systemmust integrate existing components,
a distributed architecture should be preferred.

Among non-functional requirements, anOperational Req-
uirement captures the conditions under which a system
component may or must perform an operation, to achieve a
goal. Thus, operational requirements describe the behavior of
the system. They can be described by formal or semi-formal
languages: such languages can be operational (i.e., finite-
state machines or process algebra) or declarative (logic).

In the so-called adaptive systems, the definition of opera-
tional requirements is crucial for defining and describing the
system in terms of behavior more than of provided function-
alities.

It is still an open problem the translation of high-level
goals into operational requirements that should hold on com-
ponents, parts of the system or operations. Related work in
this area is discussed in “Modeling systemsgoals and require-
ments”.

REST middleware

Nowadays,many verticalM2Msolutions have been designed
independently for different applications, making the cur-
rent M2Mmarket very fragmented, which inevitably hinders
a large-scale M2M deployment. To decrease the market
fragmentation, there have been many efforts from different
standardization bodies to define horizontal service layers.

The European Telecommunications Standards Institute
(ETSI) has defined with the SmartM2M standard a middle-
ware which has a RESTful architecture [44]. On the other
side, OneM2M, where are collaborating more than 200 stan-
dardization bodies and companies, is defining a RESTful
middleware which will have a global validity [41].

The proposed solutions provide RESTful middlewares
which separate the applications from communication dom-
ain. The middlewares are accessible via open interfaces and
enable the development of services and applications indepen-
dently of the underlying network. In addition, they provide
several service capabilities to enable machine registration,

synchronous and asynchronous communication, resource
discovery, access rights management, group broadcast, etc.

All the resources in the RESTful middlewares are orga-
nized in standardized resource trees and can be uniquely
addressed by aUniformResource Identifier (URI). Their rep-
resentations can be transferred and manipulated with verbs
(i.e., retrieve, update, delete, and execute).

Related work

The proposed framework models the process of composing,
at runtime, a software architecture addressing specific goals
arising in the environment of interest. One distinguishing
feature of the approach is the adoption of a unique model to
represent heterogeneous facets of the composition process. In
particular, the same model allows for representing: changes
detected in the environment, goals to be reached, opera-
tional requirements translating goals, software processes to
be composed, and, technological capabilities supporting the
composition. As a consequence, both the functional and the
adaptation logics of the proposed approach are embedded in
the above-mentioned model. This causes different modeling
issues to be discussed, when comparing to related literature.
In the following subsections, the proposed approach is com-
pared to recent literature in the topics mainly characterizing
it.

Approaches more similar to ours can be found in [11,16,
37].

The work in [37] adopts the SCA-ASM language, which
provides modeling primitives to represent service compo-
nent assemblies, to express internal service computation,
interaction, and orchestration, and to perform fault and
compensation handling. SCA-ASM combines the OASIS
standard SCA (Service Component Architecture)1 to model
the architecture and the assembly of an application, and the
ASM(Abstract StateMachine) formalmethod [10] to specify
services’ behavior. Therefore, thework in [37] represents one
of the few attempts to model both structure and behavior of
service components in a unique framework integrating archi-
tectural and behavioral views. With respect to this work, we
propose a data structure—a graphmodel—able to specify the
dynamic behavior of the composed application, to evaluate
cost parameters, and to select the best composition at runtime
of a software architecture which is optimal with respect to
all the other design alternatives satisfying the same require-
ments. Therefore, with respect to the approach in [37], our
focus is to optimize certain quality requirements in a dynamic
manner.

1 Service Component Architecture (SCA). http://www.oasis-opencsa.
org/sca.

123

http://www.oasis-opencsa.org/sca.
http://www.oasis-opencsa.org/sca.


114 Complex Intell. Syst. (2016) 2:111–124

Also in [11], a graph-based approach based on graph
transformation is used tomodel self-adaptation.With respect
to the types attribute graph grammar used to represent the
application and adaptation logic proposed in [11], we use
graph model to represent and to manage the adaptation logic
with purposes of quality requirements optimization. In fact,
a cost function is the base of the path extraction algorithm to
find the best application composition.

Third, the approach in [16] relies on a service-oriented
paradigm. A rigorous and lightweight theoretical foundation
for representing the behavior of heterogeneous things is pro-
posed. The work considers DPWS, a new emergent OASIS
standard based onWeb Service architectures to support inter-
operability among heterogeneous things. They propose to
extend DPWS to specify the behavior of things. They also
propose verification techniques to check if a composition of
things fulfills or violates the behavior of those things. In fact,
there is still a need to represent explicitly the behavior of
things to develop applications in a more rigorous way. With
respect to this approach that also refers to the domain of Inter-
net of things adaptive composition, we model a metamodel
of the adaptive composition of services and/or application
based on behavioral changes in the user’s requirements and
in external context.

Anyway, with respect to all the existing approaches that
we will further describe in the following state of the art,
our model is abstract level. In fact, we propose a metalevel
for architectural design based on requirements optimization.
The metalevel is hence independent from specifications or
properties for verification or design time-modeling issues. It
ismainly concernedwith having a high-level framework to be
used for metamodeling of self-adptiveness and integration of
applications deriving from several interoperable application
domains.

Modeling context-aware and self-adaptive systems

Models for context-aware and self-adaptive systems have
been widely studied in the last years, and several surveys
have been proposed (see the work in [14,19], just to name the
most well known). The work in [39] provides an exhaustive
and structured state of the art and compares three approaches
to support the implementation of adaptive systems.

A thorough analysis of formal approaches to self-adaptive
systems may be found in [46]. According to this study,
research proposals seem to fall into two not-overlapping sets:
methods providing guarantees about the design of a self-
adaptive systems and methods performing run-time analysis
to support adaptations with particular guarantees. Only a few
studies transfer formalization results over different phases of
the software life cycle.

To bridge such a gap, Weyns [45] extends the work in
[47] that defines formally founded design models for decen-

tralized self-adaptive systems that cover structural aspects
of self-adaptation. The reference model, called FORMS
(FOrmal Reference Model for Self-adaptation), offers a
vocabulary that consists of a small number of primitives and
a set of relationships among them that delineates the rules
of composition. In [45], such a model has been integrated
in an approach to validate behavioral properties of decentral-
ized self-adaptive systems to guarantee the required qualities.
This approach has also been successfully developed in [26],
where the authors present a case study of a decentralized
traffic monitoring system and use model checking to guaran-
tee a number of self-adaptation properties for flexibility and
robustness. The main system processes are modeled with
timed automata, and the required properties are specified
using timed computation tree logic (TCTL).

Both in [37] and in [45], a decentralized approach to
control is taken and adaptation is realized with a MAPE-K
(Monitor-Analyse-Plan-Execute components over a shared
Knowledge) feedback loop [28]. In particular, the work
in [37] realizes the feedback loop described in [48]—and
recalled in “Self-adaptive systems”—via MAPE-K.

A conceptual and methodological framework for formal
modeling, validating, and verifying distributed self-adaptive
systems is presented in [5] by some of the authors of [37].
The authors show how to specify MAPE-K loops for self-
adaptationAbstract StateMachines. In particular, the concept
of multi-agent Abstract State Machines is used to specify
decentralized adaptation control usingMAPE computations.

The work in [2] proposes the goal-oriented framework
SimSOTA for modeling, simulating, and validating MAPE-
K feedback loop models of self-adaptive systems. SimSOTA
also adopts a decentralized control strategy and a semi-formal
notation—UML activitymodels— tomodel feedback loops.

In [11], graph transformation is used to model self-
adaptation. Modeling of evolving systems based on com-
ponents is instead adopted in [36]. Models for service
choreography and composition are employed in [6] and by
the same authors in [7], with specific reference to Future
internet applications. Semantic approaches have been intro-
duced in [33] to design self-adaptive architectural models in
IoT. The work in [34] adopts the same techniques for run-
time verification.

In [12], the authors overview emerging techniques for
the engineering of high-integrity self-adaptive software;
in the same paper, a service-based architecture aimed at
integrating these techniques is introduced. The approach pro-
posed in [42] integrates run-time verification enablers in the
feedback adaptation loop of the ASSET adaptive security
framework. The scope of this integration is guaranteeing
self-adaptive security and privacy properties in the eHealth
settings. In [23], the authors present an approach dealing
with the run-time verification of behavior-aware composi-
tion of things. They propose to check whether a mashup

123



Complex Intell. Syst. (2016) 2:111–124 115

of things respects the specified behavior of the composed
things. The approach is based on mediation techniques and
complex event processing and is able to detect and inhibit
invalid invocations. As a consequence, things only receive
requests compatible with their behavior.

Modeling systems goals and requirements

The modeling of requirements for development and veri-
fication has also been widely studied. The work in [32]
summarizes most relevant results. In this paper, behavioral
adaptation is considered for customizing software, to per-
fectly meet user’s needs in different contexts. The work
in [18] models requirement changes at runtime. In this work,
requirements are modeled at runtime and derived from a
model conceived at design time on the basis of goals.

Moreover, requirements have been studied and formal-
ized with verification purposes in [13]. The formal technique
presented in this paper is called continual verification and
is proposed to ensure reliability and performance require-
ments of safety-critical systems, even when they evolve. The
run-time quantitative verification (RQV) technique has been
proposed in [21] to make systems self-adaptive to chang-
ing workloads, environments, and goals. The approach is
targeted to self-adaptive systems used in safety-critical and
business critical applications, characterized by the need to
comply with strict non-functional requirements.

Most of the approaches that use specifications, such as for-
mal methods, assume operational requirements to be given.
However, deriving correct operational requirements from
high-level goals is challenging and is often delegated to
error-prone processes. Letier and Lamwsveerde [31] pro-
pose an iterative approach that allows for the derivation of
operational requirements from high-level goals. In this work,
goals are expressed in real-time linear temporal logic (RT-
LTL). The approach is based on operationalisation patterns.
Operationalization is a process thatmaps declarative property
specifications to operational specifications satisfying them.
The approach produces operational requirements in the form
of pre-, post-, and trigger conditions. The approach is guar-
anteed to be correct, i.e., the conjunction of the operational
requirements entails the goal specification in RT-LTL. The
approach is limited to a collection of goals and requirement
templates provided by the authors. Moreover, it needs a fully
refined goal model that requires specific expertise and is a
labour-intensive and error-prone process.

The tool-supported framework proposed in [3,4] com-
bines model checking and Inductive Logic Programming
(ILP) to elaborate and refine operational requirements in
the form of pre- and trigger conditions. Such conditions are
correct and complete with respect to a set of system goals.
System goals are in the form of LTL formulas. The approach
works incrementally by refining an existing partial specifi-

cation of operational requirements, which is verified with
respect to the system goal. The verification is performed
usingmodel checking, which returns a counter example if the
considered property is not valid on the model. The counter
example is exploited to learn and refine the operational
requirements. However, the approach does not support the
learning of the operational requirements for a single system
component. The approach presented in [15] automatically
generates, via a learning algorithm, the assumptions that an
environment needs to satisfy for someproperty to hold. These
assumptions are initially approximated, but become gradu-
ally more precise by means of counter examples obtained by
model checking the systemcomponents and the environment.
In [22], the authors observe that, in real cases, a component
is required to satisfy properties only in specific environ-
ments. Moved by these motivations, they directly generate
assumptions tailored for a tern (component, property, and
environment).

Use case scenario

The basic idea of the proposed approach is illustrated by
means of a use case scenario in the following.

It is a cold winter evening, the temperature in the house
is low, the heating system is activated to reach soon a tem-
perature that will ensure comfort and well-being to Bob and
Mary that are going to come back home after a busy working
day. The blinds close to avoid the dispersion of heat. As soon
as they get into the house, the lights turn on. Mary goes into
the kitchen and set about making dinner; she turns on the
oven that will soon bake tasty pork shank. In the laundry, the
washer and dryer are temporarily suspended to avoid over-
load. Bob comes into the living room, where the lights turn
on. He is very tired and decides to sprawl on the sofa and
enjoy some videos. Therefore, he prepares the projector for
watching the video taken by of his GoPRO while skying the
previous Sunday on mountain holiday. The video projection
begins, and the lights turn down to create soft lights.

Later, Mary goes—as every evening—to the basement
to train on sports equipment while waiting for dinner to
be ready. The daily news flow on the monitor of the tapis
roulant on which Mary is training. Through headset she lis-
tens directives of the exercises to be carried out, according to
the training program resulting from the control of the calo-
ries consumed in the day and of the physical activity already
performed. Mary wears her heart rate and distance walked
monitors for physical activity. When the goal of daily train-
ing is going to be reached, in the bathroom, the heating is
switched on, and the whirlpool is switched on to enable
Mary to practice proper relaxation after physical activity.
Mary goes into the bathroom and the lights turn on, while
the basement lights and sports equipment are turned off.

123



116 Complex Intell. Syst. (2016) 2:111–124

Meanwhile, in the garden, video surveillance cameras
found two suspicious individuals climbing on the first floor
and forcing a window to enter the house, despite the pres-
ence of people. The images sent to the nearby police station
trigger the alarm that promptly activates forces to stop the
thieves intrusion.

A spark caused by a failure of the electrical systems in
the garage makes burst fire and soon the garage is filled with
dense smoke. The high level of smoke triggers the fire alarm
that immediately reaches the nearest fire department to acti-
vate the necessary reliefs.

Adaptive processes composition

In this section, the proposed approach to process composition
is detailed. In particular, “The software architecture” presents
the principles of the software architecture to be composed.
“The model” introduces the graph-based model for run-time
composition, while “Fact process technology algorithm” and
“Cost function” propose, respectively, a solving algorithm
and a description of the cost function labeling the graph.

The software architecture

The hardware infrastructure of the network is composed by
motes, with limited memory and computation capabilities.
Physical motes are mapped onto logical ones, and have a
virtual image atmiddleware level. The features of themiddle-
ware are those of a REST middleware, whose functionalities
can be extended through the implementation of adhoc plug-
ins.

Figure 1 shows the software architecture executed at the
sensor gateway, which is made up of:

1. a REST middleware with physical motes;
2. a variable number of application or protocol plugins

encoding functionalities that can be run-time loaded,
depending on the specific goal to be addressed;

3. a master (application) plugin in charge for checking and
managing variations in the context, translating them in
terms of goals and finding the best composition of plu-
gins addressing the deriving goals [by implementing an
algorithm, Fact Process Technology (FPT) and proposed
“Fact process technology algorithm”].

Sensors’ detection is managed at middleware level, where
subscribers have to be registered and where updated data can
be sent. Themaster plugin performs an adaptive composition
of processes triggered by occurring facts (either retrieved by
sensors or caused by the execution of other processes); the
composition needs to address a goal by satisfying high level,
mainly operational, requirements.

Fig. 1 Software architecture executed at the sensor gateway

Fig. 2 Schema of the self-adaptive composition

The resulting software architecture is compliant with the
schema of self-adaptive system originally proposed in [48]
(and recalled in “Self-adaptive systems”) and adapted to the
proposed model as in Fig. 2. The reader may notice that the
adaptation layer works as managing subsystem and embeds
all components involved in the composition of a software
architecture: the master plugin, the graph model, the cost
function labeling the graph, and the composition algorithm.
The instantiation layer works instead as managed subsystem
and embeds the application plugins and the sensor resources
belonging to the middleware which are used to monitor the
environment. The adaptation layer may, in fact, monitor the
environment either directly (by the master plugin) or through
the instantiation level. Moreover, the adaptation layer may
adapt components in the instantiation layer, thus affecting
the environment.

The model

As introduced in “Introduction and motivation”, the model
hereby proposed has two control levels: one aimed at meta-
modeling and one related to instantiation.

123



Complex Intell. Syst. (2016) 2:111–124 117

The model is a graph, whose nodes describe retrieved
facts, processes triggered by facts and technologies that can
be adopted to implement processes. The main advantage of
using a graph structure is the possibility to use algorithms
well known in graph theory to extract subgraphs satisfying
a given goal. In particular, the graph can be visited with the
objective to determine the best (according to any preference
relation) sequence of processes to be executed and the best
related technologies to adopt when retrieved facts require
intervention. The retrieved sequence of processes represents
the best available design alternative and defines the opera-
tional requirements corresponding to the original goal.

Metamodel At metamodeling level, the model is defined
as Resource Super Graph in the following:

Definition 1 [Resource Super Graph (RSG)] Let F, P, T
be three sets describing facts, processes, and technologies,
respectively.

A Resource Super Graph is a weighted directed graph
G = {V,E}, such that:

– V = F ∪ P ∪T, i.e., a vertex can model a fact, a process
or a technology;

– E = (F×P)∪ (P×T)∪ (T×F), i.e., an edge connects
either a fact to a process or a process to a technology or
a technology to a fact;

– a function c : E → �+∪{0} labels edges in E as follows:

1. c(v,w) is the cost of performing a process w trig-
gered by a fact v, for v ∈ F and w ∈ P .

2. c(v,w) is the cost of implementing a process v in a
technology w, for v ∈ P and w ∈ T .

3. c(v,w) = 0, for v ∈ T and w ∈ F .

As stated in Definition 1, nodes in the graph can be dis-
tinguished in: Fact nodes, Process nodes, and Technology
nodes:

– Facts nodes model statuses occurring in the observed
scenario; they can be directly perceived by the sensor
network or be the result of some process implemented in
some technology.

– Process nodes model operations which may be trig-
gered by the occurrence of facts; they can distinguished
in preprocessing operations—aimed at inferring new
facts from raw sensor data—and processing operations—
aimed at managing facts requiring intervention.

– Technology nodes model technological features of com-
putational nodes available to perform processes; for
example, a node modeling the middleware describes the
network type, among other features, while a node model-
ing a mobile device describes its storage capacity, RAM,
screen size, and so on.

Again, according to Definition 1, three kinds of edges are
possible in the graph model:

– edges (v,w) ∈ F×P imply that a fact vmaybemanaged
by a process w with a cost c(v,w).

– edges (v,w) ∈ P × T imply that a process v may be
implemented by technology w with a cost c(v,w).

– edges (v,w) ∈ T × F imply that the implementation of
a process in a technology v causes a fact w to occur; the
cost associated to such an implication is zero, because it
maps an unavoidable effect of the implementation.

Software architectures to be composed are aimed at the
satisfaction of goals. In the following, a Goal is defined
according to the proposed metamodel.

Definition 2 (Goal) Given an RSG R = (V, E), defined
according to Definition 1, a Goal G in R is an ordered pair
(s, d) with s ∈ F ∩ V and d ∈ F ∩ V .

Intuitively, a goal is defined as a transition from an original
status (modeled by the fact node s) to a destination status
(modeled by the fact node d).

The reader may note that, given the graph structure of an
RSG R, if a goal (s, d) is identified in R, all paths connect-
ing s to d need to match patterns made up by sequences of
ordered quadruples (Fact, Process, T echnology, Fact).
Of course, many of such paths exist, which correspond to
different design alternatives addressing the same goal. Nev-
ertheless, this paper only focuses on finding a minimum cost
path and to determine the Resource SubGraph (RSubG) of
RSG, defined by such a path. The cost cost (p) of a path p
is defined as the sum of costs c(v,w) of all edges (v,w)

belonging to p.

Definition 3 [Resource SubGraph (RSubG)] Given an RSG
R = (V, E), defined according to Definition 1, and a goal
(s, d) in R, defined according to Definition 2, a Resource
SubGraph (RSubG) of R is a direct graph S = (V ′, E ′),
such that:

– S ⊆ R;
– s ∈ V ′ and d ∈ V ′;
– E ′ includes a path p connecting s to d, such that
cost (p) ≤ cost (r) for every path r in R connecting s
to d, with r 
= p.

A path defining an RSubG identifies also a sequence of
operational requirements translating the input goal in terms
of pairs (Process, Fact) included in the path.

Instantiation The introduced metamodel is general enough
to describe, independently on the application context, all ele-
ments involved in the achievement of different goals, through
the composition of heterogeneous software processes, that

123



118 Complex Intell. Syst. (2016) 2:111–124

may be implemented in several available technological solu-
tions.

Nevertheless, at instantiation level, the metamodel needs
to be referred to an application scenario, for which spe-
cific facts, processes, and technologies have to be identified,
together with the relations among them. In fact, observ-
able facts, performable processes, and available technologies
depend on the specific scenario, and so do nodes and edges
in an RSG.

This activity leads to the definition of an application-
specificRSG.Then,when—atmiddleware level—avariation
in the context is revealed by the master plugin, the actual
scenario settings have to be processed to determine the best
process composition managing such a variation (unless the
variation does not require intervention).

In other words, when an occurring fact is revealed, the
composition process goes through the following steps:

1. Construction of the contextual RSG: (i) some nodes in
the application-specific RSG may become unavailable at
runtime and (ii) the relationship between nodes and the
related cost may depend on run-time settings.

2. Identification of the Goal: depending on run-time set-
tings, an occurring fact s can be source of one or
more goals (s, d) to be addressed through a composition
process leading to d.

3. Computation of an RSubG determined by the RSG and
the Goal.

Of course, Step 1 does not build from scratch one RSG for
each execution, but it is meant to customize the application-
specific model on the basis of run-time settings, through a
set of rules to be formalized. As an example, at runtime, it
may happen that none of the available devices satisfies the
requirements of a process or that a process may be adopted
to manage an occurring fact only depending on run-time set-
tings.

Moreover, the execution of Step 2 asks for the definition
of a set of rules translating occurring facts into goals, even in
this case by taking run-time information into account. As an
example, a reduction of the temperature in a roommayormay
not be translated in the goal of increasing the temperature,
depending on the preferences set for that room or on the
external temperature.

In “Model instantiation”, it is provided an example of
model instance referred to a fragment of the use case intro-
duced in “Use case scenario”.

Fact process technology algorithm

Algorithm Fact Process Technology (FPT) is now proposed
for finding an RSubG S of an RSG R = (V, E), given R and
a goal (s, d) in R.

The algorithm is implemented by the master plugin,
which schedules, manages, and monitors facts, technolo-
gies and processes execution on the devices. Communication
among plugins occurs through the middleware that forwards
requests, data, and responses between plugins and sensors,
according to low-level protocols; the interaction is instead
scheduled and managed by the high-level master plugin.

A running plugin is identified by a quadruple (Fact,
Process, T echnology, Fact), whose cost is determined
through the cost function defined in “Cost function”. Algo-
rithm 1 extracts the minimum cost solution for running
plugins required by occurring facts.

Data: A Resource SuperGraph R = (V, E), a goal (s, d) in R,
Result: A Resource SubGraph S = (V ′, E ′) of R

1 let c be the function labeling R;
2 solve DI J K ST RA(R, c, s)
3 read a minimum cost path pmin from s to d
4 add all nodes in pmin to V ′
5 add all edges in pmin to E ′

Algorithm 1: FPT

In Row 2, the Dijkstra algorithm [20], well-known form
graph theory, is adopted to associate to each node vi ∈ V ,
the cost of the (minimum) path from s to vi , and the node
vi−1 preceding vi in the minimum cost path. Then (Row 3),
the minimum cost path from s to d is read from the results
of Dijkstra algorithm and S is consequently built in Rows 4
and 5.

The extracted path can also be seen as a sequence of oper-
ational requirements translating the input goal.

Cost function

To define a cost function, we first need to refer separately to
the cost of performing a process triggered by a fact and the
cost of implementing a process in a given technology. The
former cost, c(v,w) for v ∈ F and w ∈ P includes: (i) a
fixed cost (plugin fixed cost—pfc) depending on some com-
putational features known at compile time, such as time and
size complexity of the process and (ii) a variable cost (plu-
gin variable cost—pvc) depending on run-time factors, such
as the values and the size of input data. As a consequence,
c(v,w) = pfc+ pvc for v ∈ F and w ∈ P .

The latter cost, c(v,w) for v ∈ P and w ∈ T , is variable
and depends on: (i) the network supporting the implementa-
tion and (ii) the status of the device w. As a consequence,
c(v,w) = nc + dc for v ∈ F and w ∈ P , where nc stands for
network cost and dc stands for device cost.

The cost of the network (nc) includes information about
the status of the network at the time of plugin execution
request, such as connection delay, network bit rate, packet

123



Complex Intell. Syst. (2016) 2:111–124 119

size, and so on. This cost is zero for the device, where the
middleware is installed and, therefore, is crucial for choosing
between remote and local executions of a plugin, depending
on the network conditions.

The device cost is variable and depends on the type of
device, which may be either the local one, where the middle-
ware is installed, which is main powered, or a remote device,
i.e., a portable device (such as a smartphone or a tablet) usu-
ally supplied by batteries.

In the latter case, plugins implemented in a remote device,
and dc depends only on the availability of computational,
storage and energy resources, such as CPU, RAM, storage
capacity, and battery.

In the former case, plugins managed by the middleware,
dc has the following components:

– a middleware cost (mc), which depends on the RAM
and/orCPUavailable in the device,where themiddleware
is installed; this cost is logically composed by two items:
amiddleware preprocessing cost (mpc), which is the cost
of evaluating whether executing the plugin locally or for-
warding it to another device and a middleware execution
cost (mec), which applies only to a local execution

– forwarding cost (fc) which is the cost of forwarding the
plugin to another device.

The factors affecting both mc and fc are contextual and
depend on the number of active connections or services that
are being served at the time a request is made.

As a consequence, dc = mc for plugins executed in the
local device and dc = mpc +fc for plugins forwarded by the
middleware to other devices.

The resulting cost function may be defined as follows:

c(v,w) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

p f c + pvc v ∈ F and w ∈ P

mc v ∈ P and w ∈ T,
middleware installed in w,

v executed in w

nc + mpc + f c v ∈ P and w ∈ T,
middleware installed in w,

v forwarded to other devices

nc + dc v ∈ P and w ∈ T,
w remote device

0 v ∈ T and w ∈ F

Model instantiation

Before instantiating the model in the smart home example
scenario described in “Use case scenario”, the main argu-

ments supporting the choice of such a scenario are briefly
recalled.

The example is aimed at demonstrating the peculiarities of
the proposed approach, which is general purpose and, conse-
quently, could be implemented in any application scenario.2

Themain peculiarities to be demonstrated are summarized
in the following list:

(a) high-level modeling of occurring facts;
(b) flexibility of proposed solutions with respect to environ-

mental settings;
(c) support to the automated extraction of operational requi-

rements from algorithm results.

Although apparently simple, the smart home example
scenario in “Use case scenario” allows for showing all the
peculiarities above.

For the sake of example, three portions of the described
scenario are considered:

1. As soon as they get into the house, the lights turn on.
2. Mary goes into the bathroom, and the lights turn on,while

the basement lights and sports equipment are turned off.
3. two suspicious individuals climbing on the first floor and

forcing a window to enter the house, despite the presence
of people in the house. The images sent to the nearby
police station trigger the alarm that promptly activates
forces to stop the thieves intrusion.

Figure 3 shows the application-specific Resource Super
Graph sufficient to model this fragment of the use case.

The reader may verify that occurring facts, even though
quite heterogeneous, are modeled in a small number of nodes
that describe, at high level, changes in the scenario of interest.
Such changes may be either straightly perceived by sensors
(such as a temperature, light, position, and air variation) or
revealed by the master plugin by combining information in
the environment (such as a safety change). In otherwords, the
model presented hereby allows for representing according
to the same format, i.e., as fact nodes in an RSG, pieces
of information very dissimilar from each other in terms of
granularity.

The same consideration applies to the process nodes: some
processes in the example RSG refer to mechanical actions to
be performed (such as turn on/off heater, open/close blinds,
and turn on/off lights), while some others describe actions
involving the exchange of information (such as informa-
tion forwarding and emergency call). All such processes,
although completely different form each other, are formal-
ized as high-level process nodes in the model.

2 A first attempt of instantiation for the adaptation of cloud-based appli-
cations has been addressed in [1].

123



120 Complex Intell. Syst. (2016) 2:111–124

Fig. 3 RSG for the use case
scenario

Notably, the only way to represent heterogeneous facts
and processes in a unique model is keeping at high level
their formalization, as the proposed approach does.

In the following, the three fragments of the example sce-
nario are detailed and used for the demonstrative objectives
elicited above.

First fragment The occurring fact initiating the com-
position is a Position_Variation (“As soon as they
get into the house...). Coherently with the use case
description (... the lights turn on”), the goal is a pair
(Position_Variation, Light_Variation). In fact, if
the source fact is the “position variation” (i.e., there are
people in the house), then it must be increased the lumi-
nosity (i.e, a light variation is produced).
In the RSG, there are different paths that can be followed
to address the goal. For example, the Position_Varia-
t ion fact is connected to several processes. If the goal is
defined as (Position_Variation, Light_Variation),
then the solution can be via either Turn_on_Lights or
Open_Blinds processes. Moreover, both processes are
connected to the two different technology nodes.
The FPT algorithm selects the minimum cost path
and determines the RSubG corresponding to the intro-

duced RSG and goal, described in Fig. 4. The RSubG
shows that the best solution addressing the goal is
through the process Turn_on_Lights and the tech-
nology Wi f i_and_Middleware. The only operational
requirement deriving from the goal is the pair
(Turn_on_Lights, Wi f i_and_Middleware).
We notice that the path suggested by FPT repre-
sents one of the process composition alternatives that
can be designed to satisfy the goal. In particular,
choosing this path implicates discarding all the other
design alternatives, i.e., namely, (Turn_on_Lights, 4G
_and_Mobile), (Open_Blinds, Wi f i_and_Middle-
ware), (Open_Blinds, 4G _and_Mobile). In the des-
cription of the other two fragments, there is not explicit
reference to the discarded design alternatives, for a mat-
ter of brevity. Nevertheless, the reader may easily derive
them according to the considerations discussed for this
fragment.
Second fragment The same line of reasoning as in the first
fragment applies to the second one. In fact, if the two sit-
uations share the run-time environment (time of the day,
luminosity, and so on), also the fragment“Mary goes into
the bathroom and the lights turn on” is translated into the

123



Complex Intell. Syst. (2016) 2:111–124 121

Fig. 4 RSubG extracted for the
first fragment of the use case

Fig. 5 RSubG extracted for the
third fragment of the use case

goal (Position_Variation, Light_Variation) and
generates the same RSubG and, thus, the same oper-
ational requirement. Analogously, the fragment “...the
basement lights and sports equipment are turned off”
is also translated into a goal (Position_Variation,
Light_Vari ation), but this time, the RSubG includes
the process Turn_of f _Lights and one of the two avail-
able technologies (they share the cost of executing Turn
_of f _Lights). If, for example, 4G_and_Mobile is
chosen, this new goal is translated in the operational
requirement (Turn_of f _Lights, 4G_and_Mobile).
Third fragment In this case, a Position_Variation
occurs together with run-time settings denoting an intru-
sion.As a consequence, this fact is translated in a different
goal, (Position_Variation, Sa f ety_Change), which
means that the processes composition aims at reaching
safety in the house. The detected intrusion causes the
originating fact to trigger the process I n f ormation_
Forwarding (The images sent to the nearby police sta-
tion...), which, independently on the technology imple-
menting it, produces a Sa f ety_Change: the house has
become unsafe. This Sa f ety_Change does not satisfy
the goal and needs to be managed by one or more fur-
ther processes. In particular, the use case selects the
Emergency_Call process, which, again independently
on the technology, makes the house safe (...trigger the
alarm that promptly active forces to stop the thieves intru-
sion.). TheRSubG selected byFPT algorithm is shown in
Fig. 5 and defines the following set of operational require-
ments: {(I n f ormation_Forwarding,Wi f i_and_Mi-
ddleware), (Emergency_Call, 4G _and_Mobile)}.

The reader may notice that the same fact node,
Position_Variation, may be instantiated in the case of
“safe” entrance in a room in darkness conditions (Fragments

1 and 2), in the case of “safe” exit from a room in darkness
conditions (Fragment 2), and in the case of “unsafe” entrance
in the house (Fragment 3). Analogously, the fragments show
that: the fact node Light_Variation has been instantiated
in the case of luminosity increment (Fragments 1 and 2)
and decrement (Fragment 2); the fact node Sa f ety_Change
is instantiated in the case of change from unsafe to safe
status and viceversa (Fragment 3). As suggested in the dis-
cussion of the fragments, the master plugin distinguishes
the cases of Position_Variation , Light_Variation, and
Sa f ety_Change by sensing the environment. Such a work-
ing mode is coherent with the peculiarity a in the above
list.

When a fact occurs, the master plugin is also in charge
for processing information sensed in the environment,
to translate the fact in a goal and build the contextual
RSG. The analyzed fragments show how the same source
fact, Position_Variation, may be managed according to
three different contextual RSGs, to satisfy three different
goals. This demonstrates peculiarity (b) in the above list.
In particular, in the first fragment, the goal is an incre-
ment of luminosity and, consequently, the only processes
leading to such a Light_Variation are considered for
the composition. In the second fragment, the variation of
Mary’s position originates two different goals: an incre-
ment of luminosity in the room Mary is entering and
a decrement of luminosity in the room Mary is leav-
ing. Two different Light_Variation goals are generated,
and different processes are taken into account to reach
such goals. As a consequence, two different compositions
of processes are retrieved and one design alternative for
each of them is discarded. In the third fragment, again,
a Position_Variation generates a completely different
goal, because it comes together with sensed information
denoting an intrusion. As a consequence, only processes

123



122 Complex Intell. Syst. (2016) 2:111–124

leading to safety changes are taken into account, and the
composition detailed above is proposed to reach safety con-
ditions.

Finally, it is noteworthy that the description of each frag-
ment explicitly reports the operational requirements in which
the proposed approach translates the goal. This demonstrates
peculiarity (c) in the above list.

Conclusion and future work

This paper introduced an approach to goal-driven architec-
tural composition of adaptable systems. The approach allows
for designing, at runtime, the architecture of a software sys-
tem. The system is conceived to address goals originated by
occurring facts revealed at runtime in a scenario of inter-
est.

The approach proposes a formal model, composed by
a metamodeling and an instantiation level. The meta-
model is general and technology independent, since it
describes different configurations of adaptable software
and can be instantiated in different, platform-dependent,
domains.

The model is based on a graph structure represent-
ing scenarios of interest in terms of facts, processes, and
technologies. Moreover, it adopts an algorithm specifi-
cally proposed to find a minimum cost composition of
processes. The resulting composition builds a software
architecture satisfying the input goal and, at the same
time, defines the operational requirements translating the
goal.

The model has been instantiated in a sensor network
environment, and the algorithm has been validated in a
smart home example scenario. Currently, the model is
object of a thorough evaluation aimed at full validation
and testing. In the near future, the proposed approach
will be extended to the composition of software architec-
tures addressing multiple goals and to different application
domains.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Scandurra P,MongielloM, Colucci S, Grieco LA (2016) Towards a
goal-oriented approach to adaptable re-deployment of cloud-based
applications. In: Proceedings of the 6th international conference on

cloud computing and services science, pp 253–260. doi:10.5220/
0005861602530260, ISBN 978-989-758-182-3

2. Abeywickrama DB, Hoch N, Zambonelli F (2013) Simsota: engi-
neering and simulating feedback loops for self-adaptive systems.
In: Proceedings of the International C* Conference on Computer
Science and Software Engineering, C3S2E ’13, ACM, New York,
NY, USA, pp 67–76

3. Alrajeh D, Ray O, Russo A, Uchitel S (2009) Using abduction and
induction for operational requirements elaboration. J Appl Logic
7(3):275–288 (Special issue: abduction and induction in artifi-
cial intelligence)

4. Alrajeh D, Kramer J, Russo A, Uchitel S (2009) Learning oper-
ational requirements from goal models. In: Proceedings of the
31st International Conference on Software Engineering, ICSE
’09, IEEE Computer Society, Washington, DC, USA, pp 265–
275

5. Arcaini P, Riccobene E, Scandurra P (2015) Modeling and analyz-
ing MAPE-K feedback loops for self-adaptation. In: Proceedings
of the 10th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS ’15, IEEE Press,
Piscataway, NJ, USA, pp 13–23

6. Autili M, Di Benedetto P, Inverardi P (2009) Context-aware adap-
tive services: the PLASTIC approach. In: Chechik M, Wirsing M
(eds) Fundamental approaches to software engineering, 12th Inter-
national Conference, FASE 2009, held as part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2009,
York, UK, 22–29 March 2009. Proceedings, vol 5503, Lecture
notes in computer science. Springer, pp 124–139

7. Autili M, Inverardi P, Tivoli M (2014) CHOREOS: large scale
choreographies for the future internet. In: Demeyer S, Binkley D,
Ricca F (eds) 2014 Software Evolution Week—IEEE Conference
on Software Maintenance, Reengineering, and Reverse Engineer-
ing, CSMR-WCRE 2014, IEEE Computer Society, , Antwerp,
Belgium, 3–6 February 2014, pp 391–394

8. Baldauf M, Dustdar S, Rosenberg F (2007) A survey on context-
aware systems. Int J Ad Hoc Ubiquitous Comput 2(4):263–277

9. Ben Hamida A, Kon F, Ansaldi Oliva G, Moreira Dos Santos CE,
Lorré J-P,AutiliM,DeAngelisG,ZarrasAV,GeorgantasN, Issarny
V,BertolinoA (2012)An integrated development and runtime envi-
ronment for the Future Internet. In: Alvarez F, Cleary F, Daras P,
Domingue J, Galis A, Garcia A, Gavras A, Karnouskos S, Krco S,
Li M-S, Lotz V, Müller H, Salvadori E, Sassen A-M, Schaffers H,
Stiller B, Tselentis G, Turkama P, Zahariadis TB (eds) The Future
Internet—future internet assembly 2012: from promises to real-
ity, vol 7281, Lecture notes in computer science. Springer, Berlin,
Heidelberg, pp 81–92

10. Borger E, Stark RF (2003) Abstract state machines: a method for
high-level system design and analysis. Springer-Verlag New York,
Inc., Secaucus

11. Bucchiarone A, Ehrig H, Ermel C, Pelliccione P, Runge O (2015)
Rule-based modeling and static analysis of self-adaptive systems
by graph transformation. In: De Nicola R, Hennicker R (eds) Soft-
ware, services, and systems—essays dedicated to Martin Wirsing
on the occasion of his retirement from the Chair of Programming
and Software Engineering, vol 8950, Lecture notes in computer
science. Springer, Switzerland, pp 582–601

12. Calinescu R (2013) Emerging techniques for the engineering of
self-adaptive high-integrity software. In: Cámara J, de Lemos R,
Ghezzi C, Lopes A (eds) Assurances for self-adaptive systems—
principles, models, and techniques, vol 7740, Lecture notes in
computer science. Springer, Berlin, Heidelberg, pp 297–310

13. CalinescuR, RafiqY, JohnsonK, BakirME (2014)Adaptivemodel
learning for continual verification of non-functional properties. In:
Proceedings of the 5th ACM/SPEC International Conference on
Performance Engineering, ICPE ’14, ACM, New York, pp 87–98

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.5220/0005861602530260
http://dx.doi.org/10.5220/0005861602530260


Complex Intell. Syst. (2016) 2:111–124 123

14. Cheng BH, Lemos R, Giese H, Inverardi P, Magee J, Andersson
J, Becker B, Bencomo N, Brun Y, Cukic B, Di Marzo Serugendo
G, Dustdar S, Finkelstein A, Gacek C, Geihs K, Grassi V, Karsai
G, Kienle HM, Kramer J, Litoiu M, Malek S, Mirandola R, Müller
HA, Park S, Shaw M, Tichy M, Tivoli M, Weyns D, Whittle J
(2009) Software engineering for self-adaptive systems: a research
roadmap. In: Cheng BH, Lemos R, Giese H, Inverardi P, Magee
J (eds) Software engineering for self-adaptive systems. Springer-
Verlag, Berlin, pp 1–26

15. Cobleigh JM, Giannakopoulou D, Păsăreanu CS (2003) Learning
assumptions for compositional verification. In: Proceedings of the
9th International Conference on Tools and Algorithms for the Con-
struction and Analysis of Systems, TACAS’03, Springer-Verlag,
Berlin, Heidelberg, pp 331–346

16. Cubo J, Brogi A, Pimentel E. Behaviour-aware compositions of
things. In: 2012 IEEE International Conference on Green Comput-
ing and Communications (GreenCom), IEEE, Nov 2012, pp 1–8

17. Cubo J, Ortiz G, Boubeta-Puig J, Foster H, Lamersdorf W (2014)
Adaptive services for the future internet. J Univers Comput Sci
20(8):1046–1048

18. Dalpiaz F, Borgida A, Horkoff J, Mylopoulos J (2013) Runtime
goal models. In: Proceedings of the 7th IEEE International Confer-
ence on Research Challenges in Information Science (RCIS 2013).
Invited paper

19. de Lemos R, Giese H,Müller HA, ShawM, Andersson J, LitoiuM,
Schmerl BR, Tamura G, Villegas NM, Vogel T,Weyns D, Baresi L,
Becker B, Bencomo N, Brun Y, Cukic B, Desmarais RJ, Dustdar
S, Engels G, Geihs K, Göschka KM, Gorla A, Grassi V, Inverardi
P, Karsai G, Kramer J, Lopes A, Magee J, Malek S, Mankovski
S, Mirandola R, Mylopoulos J, Nierstrasz O, Pezzè M, Prehofer
C, Schäfer W, Schlichting RD, Smith DB, Sousa JP, Tahvildari L,
Wong K, Wuttke J (2013) Software engineering for self-adaptive
systems: a second research roadmap. In: de Lemos R, Giese H,
Müller HA, Shaw M (eds) Software engineering for self-adaptive
systems II—International Seminar, Dagstuhl Castle, Germany, 24–
29 October 2010 Revised Selected and Invited Papers, vol 7475,
Lecture notes in computer science. Springer, Berlin, Heidelberg,
pp 1–32

20. Dijkstra EW (1959) A note on two problems in connexion with
graphs. Numer Math 1(1):269–271

21. Gerasimou S, Calinescu R, BanksA (2014) Efficient runtime quan-
titative verification using caching, lookahead, and nearly-optimal
reconfiguration. In: Proceedings of the 9th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS 2014, ACM, New York, NY, USA, pp 115–124

22. Giannakopoulou D, Păsăreanu CS, Barringer H (2005) Compo-
nent verificationwith automatically generated assumptions.Autom
Softw Eng 12(3):297–320

23. González L, Cubo J, Brogi A, Pimentel E, Ruggia R (2013) Run-
time verification of behaviour-aware mashups in the internet of
things. In: Canal C, Villari M (eds) Advances in Service-Oriented
and Cloud Computing—Workshops of ESOCC 2013, Málaga,
Spain, 11–13 September 2013, Revised Selected Papers, vol 393,
Communications in computer and information science. Springer,
pp 318–330

24. Guinard D, Ion I, Mayer S (2011) In search of an internet of things
service architecture: REST or WS-*? A developers’ perspective.
In: Puiatti A, Gu T (eds) Mobile and ubiquitous systems: comput-
ing, networking, and services—8th International ICSTConference,
MobiQuitous 2011, Copenhagen, Denmark, 6–9 December 2011,
Revised Selected Papers, vol 104, Lecture notes of the Institute for
Computer Sciences, Social Informatics and Telecommunications
Engineering. Springer, pp 326–337

25. GuinardD,TrifaV,WildeE (2010)A resource oriented architecture
for the Web of Things. In: Internet of Things (IOT), 2010. IEEE,
pp 1–8

26. Iftikhar MU, Weyns D (2012) A case study on formal verification
of self-adaptive behaviors in a decentralized system. In: Kokash
N, Ravara A (eds) Proceedings 11th International Workshop on
Foundations of Coordination Languages and Self Adaptation,
FOCLASA 2012, 8 September 2012, Newcastle, UK, vol 91,
EPTCS, pp 45–62

27. Iftikhar MU,Weyns D (2014) ActivFORMS: active formal models
for self-adaptation. In: Engels G, Bencomo N (eds) 9th Inter-
national Symposium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS 2014, Proceedings, 2–3 June
2014, ACM, Hyderabad, India, pp 125–134

28. Kephart JO, ChessDM (2003) The vision of autonomic computing.
Computer 36(1):41–50

29. Kramer J, Magee J (2007) Self-managed systems: an architectural
challenge. In: Future of software engineering, 2007. FOSE ’07,
May 2007, pp 259–268

30. Laddaga R (1997) Self-adaptive software. Technical Report 98–12.
DARPA Broad Agency Announcement (BAA)

31. Letier E, Van Lamsweerde A (2002) Deriving operational software
specifications from system goals. In: Proceedings of the 10th ACM
SIGSOFT Symposium on Foundations of Software Engineering,
SIGSOFT ’02/FSE-10, ACM, New York, NY, USA, pp 119–128

32. Liaskos S, Khan SM, Litoiu M, Jungblut MD, Rogozhkin V,
Mylopoulos J (2012) Behavioral adaptation of information sys-
tems through goal models. Inf Syst 37(8):767–783

33. Mongiello M, Grieco LA, Vogli E, Sciancalepore M (2015)
Adaptive architectural model for Future Internet applications. In:
Communications in computer and information science, advances
in service-oriented and cloud computing. Springer, Switzerland

34. MongielloM, Pelliccione P, SciancaleporeM (2015) AC-Contract:
run-time verification of context-aware applications. In: Inverardi P,
Schmerl BR (eds) 10th IEEE/ACM International Symposium on
Software Engineering for Adaptive and Self-Managing Systems,
SEAMS 2015, Florence, Italy, 18–19 May 2015, IEEE, pp 24–34

35. Oreizy P, Gorlick MM, Taylor RN, Heimhigner D, Johnson G,
Medvidovic N, Quilici A, Rosenblum DS, Wolf AL (1999) An
architecture-based approach to self-adaptive software. IEEE Intell
Syst Appl 14(3):54–62

36. Pelliccione P, Tivoli M, Bucchiarone A, Polini A (2008) An archi-
tectural approach to the correct and automatic assembly of evolving
component-based systems. J Syst Softw 81(12):2237–2251

37. Riccobene E, Scandurra P (2015) Formal modeling self-adaptive
service-oriented applications. In: Proceedings of the 30th Annual
ACM Symposium on Applied Computing, SAC ’15, ACM, New
York, NY, USA, pp 1704–1710

38. Salehie M, Tahvildari L (2009) Self-adaptive software: landscape
and research challenges. ACM Trans Auton Adapt Syst 4(2):14:1–
14:42

39. Salvaneschi G, Ghezzi C, Pradella M (2013) An analysis of
language-level support for self-adaptive software. ACM Trans
Auton Adapt Syst 8(2):7:1–7:29

40. Strang T, Linnhoff-Popien C (2004) A context modeling survey. In:
Workshop on Advanced Context Modelling, Reasoning and Man-
agement, UbiComp 2004—The Sixth International Conference on
Ubiquitous Computing, Nottingham/England

41. Swetina J, Guang L, Jacobs P, Ennesser F, Seung SJ (2014) Toward
a standardized common M2M service layer platform: introduction
to oneM2M. IEEE Wirel Commun 21(3):20–26

42. Torjusen AB, Abie H, Paintsil E, Trcek D, Skomedal Å (2014)
Towards run-time verification of adaptive security for IoT in
eHealth. In: Weyns D (eds) Proceedings of the ECSA 2014 Work-
shops and Tool Demos Track, European Conference on Software
Architecture, 2014, ACM, Vienna, Austria, pp 4:1–4:8

43. Vögler M, Li F, Claeßens M, Schleicher JM, Sehic S, Nastic S,
Dustdar S (2015) COLT collaborative delivery of lightweight IoT
applications. In: Giaffreda R, Vieriu R-L, Pásher E, Bendersky

123



124 Complex Intell. Syst. (2016) 2:111–124

G, Jara AJ, Rodrigues JJPC, Dekel E, Mandler B (eds) Internet
of Things. User-Centric IoT—First International Summit, IoT360
2014, Rome, Italy, 27–28 October 2014, Revised Selected Papers,
Part I, vol 150, Lecture notes of the Institute for Computer Sci-
ences, Social Informatics and Telecommunications Engineering.
Springer, pp 265–272

44. Vogli E, Ben Alaya M, Monteil T, Grieco LA, Drira K (2015)
An efficient resource naming for enabling constrained devices
in SmartM2M architecture. IEEE Int Conf Ind Technol (ICIT)
2015:1832–1837

45. Weyns D (2012) Towards an integrated approach for validat-
ing qualities of self-adaptive systems. In: Proceedings of the
Ninth InternationalWorkshop onDynamicAnalysis,WODA2012.
ACM, New York, NY, USA, pp 24–29

46. Weyns D, IftikharMU, de la Iglesia DG, Ahmad T (2012) A survey
of formal methods in self-adaptive systems. In: Proceedings of
the Fifth International C* Conference on Computer Science and
Software Engineering, C3S2E ’12, 2012. ACM, New York, NY,
USA, pp 67–79

47. Weyns D, Malek S, Andersson J (2012) FORMS: unifying ref-
erence model for formal specification of distributed self-adaptive
systems. ACM Trans Auton Adapt Syst 7(1):8

48. Weyns D, Schmerl BR, Grassi V, Malek S, Mirandola R, Pre-
hofer C, Wuttke J, Andersson J, Giese H, Göschka KM (2010)
On patterns for decentralized control in self-adaptive systems.
In: de Lemos R, Giese H, Müller HA, Shaw M (eds) Software
Engineering for Self-Adaptive Systems II—International Seminar,
Dagstuhl Castle, Germany, 24–29 October, 2010 Revised Selected
and Invited Papers, vol 7475, Lecture notes in computer science.
Springer, pp 76–107

123


	Run-time architectural modeling for future internet applications
	Abstract
	Introduction and motivation
	Background
	Self-adaptive systems
	Goals and operational requirements
	REST middleware

	Related work
	Modeling context-aware and self-adaptive systems
	Modeling systems goals and requirements

	Use case scenario
	Adaptive processes composition
	The software architecture
	The model
	Fact process technology algorithm
	Cost function

	Model instantiation
	Conclusion and future work
	References




