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Abstract In this paper, we give and prove some coupled coincidence point theorems for mappings
F : X × X → X and g : X → X in partially ordered metric space X, where F has the mixed g-monotone
property. Our results improve and generalize the results of Bhaskar and Lakshmikantham (Nonlinear Anal
TMA 65:1379–1393, 2006), Luong and Thuan (Bull Math Anal Appl 2(4):16–24, 2010), Harjani et al. (Non-
linear Anal 74:1749–1760, 2011) and Choudhury et al. (Ann Univ Ferrara 57:1–16, 2011). We also give some
examples to illustrate our results.

Mathematics Subject Classification (2010) 47H10 · 54H25

1 Introduction and preliminaries

In 2006, Bhaskar and Lakshmikantham [7] introduced the notions of mixed monotone mapping and coupled
fixed point and proved some coupled fixed point theorems for the mixed monotone mappings and also dis-
cussed the existence and uniqueness of solution for a periodic boundary value problem. These concepts are
defined as follows.

Definition 1.1 [7] Let (X, �) be a partially ordered set and F : X × X → X . The mapping F is said to have
the mixed monotone property if F(x, y) is monotone non-decreasing in x and is monotone non-increasing in
y, i.e., for any x, y ∈ X ,
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x1, x2 ∈ X, x1 � x2 ⇒ F(x1, y) � F(x2, y)

and

y1, y2 ∈ X, y1 � y2 ⇒ F(x, y1) � F(x, y2).

Definition 1.2 [7] An element (x, y) ∈ X × X is called a coupled fixed point of the mapping F : X × X → X
if

x = F(x, y) and y = F(y, x)

The following are the main results in [7].

Theorem 1.3 [7] Let (X, �) be a partially ordered set and suppose there exists a metric d on X such that
(X, d) is a complete metric space. Let F : X × X → X be a continuous mapping having the mixed monotone
property on X. Assume that there exists k ∈ [0, 1) with

d (F (x, y) , F (u, v)) ≤ k

2
[d (x, u) + d (y, v)] (1.1)

for all x � u and y � v. If there exist two elements x0, y0 ∈ X with

x0 � F (x0, y0) and y0 � F(y0, x0)

then there exist x, y ∈ X such that

x = F(x, y) and y = F(y, x).

Theorem 1.4 [7] Let (X, �) be a partially ordered set and suppose there exists a metric d on X such that
(X, d) is a complete metric space. Assume that X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.

Let F : X × X → X be a mapping having the mixed monotone property on X. Assume that there exists
k ∈ [0, 1) with

d (F (x, y), F (u, v)) ≤ k

2
[d (x, u) + d (y, v)]

for all x � u and y � v. If there exist two elements x0, y0 ∈ X with

x0 � F (x0, y0) and y0 � F(y0, x0)

then there exist x, y ∈ X such that

x = F(x, y) and y = F(y, x).

Afterward, the theory of coupled fixed point in partially ordered metric spaces has developed rapidly (see
[1,4,9,11–16,22] and references therein). Luong and Thuan [15] proved the following result.

Theorem 1.5 [15] Let (X, �) be a partially ordered set and suppose there is a metric d on X such that (X, d)
is a complete metric space. Let F : X × X → X be a mapping having the mixed monotone property on X
such that there exist two elements x0, y0 ∈ X with

x0 � F(x0, y0) and y0 � F(y0, x0)

Suppose there exist non-negative real numbers α, β and L with α + β < 1 such that

d (F (x, y), F (u, v)) ≤ αd (x, u) + βd (y, v)

+L min

{
d (F (x, y), u), d (F (u, v), x),
d (F (x, y), x), d (F (u, v), u)

}
(1.2)

for all x, y, u, v ∈ X with x � u and y � v. Suppose either

(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn � x, for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn, for all n.

then there exist x, y ∈ X such that
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x = F(x, y) and y = F(y, x),

i.e., F has a coupled fixed point in X.

Harjani et al. [9] proved some generalizations of the main results in [7] and discussed the existence and
uniqueness of the solution of non-linear integral equations.

Theorem 1.6 [9] Let (X, �) be a partially ordered set and suppose there exists a metric d on X such that
(X, d) is a complete metric space. Let F : X × X → X be a mapping having the mixed monotone property
on X such that

ϕ (d (F (x, y), F (u, v))) ≤ ϕ (max{d (x, u), d (y, v)}) − φ (max{d (x, u), d (y, v)}) (1.3)

for all x � u and y � v, where ϕ, φ are altering distance functions. Suppose either

(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then gxn � gx for all n,
(ii) if a non-increasing sequence {yn} → y, then gy � gyn for all n.

If there exist two elements x0, y0 ∈ X with

x0 � F (x0, y0) and y0 � F(y0, x0)

then there exist x, y ∈ X such that

x = F(x, y) and y = F(y, x).

On the other hand, Lakshmikantham and Ciric [13] established coupled coincidence and coupled fixed
point theorems for two mappings F : X × X → X and g : X → X, where F has the mixed g-monotone
property and the functions F and g commute, as an extension of the fixed point results in [7].

Later, Choudhury and Kundu [5] introduced the concept of compatibility and proved the result established
in [13] under a different set of conditions. Precisely, they established their result by assuming that F and g are
compatible mappings and the function g is monotone increasing.

Definition 1.7 [13] Let (X, �) be a partially ordered set and let F : X × X → X and g : X → X be two
mappings. We say F has the mixed g-monotone property if F(x, y) is g- non-decreasing in its first argument
and is g- non-increasing in its second argument, i.e., for any x, y ∈ X,

x1, x2 ∈ X, gx1 � gx2 ⇒ F(x1, y) � F(x2, y)

and

y1, y2 ∈ X, gy1 � gy2 ⇒ F(x, y1) � F(x, y2)

Definition 1.8 [13] An element (x, y) ∈ X × X is called a coupled coincident point of the mappings
F : X × X → X and g : X → X if

gx = F(x, y) and gy = F(y, x)

Definition 1.9 [5] The mappings F and g where F : X × X → X, g : X → X are said to be compatible if

lim
n→∞ d(gF(xn, yn), F(gxn, gyn)) = 0

and

lim
n→∞ d(gF(yn, xn), F(gyn, gxn)) = 0

where {xn} and {yn} are sequences in X such that limn→∞ F(xn, yn) = limn→∞ gxn = x and
limn→∞ F(yn, xn) = limn→∞ gyn = y for all x, y ∈ X are satisfied.

Using the concept of compatibility, Choudhury et al. [4] proved a generalization of Theorem 1.6.
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Theorem 1.10 [4] Let (X, �) be a partially ordered set and suppose there exists a metric d on X such that
(X, d) is a complete metric space. Let φ : [0,∞) → [0,∞) be continuous and φ(t) = 0 if and only if t = 0,
and ψ be an altering distance function. Let F : X × X → X and g : X → X be two mappings such that F
has the mixed g-monotone property and

ψ (d (F (x, y), F (u, v))) ≤ ψ (max{d (gx, gu), d (gy, gv)}) − φ (max{d (gx, gu), d (gy, gv)}) (1.4)

for all x, y, u, v ∈ X with gx � gu and gy � gv. Let F(X × X) ⊆ g(X), g be continuous and let F and g
be compatible mappings. Suppose also that

(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then gxn � gx for all n,
(ii) if a non-increasing sequence {yn} → y, then gy � gyn for all n.

If there exist x0, y0 ∈ X such that gx0 � F(x0, y0) and gy0 � F(y0, x0), then there exist x, y ∈ X such that
gx = F(x, y) and gy = F(y, x), i.e., F and g have a coupled coincidence point in X.

Denote � the set of functions ϕ : [0, ∞) → [0,∞) satisfying:

(i) ϕ is continuous,
(ii) ϕ(t) < t for all t > 0 and ϕ(t) = 0 if and only if t = 0.

Then from the results of Jachymski [10] , the condition (1.4) is equivalent to

d (F (x, y), F (u, v)) ≤ ϕ (max{d (gx, gu), d (gy, gv)}) (1.5)

where ϕ ∈ �.
In Sect. 2, we will prove some coupled coincident point theorems which are generalizations of the results

of Bhaskar and Lakshmikantham [7], Luong and Thuan [15], Choudhury et al. [4], and Harjani et al. [9].
More precisely, we will prove some coupled coincidence point theorems for mappings F : X × X → X and
g : X → X satisfying condition

d (F (x, y), F (u, v)) ≤ ϕ (max{d (gx, gu), d (gy, gv)})
+L min

{
d (F (x, y), gu), d (F (u, v), gx),
d (F (x, y), gx), d (F (u, v), gu)

}
(1.6)

for all x, y, u, v ∈ X with gx � gu and gy � gv, where ϕ ∈ � and L ≥ 0.

2 Coupled coincidence point theorems

Theorem 2.1 Let (X, �) be a partially ordered set and suppose there exists a metric d on X such that (X, d)
is a complete metric space. Let F : X × X → X and g : X → X be two mappings such that F has the
mixed g-monotone property and satisfies (1.6). Let F(X × X) ⊆ g(X), F, g are continuous and let F and g
be compatible mappings. If there exist x0, y0 ∈ X such that gx0 � F(x0, y0) and gy0 � F(y0, x0), then F
and g have a coupled coincidence point in X.

Proof Let x0, y0 ∈ X be such that gx0 � F(x0, y0) and gy0 � F(y0, x0). Since F(X × X) ⊆ g(X), we
construct sequences {xn} and {yn} in X such that

gxn+1 = F(xn, yn) and gyn+1 = F(yn, xn) for all n ≥ 0 (2.1)

Using the mathematical induction and the mixed g-monotone property of F, we can show that

gxn � gxn+1 and gyn � gyn+1 for all n ≥ 0 (2.2)

Since gxn � gxn−1 and gyn � gyn−1, from (1.6) and (2.1), we have

d (F (xn, yn), F (xn−1, yn−1)) ≤ ϕ (max{d (gxn, gxn−1), d (gyn, gyn−1)})
+L min

{
d (F (xn, yn), gxn−1), d (F (xn−1, yn−1), gxn),
d (F (xn, yn), gxn), d (F (xn−1, yn−1), gxn−1)

}
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or

d(gxn+1, gxn) ≤ ϕ (max{d(gxn, gxn−1), d(gyn, gyn−1)}) (2.3)

Similarly, since gyn−1 � gyn and gxn−1 � gxn, we have

d (F (yn−1, xn−1), F (yn, xn)) ≤ ϕ max{d (gyn−1, gyn), d (gxn−1, gxn)}
+L min

{
d (F (yn−1, xn−1), gyn), d (F (yn, xn) , gyn−1),
d (F (yn−1, xn−1), gyn−1), d (F (yn, xn) , gyn)

}

or

d(gyn, gyn+1) ≤ ϕ (max{d(gyn−1, gyn), d(gxn−1, gxn)}) (2.4)

From (2.3) and (2.4), we get

max{d(gxn+1, gxn), d(gyn+1, gyn)} ≤ ϕ (max{d(gxn, gxn−1), d(gyn, gyn−1)}) (2.5)

Since ϕ(t) ≤ t for all t ≥ 0, from (2.5), we have

max{d(gxn+1, gxn), d(gyn+1, gyn)} ≤ max{d(gxn, gxn−1), d(gyn, gyn−1)}
Set dn = max{d(gxn+1, gxn), d(gyn+1, gyn)}, then {dn} is a non-increasing sequence of positive real numbers.
Thus, there is d ≥ 0 such that

lim
n→∞ dn = d

Suppose that d > 0, letting n → ∞ in two sides of (2.5) and using the properties of ϕ, we have

d = lim
n→∞ d(gyn, gyn+1) ≤ lim

n→∞ ϕ (max{d(gyn−1, gyn), d(gxn−1, gxn)}) = ϕ(d) < d

which is a contradiction. Hence d = 0, i.e.,

lim
n→∞ dn = lim

n→∞ max{d(gxn+1, gxn), d(gyn+1, gyn)} = 0 (2.6)

We shall show that {gxn} and {gyn} are Cauchy sequences. Suppose, to the contrary, that at least one of {gxn}
or {gyn} is not a Cauchy sequence. This means that there exists an ε > 0 for which we can find subsequences{
gxn(k)

}
,
{
gxm(k)

}
of {gxn} and

{
gyn(k)

}
,
{
gym(k)

}
of {gyn} with n(k) > m(k) ≥ k such that

max
{
d

(
gxn(k), gxm(k)

)
, d

(
gyn(k), gym(k)

)} ≥ ε (2.7)

Further, corresponding to m(k), we can choose n(k) in such a way that it is the smallest integer with n(k) >
m(k) ≥ k and satisfies (2.7). Then,

max
{
d

(
gxn(k)−1, gxm(k)

)
, d

(
gyn(k)−1, gym(k)

)}
< ε (2.8)

Using the triangle inequality and (2.8), we have

d
(
gxn(k), gxm(k)

) ≤ d
(
gxn(k), gxn(k)−1

) + d
(
gxn(k)−1, gxm(k)

)
< d

(
gxn(k), gxn(k)−1

) + ε (2.9)

and

d
(
gyn(k), gym(k)

) ≤ d
(
gyn(k), gyn(k)−1

) + d
(
gyn(k)−1, gym(k)

)
< d

(
gyn(k), gyn(k)−1

) + ε (2.10)

From (2.7), (2.9) and (2.10), we have

ε ≤ max
{
d

(
gxn(k), gxm(k)

)
, d

(
gyn(k), gym(k)

)}
< max

{
d

(
gxn(k), gxn(k)−1

)
, d

(
gyn(k), gyn(k)−1

)} + ε.

Letting k → ∞ in the inequalities above and using (2.6), we get

lim
k→∞ max

{
d

(
gxn(k), gxm(k)

)
, d

(
gyn(k), gym(k)

)} = ε. (2.11)
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By the triangle inequality

d
(
gxn(k), gxm(k)

) ≤ d
(
gxn(k), gxn(k)−1

) + d
(
gxn(k)−1, gxm(k)−1

) + d
(
gxm(k)−1, gxm(k)

)
and

d
(
gyn(k), gym(k)

) ≤ d
(
gyn(k), gyn(k)−1

) + d
(
gyn(k)−1, gym(k)−1

) + d
(
gym(k−1, gym(k)

)
.

From the last two inequalities and (2.7), we have

ε ≤ max
{
d

(
gxn(k), gxm(k)

)
, d

(
gyn(k), gym(k)

)}
≤ max

{
d

(
gxn(k), gxn(k)−1

)
, d

(
gyn(k), gyn(k)−1

)}
+ max

{
d

(
gxm(k)−1, gxm(k)

)
, d

(
gym(k)−1, gym(k)

)}
+ max

{
d

(
gxn(k)−1, gxm(k)−1

)
, d

(
gyn(k)−1, gym(k)−1

)}
. (2.12)

Again, by the triangle inequality,

d
(
gxn(k)−1, gxm(k)−1

) ≤ d
(
gxn(k)−1, gxm(k)

) + d
(
gxm(k), gxm(k)−1

)
< d

(
gxm(k), gxm(k)−1

) + ε

and

d
(
gyn(k)−1, gym(k)−1

) ≤ d
(
gyn(k)−1, gym(k)

) + d
(
gym(k), gym(k)−1

)
< d

(
gym(k), gym(k)−1

) + ε.

Therefore,

max
{
d

(
gxn(k)−1, gxm(k)−1

)
, d

(
gyn(k)−1, gym(k)−1

)}
< max

{
d

(
gxm(k), gxm(k)−1

)
, d

(
gym(k), gym(k)−1

)} + ε. (2.13)

Taking k → ∞ in (2.12) and (2.13) and using (2.6), (2.11), we have

lim
k→∞ max

{
d

(
gxn(k)−1, gxm(k)−1

)
, d

(
gyn(k)−1, gym(k)−1

)} = ε. (2.14)

Since n(k) > m(k), gxn(k)−1 � gxm(k)−1 and gyn(k)−1 � gym(k)−1. Then from (1.6) and (2.1), we have

d(gxn(k), gxm(k)) = d(F(xn(k)−1, yn(k)−1), F(xm(k)−1, ym(k)−1))

≤ ϕ
(
max{d (

gxn(k)−1, gxm(k)−1
)
, d

(
gyn(k)−1, gym(k)−1

)})
+L min

{
d(F(xn(k)−1, yn(k)−1), gxm(k)−1), d(F(xm(k)−1, ym(k)−1), gxn(k)−1),
d(F(xn(k)−1, yn(k)−1), gxn(k)−1), d(F(xm(k)−1, ym(k)−1), gxm(k)−1)

}

≤ ϕ
(
max{d (

gxn(k)−1, gxm(k)−1
)
, d

(
gyn(k)−1, gym(k)−1

)})
+L min{d (

gxn(k), gxn(k)−1
)
, d

(
gxm(k), gxm(k)−1

)} (2.15)

Similarly,

d(gym(k), gyn(k)) ≤ ϕ
(
max{d (

gxn(k)−1, gxm(k)−1
)
, d

(
gyn(k)−1, gym(k)−1

)})
+L min{d(gym(k), gym(k)−1), d(gyn(k), gyn(k)−1)} (2.16)

From (2.15) and (2.16), we have

max{d(gxn(k), gxm(k)), d(gyn(k), gym(k))}
≤ ϕ

(
max{d (

gxn(k)−1, gxm(k)−1
)
, d

(
gyn(k)−1, gym(k)−1

)})
+L min{d (

gxn(k), gxn(k)−1
)
, d

(
gxm(k), gxm(k)−1

)}
+L min{d(gym(k), gym(k)−1), d(gyn(k), gyn(k)−1)}
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Letting n → ∞ in the above inequality and using (2.6), (2.11), (2.14) and the properties of ϕ, we have

ε ≤ ϕ(ε) + 2L min{0, 0} < ε

which is a contradiction. This means that {gxn} and {gyn} are Cauchy sequences.
Since X is complete, there are x, y ∈ X such that

lim
n→∞ gxn = x and lim

n→∞ gyn = y (2.17)

Thus,

lim
n→∞ F(xn, yn) = lim

n→∞ gxn = x and lim
n→∞ F(yn, xn) = lim

n→∞ gyn = y (2.18)

By (2.18) and the compatibility of F and g, we have

lim
n→∞ d(gF(xn, yn), F(gxn, gyn)) = 0 (2.19)

and

lim
n→∞ d(gF(yn, xn), F(gyn, gxn)) = 0 (2.20)

Taking the limit as n → ∞ in the following inequality

d(gx, F(gxn, gyn)) ≤ d(gx, gF(xn, yn)) + d(gF(xn, yn), F(gxn, gyn))

and using (2.17), (2.19) and the continuity of F, g, we get d(gx, F(x, y)) ≤ 0. This implies gx = F(x, y).
Similarly, we can show that gy = F(y, x).
The proof is complete. ��
Theorem 2.2 Let (X, �) be a partially ordered set and suppose there exists a metric d on X such that (X, d)
is a complete metric space. Let F : X × X → X and g : X → X be two mappings such that F has the
mixed g-monotone property and satisfies (1.6). Let F(X × X) ⊆ g(X), g be continuous and let F and g be
compatible mappings. Suppose X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then gxn � gx for all n,
(ii) if a non-increasing sequence {yn} → y, then gy � gyn for all n.

If there exist x0, y0 ∈ X such that gx0 � F(x0, y0) and gy0 � F(y0, x0), then F and g have a coupled
coincidence point in X.

Proof Construct two sequences {xn} and {yn} as in Theorem 2.1. As in the proof of Theorem 2.1, {gxn} is
non-decreasing sequence and gxn → x and {gyn} is non-increasing sequence and gyn → y, by the assumption,
we have ggxn � gx and ggyn � gy for all n.

From (2.18), (2.19) and (2.20), we have

lim
n→∞ F(gxn, gyn) = lim

n→∞ gF(xn, yn) = lim
n→∞ ggxn = gx (2.21)

and

lim
n→∞ F(gyn, gxn) = lim

n→∞ gF(yn, xn) = lim
n→∞ ggyn = gy (2.22)

Since ggxn � gx and ggyn � gy, we have

d(F(x, y), gx) ≤ d(F(x, y), F(gxn, gyn)) + d(F(gxn, gyn), gx)

≤ d(F(gxn, gyn), gx) + ϕ (max{d(gx, ggxn), d(gy, ggyn)})
+L min

{
d(F(x, y), ggxn), d(F(gxn, gyn), gx),
d(F(x, y), gx), d(F(gxn, gyn), ggxn)

}

Taking n → ∞ in the above inequality and using (2.21),(2.22) and the properties of ϕ, we have

d(F(x, y), gx) ≤ ϕ (max{0, 0}) + L min d(F(x, y), gx), 0 = 0

Hence F(x, y) = gx . Similarly, one can show that F(y, x) = gy.
The proof is complete. ��
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Theorem 2.3 Let (X, �) be a partially ordered set and suppose there exists a metric d on X such that (X, d)
is a complete metric space. Let F : X × X → X and g : X → X be two mappings such that F has the
mixed g-monotone property and satisfies (1.6). Let F(X × X) ⊆ g(X), g be continuous and let F and g be
compatible mappings. Suppose g is monotone and X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.

If there exist x0, y0 ∈ X such that gx0 � F(x0, y0) and gy0 � F(y0, x0), then F and g have a coupled
coincidence point in X.

Proof Construct two sequences {xn} and {yn} as in Theorem 2.1. Since g is monotone, we may assume that g
is decreasing. Since {gxn} is non-decreasing sequence and gxn → x and as {gyn} is non-increasing sequence
and gyn → y , we have gxn � x and gyn � y for all n. Since g is decreasing, ggxn � gx and ggyn � gy for
all n. Since ggyn � gy and ggxn � gx , we have

d(gy, F(y, x)) ≤ d(gy, F(gyn, gxn)) + d(F(gyn, gxn), F(y, x)) +
≤ d(gy, F(gyn, gxn)) + ϕ (max{d(ggyn, gy), d(ggxn, gx)})

+L min

{
d(F(gyn, gxn), gy), d(F(y, x), ggyn),
d(F(gyn, gxn), ggyn), d(F(y, x), gy)

}

Taking n → ∞ in the previous inequality and using (2.21), (2.22) and the properties of ϕ, we have

d(gy, F(y, x)) ≤ ϕ (max{0, 0}) + L min d(F(y, x), gy), 0 = 0

Hence F(y, x) = gy. Similarly, one can show that F(x, y) = gx . ��
In the following theorem, we replace the continuity of g, the compatibility of F and g and the completeness

of X by assuming that g(X) is a complete subspace of X.

Theorem 2.4 Let (X, �, d) be a partially ordered metric space. Let F : X × X → X and g : X → X be two
mappings such that F has the mixed g-monotone property and satisfies (1.6). Let F(X × X) ⊆ g(X), g(X) is
a complete subspace of X. Suppose also that X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn � x for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn for all n.

If there exist x0, y0 ∈ X such that gx0 � F(x0, y0) and gy0 � F(y0, x0), then F and g have a coupled
coincidence point in X.

Proof We construct two sequences {xn} and {yn} as in Theorem 2.1. As in the proof of Theorem 2.1, {gxn}
and {gyn} are Cauchy sequences. Since g(X) is complete, there exist x, y ∈ X such that

lim
n→∞ gxn = gx and lim

n→∞ gyn = gy (2.23)

Since {gxn} is non-decreasing, gxn → gx and {gyn} is non-increasing, gyn → gy, by the assumption, we
have gxn � gx and gyn � gy for all n. Since gyn � gy and gxn � gx, we have

d(gy, F(y, x)) ≤ d(gy, gyn+1) + d(gyn+1, F(y, x))

= d(gy, gyn+1) + d(F(yn, xn), F(y, x))

≤ d(gy, gyn+1) + ϕ (max{d(gyn, gy), d(gxn, gx)})
+L min

{
d (F(yn, xn), gy), d (F(y, x), gyn),
d (F(yn, xn), gyn), d (F(y, x), gy)

}

= d(gy, gyn+1) + ϕ (max{d(gyn, gy), d(gxn, gx)})
+L min

{
d (gyn+1, gy), d (F(y, x), gyn),
d (gyn+1, gyn), d (F(y, x), gy)

}

On taking n → ∞ and using (2.23), we obtain

d(gy, F(y, x)) ≤ ϕ(0) + L min{0, d(F(y, x), gy)} = 0

This means gy = F(y, x). Similarly, it can be shown that gx = F(x, y).
Thus, F and g have a coupled coincidence point in X. ��
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In Theorems 2.1 and 2.2 (or 2.3 or 2.4), letting gx = x for all x ∈ X, we get

Corollary 2.5 Let (X, �) be a partially ordered set and suppose there is a metric d on X such that (X, d) is
a complete metric space. Let F : X × X → X be a mapping having the mixed monotone property on X such
that there exist two elements x0, y0 ∈ X with

x0 � F(x0, y0) and y0 � F(y0, x0)

Suppose there exist a real number L ≥ 0 and ϕ ∈ � such that

d (F (x, y), F (u, v)) ≤ ϕ (max{d (x, u), d (y, v)})
+L min

{
d (F (x, y), u), d (F (u, v), x),
d (F (x, y), x), d (F (u, v), u)

}
(2.24)

for all x, y, u, v ∈ X with x � u and y � v. Suppose either

(a) F is continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence {xn} → x, then xn � x, for all n,
(ii) if a non-increasing sequence {yn} → y, then y � yn, for all n.

then there exist x, y ∈ X such that

x = F(x, y) and y = F(y, x),

i.e., F has a coupled fixed point in X.

Remark 2.6 (1) In Theorems 2.1 and 2.2, letting L = 0, we get the results of Choudhury et al. [4].
(2) For all x, y, u, v ∈ X, α, β ≥ 0, α + β < 1, we have

αd(x, u) + βd(y, v) ≤ (α + β) max{d(x, u), d(y, v)} = ϕ (max{d(x, u), d(y, v)}),
where ϕ(t) = (α + β) (t), for all t ≥ 0, is in �. Therefore, Theorem 1.10 is a consequence of Corollary
2.5

3 Examples

Example 3.1 Let X = [1, 3) with the usual metric d(x, y) = |x − y|, for all x, y ∈ X. We consider the
following order relation on X

x, y ∈ X x � y ⇔ x = y or (x, y) ∈ {(1, 1), (1, 2), (2, 2)}.
Let F : X × X → X be given by

F (x, y) =
{

1 if x, y ∈ [0, 1]
2 otherwise

and g : X → X be defined by

gx =

⎧⎪⎨
⎪⎩

1 if 1 ≤ x ≤ 3/2
2 if 3/2 < x ≤ 2
3 − x if 2 < x < 5/2
3/2 if 5/2 ≤ x < 3

and let ϕ : [0,∞) → [0, ∞) be defined by ϕ(t) = t/2 for all t ≥ 0. Then, all the conditions of Theorem 2.4
are satisfied. Applying Theorem 2.4, we conclude that F and g have a coupled coincidence point and it is seen
that (1, 1) is a coupled coincidence point of F and g.
However,
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(i) X is not complete, F, g are not continuous.
(ii) F and g are not compatible. Indeed, let {xn}, {yn} in X with

xn = yn = 2 + 1

n + 1

For all n, we have

F(xn, yn) = F(yn, xn) = F

(
2 + 1

n + 1
, 2 + 1

n + 1

)
= 2,

gxn = gyn = g

(
2 + 1

n + 1

)
= 2 − 1

n + 1
→ 2 as n → ∞

but

d (F(gxn, gyn), gF(xn, yn))

= d

(
F

(
2 − 1

n + 1
, 2 − 1

n + 1

)
gF

(
2 + 1

n + 1
, 2 + 1

n + 1

))
= 2 � 0 as n → ∞

Example 3.2 Let X = [1, ∞) with the usual metric d(x, y) = |x − y|, ∀x, y ∈ X and the usual ordering. Let
F : X × X → X be given by

F (x, y) = 1 + √
3

2
for all x, y ∈ X

and g : X → X be given by

gx = 1 + 1

2x
for all x ∈ X

It is easy to see that all the conditions of Theorems 2.1 and 2.3 are satisfied. Applying these Theorems, we
conclude that F and g have a coupled coincidence point. However, since g(X) = (1, 2] is not a complete
subspace of X, we cannot apply Theorem 2.4 to this example. Moreover, if {xn} is a non-decreasing sequence
in X, xn → x then gxn ≥ gx . Therefore, we cannot apply Theorem 2.2 to this example.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use,
distribution, and reproduction in any medium, provided the original author(s) and the source are credited.
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