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ABSTRACT

A coupled heat and mass transfer model simulating mass and energy balance of the soil-snow-atmosphere boundary
layer was applied to simulate ground temperatures, together with water and ice content evolution, in the active layer of
an alpine permafrost site on Schilthorn, Swiss Alps. Abrupt shifts and subsequent fluctuations in ground temperature
observed in alpine permafrost boreholes at the beginning of the zero curtain phase in summer were explained by
snowmelt and meltwater infiltration. Simulated water contents were compared to values derived from inverted
electrical resistivity measurements and yielded a further independent validation of the model results. The study shows
that infiltration into frozen soil takes place as an oscillating process in the model. This process is constrained by initial
ground temperatures, infiltrability and the availability of meltwater from the snow cover.
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INTRODUCTION

A number of studies of small-scale hydrothermal processes
in latitudinal permafrost have shown that pore ice, fluid
water and water vapour may coexist in frozen ground and
lead to complex interactions during seasonal freeze-thaw
cycles in the active layer (e.g. Kane and Stein, 1983; Outcalt
et al., 1990; Romanovsky and Osterkamp, 2000). Unfrozen
moisture can exist at sub-zero temperatures and advective
water migration to the freezing front can redistribute water
and ice, thus changing the thermal and hydrological
properties of the soil (Kane and Stein, 1983; Trimble
et al., 1958). Convective heat transfer via unfrozen
pore water has been described by Outcalt et al. (1990) as
the primary heat transfer process during the zero curtain
phase, a time period where phase change in the active layer
leads to isothermal conditions near the melting point.

Relatively little is known about infiltration into the active
layer, even though it has been identified as contributing
substantially to the energy exchange in permafrost (Kane
et al., 2001). Infiltration typically occurs along preferential
flow paths (Stähli et al., 1996; Boike et al., 1998; Ishikawa

et al., 2006) during comparatively short time periods. Direct
measurement of the phenomenon (e.g. using time-domain
reflectometry , see Patterson and Smith, 1980) is difficult,
especially in high mountain terrain, and tends to disturb the
system itself. Therefore, in this study, we used electrical
resistivity tomography (ERT) measurements combined with
borehole temperature logs as alternative means to assess
infiltration (French and Binley, 2004). This method can
investigate spatial differences in the evolution of water and
ice content over time spans of days to years (Hauck, 2002;
Hilbich et al., 2008).

Numerical models have also proven useful to investigate
energy and mass transfers among the atmosphere, snow cover
and permafrost (Kane et al., 2001; Lunardini, 1998;
Riseborough et al., 2008). In modelling studies, the importance
of incorporating a seasonal snow cover as well as the effects of
unfrozen water migration for time periods with freezing and
thawing has been emphasised (Kane et al., 2001; Romanovsky
and Osterkamp, 2000; Ling and Zhang, 2004).

Infiltration of meltwater from the snow cover may cause
significant warming in frozen soils, which is revealed by a
sudden temperature shift to the melting point in near-surface
layers (Kane and Stein, 1983; Boike et al., 1998; Ishikawa
et al., 2006). Similar temperature shifts were reported for the
high-elevation permafrost station at Schilthorn, Swiss Alps
(2970m a.s.l.) (Hauck, 2001; Völksch, 2004) and have been
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registered repeatedly in borehole temperature logs over the
past several years. In the summer of 2004, ground
temperature fluctuations with magnitudes of 0.38C–1.58C
were observed at depths of up to 7m following the sudden
shift to 08C in the uppermost layers. Because a snow cover
was present and the temperature measurements suggest that
the heat spread very rapidly through much of the active
layer, advective water flow is thought to have been the
dominant mode of heat transfer.
We used two different approaches to investigate the

hypothesised infiltration processes. First, we applied a
numerical model for coupled mass and heat transfer
(Jansson and Karlberg, 2001) to explore the influence of
meltwater infiltration on a mountain permafrost site with
fine-grained near-surface material. The model simulates
infiltration into frozen ground and the purpose was to
determine whether it could mimic the rapid rises in
temperature observed during snowmelt. Second, the model
was validated with the borehole temperature measurements
from the field site. The ERT measurements provide an
independent semi-quantitative additional validation of the
functioning of the model.

STUDY SITE

The investigation site is the Schilthorn massif (Bernese
Oberland, Switzerland), located in the north central part of
the alpine arc. The Schilthorn has served as the subject of
several mountain permafrost studies and is part of the
ongoing Swiss monitoring programme PERMOS (Vonder
Mühll et al., 2004) and the European PACE programme
(Harris et al., 2001).
The lithology of the site is characterised by weathered

surface material several metres in thickness (Hauck, 2001)
underlain by strongly jointed micaceous shales. The thick
layers of relatively fine-grained material on the surface are
rarely found at alpine permafrost sites and result in
comparatively high retention capacity and high hydraulic
conductivity.
The slope faces north and has a gradient of about 308. The

active layer is about 5m thick and the permafrost beneath
extends to more than 100-m depth with temperatures of
�0.78C. The ice content is generally low and mainly present
as pore ice (Vonder Mühll et al., 2000).
Three boreholes are present, one 14m deep and two 100m

deep, one of which is at an angle of 308 to the mountain
slope. Permafrost temperatures (Figure 1) have been
collected by thermistor chains in the boreholes since 1998
(14m, uninsulated, cables are inserted into the open hole
which may have partially collapsed by now) and 2000
(100m, insulated within a PVC pipe), while meteorological
parameters have been measured at the site since 2001
(Stocker-Mittaz et al., 2002). All boreholes are protected
from water infiltration with a cap. In 1999, a semi-automatic
electrical resistivity array was permanently installed at the
site. The array is situated on a small plateau perpendicular to
the gradient (see Hilbich et al., 2008, Figure 2) and is used to

monitor water and ice content distribution in the uppermost
10m (Hauck, 2002; Hilbich et al., 2008).
Mean annual precipitation on the site is around 2700mm,

of which about two-thirds falls as snow during the winter
(Spreafico, 1992; Stocker-Mittaz et al., 2002). The snow
cover reaches a maximum thicknesses of more than 5m and
can last from the beginning of October through to late July or
even August (Imhof et al., 2000). Most infiltration and runoff
occurs in the snowmelt period between June and August.

MODEL

The model used in this study is a one-dimensional soil water
and heat transfer model (COUPmodel; Jansson and Karlberg,
2001). It accounts for the accumulation and melt of a seasonal
snow cover, as well as for freezing and thawing of the soil. A
detailed description of water infiltration into the frozen soil
was implemented by Stähli et al. (1996), which makes the
model particularly suitable for the present use.
The model is driven by air temperature, relative humidity,

wind speed, global or net radiation, incoming long-wave
radiation and precipitation. If air temperature is below a
threshold value, precipitation falls as snow and builds up a
snow cover that controls the upper boundary of the soil
through its thermal insulation and its water storage for later
release. The density of the snowpack is assumed to be
uniform with depth, but variable in time as a function of
settling and melting.
A complete energy balance is calculated for the snow

or soil surface, as appropriate, resulting in a surface
temperature that is the upper thermal boundary condition of
the soil profile. The lower thermal boundary at a depth of
26m is defined by a constant geothermal heat flux.
The soil is divided into an array of soil layers of

progressively increasing thickness. Thermal and hydraulic
parameters can be specified for the various layers. The soil
layer properties vary in time according to their liquid water
and ice content.
Heat and water fluxes are coupled through the general

heat flow equation:
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where C (JK�1) is the heat capacity, T (K) is the soil
temperature, Lf (J kg

�1) is the latent heat of freezing, r
(kgm�3) is the density, Qi is the volumetric ice content, k
(Wm�1 K�1) is the thermal conductivity and qw and qv
(kgm�2 s�1) are the water and vapour fluxes, respectively.
The transition from frozen to unfrozen soil and vice versa
occurs over a temperature range of 0 to �58C, accounting for
the freezing characteristics of the specific soil.
Depending on the soil water content prior to freezing and

previous refreezing of infiltrating meltwater, frozen soil
layers may completely or partially impede liquid water flow
during spring snowmelt. However, subsequent thawing
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reduces the ice content of the frozen soil layers and therefore
increases their hydraulic conductivity. The excess water at
the surface or at a certain depth leads to a build-up of a
surface water pool or a perched water table in the soil. Water
flows laterally, depending on the hydraulic gradient that
relates to the slope of the terrain. A detailed description of
the model including all its equations and parameters is given
in Jansson and Karlberg (2001) while its applications are
detailed in a number of studies (e.g. Johnsson and Lundin,
1991; Stähli et al., 1996; Bayard et al., 2005).

Hourly meteorological data from Schilthorn were used to
drive the model, except for precipitation which was derived
from three nearby stations of the Federal Office of
Meteorology and Climatology MeteoSwiss. Daily sums
from Interlaken, Lauterbrunnen and Mürren were extrapo-
lated to the elevation of Schilthorn with Equation (2)
(Stocker-Mittaz et al., 2002):

P2970 ¼ Ph1ð h1
rePtot

� 1Þ (2)

where P2970 (mm) stands for the amount of precipitation at
2970m a.s.l., Ph1 (mm) denotes the amount of precipitation at
the height of the meteorological station, Ptot (mm) is the
estimated annual sum of precipitation at 2970m a.s.l., h1 is the
altitude of themeteorological station (inm a.s.l.) and re is a site-
specific coefficient determined for the Schilthorn to be 0.31 by
Stocker-Mittaz et al. (2002). The daily precipitation values
for Schilthorn obtained by this extrapolation were scaled
proportionally to the hourly values from the station in Mürren,
situated on a mountain-side 4 km east of the Schilthorn.

A 26-m deep soil profile was simulated with a total of 30
layers. Hydraulic soil properties were estimated from soil
texture measurements of the surface material, which is
70 per cent sand, 18 per cent silt and 9 per cent clay, and has
a porosity of 54 per cent. The model was calibrated
experimentally using the observed temperature values of the
14-m deep borehole and the heat capacity and thermal
conductivity of the solid soil material according to
Carmichael (1988).

TWO-DIMENSIONALWATER CONTENT
ESTIMATION

In porous materials at temperatures below 08C, water may be
present as a solid, fluid or vapour. The fluid phase can persist
even at temperatures far below the freezing point (Bouyoucos
and McCool, 1916; Anderson et al., 1973). Assuming that
electrical current in soils is primarily conducted through ionic
migration in the pore fluid, most of the electrical resistivity
change that can be determined by means of geoelectrical
resistivity measurements will be due to changes in water
content (Loke, 2000; Hauck, 2002). Thus, low resistivity
readings indicate high water content or high ionic strength,
while high readings indicate low water content or low ionic
strength. Assuming that pore space distribution and ionic

strength of a measured soil profile do not change significantly
between two measurements, resistivity differences over time
can yield semi-quantitative information about changes in
water or ice content (Hilbich et al., 2008).

Two-dimensional ERTwas used to give a rapid, qualitative
overview of the evolution of soil moisture over a relatively
large area. Rings et al. (2008) showed that this method is also
suitable for locating and identifying the temporal occurrence
of infiltration events in the upper subsurface. Furthermore,
inverted resistivity values were used to determine the water
content of the subsurface during the infiltration period at a
temporal resolution of days to weeks.

All measurements were conducted between 0900 and
1100 local time using an array of 30 electrodes with 2-m
spacing (Hauck, 2002). A Wenner electrode configuration
was chosen because of its optimal characteristics regarding
depth of investigation, signal-to-noise ratio and the time
needed to collect the dataset consisting of 135 datum points.
The spatial resolution obtained after inversion with the
commercial software Res2DINV (Loke, 2000) is 1m
horizontally, with a vertical resolution of 0.5m at the top
and decreasing with depth. All datasets were inverted
individually using standard inversion parameters. The depth
of investigation reached approximately 10m, encompassing
the active layer and the uppermost part of the permafrost.

Archie’s law (Archie, 1942) was used to derive the water
content from the measured bulk soil electrical resistivity:

rs ¼ arwF�mS�n (3)

where rs is the electrical resistivity of the soil as determined
by ERT measurements (Vm), rw is the resistivity of the pore
fluid (7.4Vm),F is the porosity (0.54), S is the saturation of
the soil, and {a, m, n}¼ {1, 1.4, 2} are empirical parameters
calibrated experimentally on the basis of soil analysis and
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Figure 1 Observed borehole temperatures and measured snow depth (m)
for 2003–04. Inset shows the borehole temperatures in June and July 2004.
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ERT measurements from October 2004 and using ranges
found in the literature (Keller and Frischknecht, 1966). The
resistivity of the pore fluid was determined from electrical
conductivity (EC) measurements of field-moist soil samples.
Demineralised water was added to the soil (to twice the
initial volume of the sample) and stirred for 1 h (Black,
1965), the solution was filtered and diluted, and the EC was
measured with a conductivity meter. The value for the
original concentration was then extrapolated by fitting an
exponential relationship to the measurements.

RESULTS

Field Observations

Measured temperatures from the 14-m deep borehole illustrate
the thermal regime of the active layer and the near-surface

permafrost on Schilthorn (Figure 1). In the observation period
from October 2003 to October 2004, the active layer extended
to a depth of 7m to 9m below the surface. This is much deeper
than in preceding years, reflecting the exceptionally warm
summer of 2003 in the European Alps (see Schär et al., 2004;
Hilbich et al., 2008).
In autumn 2003, with mean daily air temperatures below

08C and a thin snow cover in October, ground temperatures
near the surface rapidly fell below the freezing point. The
formation of ice at the freezing front then progressed from
the surface into deeper layers. After a relatively short zero
curtain period, the ground cooled continuously with
progressive lags at greater depths and damped amplitudes.
After warming from mid-February to June, initially driven
by conductive heat transfer from the bottom of the active
layer, temperatures suddenly increased to nearly 08C
(see inset in Figure 1). Following this abrupt shift, near-
surface layers remained isothermal, indicating zero curtain

Figure 2 Borehole temperature data compared to simulated temperatures for four depths within the active layer.
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conditions. Deeper layers cooled by about 0.18C, with the
maximum amplitude being attained at a depth of 3m
between 10 and 15 June (Figure 1). A similar temperature
fluctuation recurred after a few days. The temperature peak
at 7-m depth suggests that meltwater had infiltrated upslope
of the borehole and flowed laterally.

Simulation

Measured and simulated temperatures were compared for
2003–04 for depths ranging from 0.2m to 3m below the
surface (Figure 2). The best correlations were present for soil
layers in the upper 2m.

Figure 3 shows the simulated water and ice contents in the
surface layer (0–5 cm). At the onset of freezing the water
content was around 4 per cent, but the ice volume formed
during freezing was about five times as great. Thus the pores
became saturated with ice and unfrozen water, significantly
lowering hydraulic conductivity as has been observed
previously for seasonally frozen ground (Kane, 1980;
Trimble et al., 1958). The concentration of moisture in
the top layer is explained by upward migration of unfrozen
water during winter towards the advancing freezing front.
During ablation of the snow cover, ice and water contents
fluctuated in the surface layer for 2 months. The changes in
the ice content of the top layer (persisting until late July)
indicate freezing and thawing cycles under snow-covered
conditions, and thus a highly variable infiltration capacity.

Modelled results for infiltration, refreezing of water in the
top soil layer, the formation of a surface water pool and
ground temperature for the 2.2–2.7-m depth are shown in
Figure 4 for June 2004. The results from the model show
temperature shifts (Figure 4a) occurring simultaneously
with infiltration. The process is interpreted as follows:
infiltration occurs until a critical amount of water has

refrozen in the top soil layer, so that the pore space is filled
with ice, reducing water inputs to almost zero (Figure 4b)
and shutting off advective heat flow into the soil. Meltwater
then fills the surface pool (Figure 4d). The temperature of the
soil layer falls due to conductive heat flow to lower soil
layers. As water flow from the snow cover continues and the
surface pool is filled to a critical pressure head, ice in the top
soil layer melts and water is released into the ground
(Figure 4c). This process is repeated until the temperatures
in the active layer have risen to a point where percolating
water will no longer refreeze in the surface layer.

Water Contents

Two surveys of water contents conducted by ERTwithin 2 h
indicate only very small differences on the left side of the
profile, which implies significant freezing processes only in
proximity of the 14-m borehole (Figure 5). In the following
14-day period, a change in water content is apparent on the
left side of the profile from slightly below 0 per cent to þ4
per cent in the upper part of the active layer. Such increases
in moisture in a relatively small area suggest that the cause is
preferential infiltration rather than in-situmelt of ice. During
the 3 months from the end of June to the beginning of
October, the observed decrease in water content throughout
large parts of the profile may be explained by evaporation at
the surface, and at greater depths, by the lateral outflow of
meltwater.

Figure 6 shows water content values in the upper part of
the active layer obtained from the simulation compared to
values derived from the ERT measurements. Even though
the simulation results cannot be directly compared to the
ERT values, as no data are available during the critical
thawing phase, a general agreement is evident. The ERT-
derived values for October 2003 were higher than the model
results for all four depths, but the relative decrease until the
beginning of the thawing period is about the samemagnitude
in both. The same is true for the increase during the
snowmelt period from May to July when most of the
measurements were conducted. Simulated values indicate
the increasing water content caused by melting ice or
infiltration, and thus increasing water contents coincide with
periods when observed values show that the active layer was
starting to thaw. The total increase in water content within
the following zero curtain phase is smaller in the model
results than in the measurements at depths below 25 cm, but
shows similar gradients at all four depths.

DISCUSSION

When comparing the ERT-derived and simulated water
content values, various sources of uncertainty have to be
considered. First, the model could not be initialised to
thermodynamic equilibrium due to unknown proportions of
unfrozen water and heat contents of the soil layers. Second,
there is insufficient drainage with increasing depth, or no
lateral outflow from unsaturated layers in the model soil

Figure 3 Simulated water and ice contents of the surface layer (0–5 cm)
for 2003–04.

5

ht
tp
://
do
c.
re
ro
.c
h



columns, which led to overestimated water contents at
the end of the simulation period. Third, temperatures
were measured in a borehole which might have different
hydraulic properties from those of its surroundings. Finally,
ERT measurements for frozen ground can provide results
that are ambiguous between drying-freezing and percola-
tion-thawing. Furthermore, artefacts may occur during the
inversion process. These points are discussed in greater
detail below .

Model

Model simulations showed that subsurface temperature
fluctuations prior to complete thawing of the active layer in
early summer can be caused by infiltrating meltwater from
the snow cover. The processes described in the results
section depend on very small changes in the parameters

controlling the hydraulic properties of the soil, in particular
on the infiltration properties. The latter are strongly
constrained by pore space and temperature. Because pore
space is influenced by unfrozen water and ice content, model
parameters specifying the refreezing of infiltrating water are
also of critical significance (Stähli et al., 1999).
The processes causing the temperature shifts in the model

cannot be directly compared to the situation in the field,
because ground temperature measurements from Schilthorn
are obtained from thermistors in an uninsulated borehole
(initially filled with air), whereas simulated temperatures
correspond to the heat content of a soil compartment. The
borehole itself may represent a large macropore which
would allow for faster and deeper propagation of infiltrating
water than may occur in the surrounding fine-grained soil.
Nevertheless, water which flows into the borehole must first
pass through the fine-grained surface material before it can

Figure 4 Simulated infiltration events for June 2004 as shown by (a) temperature of the 2.2–2.7-m deep layer, (b) surface infiltration rate, (c) refreezing rate in
the surface layer and (d) formation of the surface pool.
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enter the hole laterally. Thus, even if lateral flow does enter
the borehole, the infiltration process may still be similar to
the one simulated in the model.

Problems in the simulation were encountered in the
initialisation (temperatures and water contents). Initial model
temperatures, slightly below 08C at the interface between the
active layer and the permafrost, were generally overestimated
because the initial ice content could not be specified. Energy
deficits (i.e. negative initial temperatures) were transferred
into ice and unfrozen water content until a thermodynamic
equilibrium was reached. As a consequence a rise in
temperature occurred. A second problem related to the model’s
one-dimensionality because this precluded any account being
taken of lateral inflow from soil compartments upslope.

ERT

Changes during the chronological series of resistivity images
of frozen ground can be caused by water outflow and
inflow (i.e. infiltration, water flow, evaporation or conden-
sation), or by the freezing and thawing of porewater. A high
water content in the soil profile may increase the EC of the

soil due to enhanced ionic mobility in the pore fluid, thus
yielding a lower resistivity value than it would for the same
profile under dry conditions. Temperature changes, which
are quite large in some parts of the profile, may also influence
electrical resistivity, as heat increases the EC of both the fluid
and solid phases in the soil (Keller and Frischknecht, 1966).
Temperature dependence of electrical resistivity in soils is
linear above 08C with a decrease in resistivity of 2.5 per cent/
8C (Keller and Frischknecht, 1966), but it is exponential
below 08C largely due to variable ice content (and pore space)
and thus variable ionic mobility (Hauck, 2001). The EC is
usually increased by the ionisation of clay minerals and
surface conductance, thus this calculation will overestimate
conductivity through ionic migration by the amount
conducted by these mechanisms. Consequently, water
contents calculated through Archie’s law tend to be too
high. Because porosity was also chosen to be constant through
time and throughout the whole profile, the method tends to
underestimate water contents in the case of high ice contents
or in areas with lower porosities (e.g. underlying bedrock).
For the comparatively small temperature ranges that are
encountered during thawing, however, any large resistivity

Figure 5 Water content changes in the active layer and near-surface permafrost evaluated using electrical resistivity tomography and Equation (3) during 2004
for successive periods of 2 h (15 June), 14 days (15–29 June) and 96 days (29 June–3 October). The vertical black line indicates the location of the 14-m
borehole, the dashed line represents the bedrock boundary (determined by a refraction seismic survey, Hauck, 2001). Minimum and maximum differences are
given in the lower right corner of each section. The geometry and blocky structure of the sections originate from the inversion process.

7

ht
tp
://
do
c.
re
ro
.c
h



contrasts obtained from near the surface may be reliably
identified as changes in water content.
Undesirable artefacts may occur in the tomograms during

resistivity inversion when large resistivity contrasts are
present. However, these inaccuracies develop predominantly
at greater depths, where the sensitivity of the method is
diminished, below the area of largest resistivity increase or
decrease (Rings et al., 2008; Marescot et al., 2003; Hilbich
et al., 2008).

Synopsis

In spite of the limitations discussed above , the results
suggest good qualitative agreement between measurements

and model results. For example, on 15 June, the ERT-derived
water content change indicated a slight decrease in water
contents near the location of the 14-m borehole (Figure 5),
which corresponds to refreezing processes seen in the
simulations for that time (Figure 4c). The fact that the
magnitude of the decrease in water content during freezing
and the increase during thawing (until the end of zero curtain
phase) is similar for both methods (Figure 6) is also regarded
as significant. Large deviations between measurements
and model results may have occurred because the model
overestimates the amount of infiltration during snowmelt
due to insufficient surface and lateral runoff. In addition, the
limited temporal resolution of the ERT data prohibited a
thorough comparison of the processes on smaller time

Figure 6 Water contents at four different depths derived from electrical resistivity tomography (ERT) measurements compared to simulated values for 2003–
04. As the soil samples used for the calibration of Archie’s law were taken from a spot about 10m from the electrode array, water content values derived from
observed ERT values have been averaged over the whole 60-m profile. The bars indicate� 1 standard deviation. The simulated values represent one data point
per layer.
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scales. Even though a rigorous proof of these processes
cannot be undertaken without further direct evidence, both
methods clearly indicate meltwater infiltration under snow-
covered conditions into the still-frozen active layer.

CONCLUSIONS

The simulation results of this study provide additional
indications that during the freezing period in dry soils water
movement towards the freezing front may result in a low
hydraulic conductivity layer near the surface that is
impermeable to infiltration at the onset of snowmelt.
However, the results also suggest that, despite this initial
inhibition, infiltration can take place if the surface water
level reaches a critical pressure head. Thus, infiltration into
the frozen active layer at temperatures below 08C occurs as
an oscillating process, which is constrained by initial
temperatures, infiltrability (which is modified by changing
ice contents and temperature) and the availability of
meltwater from the snow cover.

An infiltration cycle in the model begins when a critical
amount of meltwater has accumulated, leading to melting
processes in the surface layer, which in turn increase
hydraulic conductivity sufficiently that infiltrating melt-
water percolates and reaches greater depths. When the water
pool at the ground surface is emptied, water refreezes on the
surface and the top layer is again sealed by ice, which ends
the cycle. As a result, heat is introduced into the ground by
percolation, total water content increases and the meltwater
eventually refreezes. The temperature fluctuations induced
by these infiltration events end when soil temperatures are
too high to permit refreezing of percolating water. This
simulated process is in good agreement with changes in
borehole temperatures and additional independent ERT-derived
water content estimates at the permafrost site on Schilthorn.
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Hauck C. 2002. Frozen ground monitoring using DC resistivity
tomography. Geophysical Reseach Letters 29(21): 2016.
DOI: 10.1029/2002GL014995.

Hilbich C, Hauck C, Hoelzle M, Scherler M, Völksch I, Vonder
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