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ABSTRACT. We present a simple constructive proof of the Uniformization

Theorem which works for plane domains. The proof is a combination of cov-

ering space theory and Koebe's constructive proof of the Riemann mapping

theorem, and the resulting algorithm can be used to estimate the Poincaré

metric for the domain.

1. Introduction. In the study of iteration of rational functions [B], we con-

stantly need the Poincaré metric for plane domains. The Uniformization Theorem

is usually proved using potential theory. The proof is quite involved, and it is very

hard to see how to compute the resulting metric.

We present here a simpler constructive proof which works for plane domains, or

more generally any Riemann surface some covering space of which can be embed-

ded in C. It is nothing but a combination of covering space theory and Koebe's

constructive proof of the Riemann mapping theorem. The algorithm has been im-

plemented in FORTRAN.

UNIFORMIZATION THEOREM FOR PLANE DOMAINS. IfU is a region contained

in C — {a, b} for some a ^ b in C, then there exists a conformai isomorphism ofU

with D.

2. Preliminaries. Let DcCbe the open unit disk, Dr be the open disk of

radius r centered at O, and Dr be the closure of Dr.

Let ma(z) = (z + a)/(l + az), where a is the complex conjugate of a. For aE D,

ma: D —> D is a conformai bijection with inverse m.-a(z). Aut(D), the group of

analytic automorphisms of D, is precisely {el6ma(z)]a E D}.

Also define sq(z) = z2, and let U denote the universal covering space of U.

2.1 The universal covering of C — {0,1}. Let H denote the upper half plane.

The following is essentially proved by Theorem 7 and Theorem 8 of Ahlfors [A, p.

281].

THEOREM 2.1. The modular function X: H —» C — {0,1} is a universal covering

map.

2.2 Limits of analytic functions. The next theorem is stated in elementary texts

for plane domains only, but the proof immediately generalizes to an arbitrary Rie-

mann surface f2, at least if fi is a countable union of compact subsets. Actually, a

theorem of Radó asserts that all Riemann surfaces ft have this property [F, p. 186],

but this result is difficult. It is easy if Q is a covering space of a plane domain.
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LEMMA 2.2. If U is a Riemann surface which is a covering space of a plane

domain U, then Q is a countable union of compact subsets.

PROOF. This follows from the fact that the fundamental group of U is countable,

which itself follows from the fact that U is a countable union of open discs.    Q.E.D.

REMARK. Notice that C— {l,s,5,...} does not have a countable fundamental

group; of course it is not an open subset of C.

THEOREM 2.3(Montel). If /„: fi —► C is a sequence of uniformly bounded

analytic maps, then /„ has a subsequence which converges uniformly on compact

subsets.

Proof. [A, p. 220].

LEMMA 2.4. If p: U —> f/n is a covering map, -ïï: Y —> Uq continuous, and

f: U —> Y is an open surjective map such that the following diagram commutes,

then f is a covering map.

U

\
v

Uo

PROOF. This is straightforward.

3. Proof of the Uniformization Theorem for plane domains.

Part a: Reduction to bounded domains.

LEMMA 3.1.   Without loss of generality we may assume that 0 E U C D.

PROOF. This is where we use Theorem 2.1. Let p: D —» C - {a, 6} be a universal

covering map; there is such a p by Theorem 2.1 since D is conformally isomorphic

to H. Let Uo be a connected component of p_1(f/); then Uo is contained in D, and

since Uo is a covering space of U they have isomorphic universal covering spaces.

The theorem will be proved if we can prove it for J70. If a is any point of Uo, we

can further replace i/o by its image under m_a, so that 0 E Uo-    Q.E.D.

REMARK. If U is bounded to begin with we just need to scale it to bring it into

the disc. More generally if any component K of C — U is not a point, we can replace

U by its image under the conformai mapping C — K —* D, where C is the Riemann

sphere and K is the closure of if in C. But the case where U is the complement

of a Cantor set is of particular importance in the applications we have in mind; we

do not know any way to reduce that case to bounded domains without using the

modular function or something equivalent. The case where U is the complement

of a finite set is also of interest, specifically to the accessory parameter problem; it

also seems to require the modular function.

Part b: The main construction. We will construct recursively a sequence of

domains i/o, f/i, • • •, Un, with all Un contained in D. Moreover, each Un will come

with a covering map pn: Un —* Un-i, which will be of degree 1 or 2. Thus each

{/„ is a covering space of U, and there exist covering maps /„: U —► Un, which can

also be thought of as a sequence of mappings /„: U —► D. We will then prove that

the /„ converge to an isomorphism /: ¡/-»D.
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Assume Uo, ■ ■ ■, Un-i have been constructed, with each U% C D, and 0 EUi for

each i. Further assume Pi,... ,pn-i have been constructed, and p¿(0) = 0 for each

i.

Let an E dUn-i be a point on the boundary of t/n_i that is closest to the origin,

so that D(0, \a„\) C Un-i- Let qn: D —» D be given by

<7n = man o sq o mbn,

where bn = \/—an is an arbitrary square root; note that qn(0) = 0.

There are now two cases to distinguish. See Figure 1.

Case 1. an is in a noncompact component of D — Un-i, i.e. on an "outer"

component of the boundary of Un-i. Then q~x(Un-{) consists of two connected

components, intersecting at — bn. Choose the one containing zero, call it Un, and

let pn be the restriction of qn to it.

Case 2. an is in a compact component of D — U„-i, i.e. on an "inner" bound-

ary component. This time q~1(Un-i) is connected; call it Un and let pn be the

restriction of qn to it.

sq(z) mbn

Part c: Proof of convergence. Choose p: Ü —► U0 a universal cover, and let Ö

be an inverse image of 0. Because the maps pn: Un —► f/n_i are covering maps,

there exist unique analytic mappings /„; Ü —► Un with /„(Ö) = 0 which make the

diagram in Figure 2 commute.

The /„ are uniformly bounded, so that {/„} is a normal family with a convergent

subsequence converging to some analytic function / (see 2.3).

PROPOSITION 3.2.   The mapping /: Ü —► D is a covering map.

With this claim, the main theorem is proved. For then U is a covering of D, and

since D is simply connected, any analytic covering of D is an isomorphism.

PROOF. We will prove that / is surjective first and then that it is a covering

map of its image.
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Figure 2

LEMMA 3.3.   The mapping f is surjective.

We will show that the domains Un contain larger and larger discs centered at

the origin. The function h, defined below, has the property that if Un contains the

disk of radius r, then Un+i contains the disc of radius h(r). In this section, we will

discuss h qualitatively. In fact it is possible to compute h(r) explicitly and use this

computation to estimate the rate of convergence of the Un to the unit disk (see

concluding remarks).

DEFINITION of THE FUNCTION h(r). Let qr = m_r o sq o m /?, and let

h: [0,1) — [0,1) be given by

Mr)=inf{|z||«?r(z)| = r}.

Figure 3 explains the meaning of this formula. (The infimum is in fact realized

by the line drawn.) Since Un contains the disc of radius r = [an\, Un+i contains

the component of q~l(Dr) containing the origin, hence the disc of radius h(r).

Figure 3

LEMMA 3.3.1.   The function h is continuous, and h(r) > r if r > 0.

PROOF. The function h is obviously continuous. Since qr: D —> D with t7r(0) = 0

we have |tjr(z)| < |z| by Schwarz's lemma, with strict inequality if z ^ 0. Taking
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infimum's over Br = {z\ ]qr(z)\ = r}, we get h(r) > r. Moreover, the set Br

is compact, so the infimum is realized, and hence the inequality is strict unless

0 E Br, i.e. unless r = 0.    Q.E.D.

We now show that |a„| —► 1 using the properties of h(r). By the definition of

an and 3.3.1 we have |a„+i| > /i(|an|) > |an|, so {|a„|} is strictly increasing. Let

A = lim|an|, and suppose A < 1. Let e = h(A) — A > 0. By continuity of h(r)

we can choose 6 such that if \a — A] < 6, then h(a) — a > e/2. Now choose N

sufficiently large so that |A — ajv| < min(6,e/2). Then we have a contradiction

since A < \an\ +e/2 < h(\an\) < |an+i| for n> N. Hence A = 1.

REMARK. It might seem that we have already proved surjectivity; after all the

images of the /„ contain larger and larger discs, and the /„ converge. The thing

that could go wrong, and which would go wrong if for instance we had chosen a

divergent sequence 0„ of basepoints for U, is that the sequence {/n} could converge

to a constant on the boundary of D.

PROOF OF LEMMA 3.3. We want to show that for w E D, w E f(Ü). If w E D,

then for some large enough N there exists a R such that |a„| > R > \w\. Let V C U

be the component of f~l(D\an\) containing Ö. The mapping /„: V —► D\an\ is a

covering space and thus an isomorphism, so Vi = Vr\fn~1(DR) is compact. The sets

fñli(DR) C Vi, because pn+l o • ■ ■ opn satisfies Schwarz's lemma. Then {f~^i(w)}

is a sequence in Vi with a limit point v such that f(v) = w, and w E f(U).

So D c f(Ü) and f((l) C D; since / is an open map f(Ü) = D.    Q.E.D.

LEMMA 3.4.   The mapping f is a covering space of its image.

PROOF. Let nn = qx o • • ■ o qn: D —> D, so that p = 7r„ o /„. The sequence

7T„ has a subsequence converging to an analytic function it: D —» D. By choosing

a subsequence of the subsequence making the /„ converge, we can guarantee that

p = irof; then w(D) = w(f{Ü)) = p(Ü) = U0.

Lemma 2.4 completes the proof. The proofs of Lemma 3.4, Proposition 3.2, and

the Theorem are now complete.

4. Concluding remarks. (1) Since 0 is isomorphic with D, we see that it is

a universal covering map for U. It can be used to explicitly estimate the Poincaré

metric in U.

(2) We can make the /„ and 7rn converge (not just via a subsequence) by nor-

malizing their derivatives to be positive. However, this is not necessary in practice

where some 7rn is chosen to approximate a universal cover of U, and an arbitrary

rotation composed with 7rn is not important.

(3) If only Case 1 occurs, which is the case if and only if U is simply connected,

the above gives a proof of the Riemann mapping theorem due to Koebe. The map

7r: D —> U is a conformai isomorphism.

(4) The sequence {|an|} is actually bounded below by {h n(|ai|)}, so examining

{h n(\ai |)} gives a worst case behavior for the rate of convergence of the algorithm.

The square root of a circle through the origin is lemniscate (this is the bound-

ary of B2 in Figure 3), and we can compute the minimum distance from 0 to

m-sqrt(r)(r9£?2) = B3.   If r is the radius of the original disk, then the minimum
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distance from 0 to the boundary qr x(Dr) is

_ y/27 - y/r3 + r _ y/r~(r - 1 + sj2r2 + 2)

[T)~ y/r*TI-V2r'~ (r+1)

h(r) = l + (r-l)-±(r-ir + --..

It is simple to check that h has a fixed point at 1 which attracts all r € (0,1)

under iteration. We can estimate the rate of convergence of h n(r) to 1 — e.

In fact,

h°n(r) = 1 - 2^2/v^ + oil/y/n).

For a more practical estimate, suppose 1/2 < r < 1. If h°n(r) = 1 - e, then n

SiltlSTlPS

(4/e)2 - (2/(1 - r))2 > n > (2/e)2 - (4/(1 - r))2.

This estimate follows by induction from the fact that if 2/yfm < 1 —r < 4/y/m,

then 2/\Jm + 1 < 1 — h(r) < 4/\Jm + 1, which follows from the asymptotic expan-

sion for h "(r) above. This is not nearly a sharp estimate. The inequalities can be

improved by requiring r to be closer to 1.

When n is large enough so that 1 — e < h n(|ai |), then 1 — e < \an\, and Pt/„(z),

the Poincaré metric for Un, can be computed to within e by approximating Un as

D; for in that case

Pd(0) < pUn(0) < (1 - £)pd(0).
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