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Abstract 
Background/Aims: Klotho, a transmembrane protein expressed in chorioid plexus of the 
brain, kidney, and several other tissues, is required for inhibition of 1,25(OH)2D3 formation by 
FGF23. The extracellular domain of Klotho protein could be cleaved off, thus being released 
into blood or cerebrospinal fluid. At least in part by exerting β-glucuronidase activity, soluble 
klotho regulates several ion channels and carriers. Klotho protein deficiency accelerates the 
appearance of age related disorders including neurodegeneration and muscle wasting and 
eventually leads to premature death. The present study explored the effect of Klotho protein 
on the excitatory glutamate transporters EAAT1 (SLC1A3) and EAAT2 (SLC1A2), Na+ coupled 
carriers clearing excitatory amino acids from the synaptic cleft and thus participating in the 
regulation of neuronal excitability. Methods: cRNA encoding EAAT1 or EAAT2 was injected 
into Xenopus laevis oocytes and glutamate (2 mM)-induced inward current (IGlu) taken as measure 
of glutamate transport. Measurements were made without or with prior 24 h treatment with 
soluble ß-Klotho protein (30 ng/ml) in the absence and presence of β-glucuronidase inhibitor 
D-saccharic acid 1,4-lactone monohydrate (DSAL,10 µM). Results: IGlu was observed in EAAT1 
and in EAAT2 expressing oocytes but not in water injected oocytes. In both, EAAT1 and EAAT2 
expressing oocytes IGlu was significantly increased by treatment with soluble ß-Klotho protein, 
an effect reversed by DSAL. Treatment with ß-klotho protein increased significantly the maximal 
transport rate without significantly modifying the affinity of the carriers. Conclusion: ß-Klotho 
up-regulates the excitatory glutamate transporters EAAT1 and EAAT2 and thus participates in 
the regulation of neuronal excitation.
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Introduction

Klotho is expressed mainly in kidney and choroid plexus [1, 2]. The extracellular domain 
of the Klotho protein may be cleaved off and function as enzyme with β-glucuronidase activity 
[3-7]. Klotho has a powerful impact on aging and life span [8, 9]. As shown in mice, klotho 
deficiency leads to severe growth retardation, accelerated appearance of several age related 
disorders, as well as dramatic shortening of the life span [9], whereas over-expression of klotho 
extends the life span [9, 10]. 

Klotho is effective in part by mediating the inhibitory effect of FGF23 on 1α-hydroxylase 
and thus 1,25(OH)2D3 (calcitriol) formation [2, 8, 11-14]. Calcitriol in turn stimulates Klotho 
expression [15] as well as intestinal and renal Ca2+ and phosphate transport [16, 17]. The 
excessive 1,25(OH)2D3 formation in klotho deficient mice [2, 13, 14] is followed by increase 
of plasma Ca2+ [18] and phosphate [17] concentrations as well as vascular calcification [19]. 
Klotho further more directly influences several transport proteins including Ca2+ channels 
[20], Na+,phosphate cotransport [4, 21], Na+/K+ ATPase [22], renal outer medullary K+ 
channels [23], KCNQ1/KCNE1 [24] and the excitatory amino acid transporters EAAT3 and 
EAAT4 [25]. 

Excitatory amino acid transporters (EAATs) influence neuroexcitation by clearance of 
the excitatory neurotransmitters glutamate and aspartate from synaptic clefts [26-30]. EAAT 
isoforms particularly important for the regulation of neuroexcitation are the excitatory 
amino acid transporter isoforms EAAT1 (SLC1A3) and EAAT2 (SLC1A2) [26, 31, 32]. EAAT1 
[33-41] and EAAT2 [42] are both expressed in astrocytes. Moreover, EAAT1 is expressed in 
oligodendrocytes [43, 44], neurons [45-47], retina [48, 49], taste buds [50], cochlea [51, 52], 
vestibular organ [53], circumventricular organ [33], adrenal and pineal glands [54, 55] as well 
as bone cells [56-59]. EAAT2 may confer neuroprotection [60] and impaired expression or 
activity of EAAT2 is followed by neuroexcitotoxicity [61-64]. 

The present study explored, whether the function of EAAT1 and/or EAAT2 is sensitive 
to ß-Klotho protein. To this end, EAAT1 or EAAT2 expressing Xenopus laevis oocytes were 
treated with ß-Klotho protein and glutamate induced current determined by dual electrode 
voltage clamp. 

Materials and Methods

Ethical Statement
All experiments conform with the 'European Convention for the Protection of Vertebrate Animals used for 

Experimental and other Scientific Purposes' (Council of Europe No 123, Strasbourg 1985) and were conducted 
according to the German law for the welfare of animals and the surgical procedures on the adult Xenopus laevis 
frogs were reviewed and approved by the respective government authority of the state Baden-Württemberg 
(Regierungspräsidium) prior to the start of the study (Anzeige für Organentnahme nach §36).

Constructs
Constructs encoding human wild-type EAAT1 [65] and human wild-type EAAT2 [66-68], were used for 

generation of cRNA as described previously [69, 70]. 

Voltage clamp in Xenopus oocytes
Xenopus oocytes were prepared as previously described [71, 72]. 10 ng cRNA encoding EAAT1 or 

EAAT2 were injected on the same day after preparation of the oocytes. The oocytes were maintained at 17°C 
in ND96-A, a solution containing (in mM): 88.5 NaCl, 2 KCl, 1 MgC12, 1.8 CaC12, 2.5 NaOH, 5 HEPES (pH 7.4), 5 
sodium pyruvate (C3H3NaO3), Gentamycin (100 mg/l), Tetracycline (50 mg/l), Ciprofloxacin (1.6 mg/l), and 
Theophiline (90 mg/l) [73, 74]. Where indicated, 30 ng/ml ß-Klotho protein and/or 10 µM β-glucuronidase 
inhibitor DSAL were added to the respective solutions. The voltage clamp experiments were performed 
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at room temperature 3 days after the first injection [70, 75]. Glutamate induced currents were taken as a 
measure of glutamate transport [76, 77]. The holding potential was -70 mV.The data were filtered at 10 Hz 
and recorded with a Digidata A/D-D/A converter (1322A Axon Instruments) and Clampex 9.2 software for 
data acquisition and analysis (Axon Instruments) [78-80]. The control superfusate (ND96-B) contained (in 
mM): 93.5 NaCl, 2 KCl, 1.8 CaCl2, 1 MgCl2, 2.5 NaOH and 5 HEPES (pH 7.4). The flow rate of the superfusion 
was approx. 20 ml/min, and a complete exchange of the bath solution was reached within about 10 s [81-
83]. For kinetic analysis the glutamate induced-current (IGlu) was plotted against the respective glutamate 
concentration (s) and maximal current (Imax) as well as concentration required for halfmaximal current (km) 
calculated using the equation IGlu = Imax∙s/(km + s).

Statistical analysis
Data are provided as means ± SEM, n represents the number of oocytes investigated. As different batches 

of oocytes may yield different results, comparisons were always made within a given oocyte batch. All voltage 
clamp experiments were repeated with at least 3 batches of oocytes; in all repetitions qualitatively similar data 
were obtained. Data were tested for significance using ANOVA or t-test, as appropriate. Results with p < 0.05 
were considered statistically significant. 

Results

The present study explored the effect of the ß-Klotho protein on electrogenic glutamate 
transport by the excitatory amino acid transporters EAAT1 and EAAT2. To this end, EAAT1 or 
EAAT2 expressing Xenopus laevis oocytes were left untreated or were treated with ß-klotho 
protein (30 ng/ml) and glutamate-induced inward current (IGlu) measured by dual electrode 
voltage clamp and taken as a measure of electrogenic glutamate transport. 

Fig. 1. Effect of recombinant human ß-Klotho protein on electrogenic glutamate transport in EAAT1 ex-
pressing Xenopus laevis oocytes. A: Representative original tracings of glutamate (2 mM) induced current 
in Xenopus oocytes injected with water (a,b), or with cRNA encoding EAAT1 (c,d) without (a,c) and with 
(b,d) prior ß-Klotho protein (30 ng/ml, 24 h) treatment. B: Arithmetic means ± SEM (n = 10-14) of the 
normalized glutamate (2 mM) induced current in Xenopus oocytes injected with water (left bars) or express-
ing EAAT1 (right bars) without (white bars) or with (black bars) prior ß-Klotho protein (30 ng/ml, 24 h) 
treatment. ** (p<0.01) indicates statistically significant difference from EAAT1 expressing oocytes without 
ß-Klotho protein treatment.

http://dx.doi.org/10.1159%2F000442604


Neurosignals 2015;23:59-70
DOI: 10.1159/000442604
Published online: December 19, 2015

© 2015 The Author(s). Published by S. Karger AG, Basel
www.karger.com/nsg 62

Warsi/Abousaab/Lang: Klotho Sensitivity of EAAT1 and EAAT2

As illustrated in Fig. 1, IGlu was negligible in water-injected oocytes indicating that 
the oocytes did not express appreciable endogenous electrogenic glutamate transport. 
In contrast, glutamate (2 mM) triggered a sizable IGlu in EAAT1 expressing Xenopus laevis 
oocytes. The treatment of EAAT1 expressing oocytes with ß-Klotho protein (30 ng/ml) was 

Fig. 2. Glutamate induced current in EAAT1 
expressing Xenopus laevis oocytes as a func-
tion of glutamate concentration without 
and with prior ß-Klotho protein treatment. 
Arithmetic means ± SEM (n =3-5) of Iglu as a 
function of glutamate concentration in Xeno-
pus laevis oocytes expressing EAAT1 without 
(black squares), or with (black circles) prior 
ß-Klotho protein (30 ng/ml, 24 h) treatment. 
*** (p<0.001) indicates statistically signif-
icant difference from untreated EAAT1 ex-
pressing oocytes.

Fig. 3. Effect of recombinant human ß-Klotho protein in the absence and presence of β-glucuronidase in-
hibitor DSAL on electrogenic glutamate transport in EAAT1 expressing Xenopus laevis oocytes. A: Represen-
tative original tracings of glutamate (2 mM) induced current in Xenopus oocytes injected with water (a), or 
with cRNA encoding EAAT1 (b,c,d) without treatment (b) and with treatment with ß-Klotho protein (30 ng/
ml, 24 h) alone (c) or together with β-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate 
(DSAL,10 µM)(d). B: Arithmetic means ± SEM (n = 11-12) of the normalized glutamate (2 mM) induced cur-
rent in Xenopus oocytes injected with water (dotted bar) or expressing EAAT1without (white bars) or with 
prior ß-Klotho protein (30 ng/ml, 24 h) treatment alone (black bar) or together with β-glucuronidase inhib-
itor D-saccharic acid 1,4-lactone monohydrate (DSAL,10 µM) (grey bar). *** (p<0.001) indicates statistically 
significant difference from respective oocytes without ß-Klotho protein treatment, ### (p<0.001) indicates 
statistically significant difference from respective oocytes without presence of DSAL.

***
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followed by a significant increase of IGlu. Treatment of water injected oocytes with ß-klotho 
protein (30 ng/ml) failed to increase IGlu. 

In order to test whether ß-Klotho protein modifies the maximal IGlu and/or the affinity of 
EAAT1, untreated or ß-Klotho protein (30 ng/ml) treated EAAT1 expressing Xenopus laevis 
oocytes were exposed to L-glutamate concentrations ranging from 10 µM to 5000 µM. As 
illustrated in Fig. 2, IGlu was a function of the extracellular glutamate concentration. Maximal 
IGlu was significantly (p<0.05) higher in ß-Klotho protein treated (146.3 ±12.4 nA, n = 5) 
than in untreated (102.9 ± 11.3 nA, n =3) EAAT1 expressing Xenopus laevis oocytes. The 
concentration required for half maximal IGlu (apparent Km) tended to be lower in ß-Klotho 
protein treated (208 ± 85 µM, n = 5) than in untreated (553 ± 227 µM, n = 3) EAAT1 expressing 
Xenopus laevis oocytes, a difference, however, not reaching statistical significance.

A further series of experiments explored whether the effect of ß-Klotho protein is 
related to its β-glucuronidase activity. To this end EAAT1 expressing Xenopus laevis oocytes 
were treated with ß-Klotho protein in the absence and presence of β-glucuronidase inhibitor 
D-saccharic acid 1,4-lactone monohydrate DSAL). As illustrated in Fig. 3, the effect of (
ß-Klotho protein on electrogenic glutamate transport in EAAT1 expressing Xenopus laevis 
oocytes was virtually abolished by DSAL (10 µM). This observation is highly suggestive that 
klotho is effective as enzyme. 

Similar observations were made in EAAT2 expressing Xenopus laevis oocytes. As 
illustrated in Fig. 4, glutamate (2 mM) triggered a sizable IGlu in EAAT2 expressing Xenopus 
laevis oocytes. The treatment of EAAT2 expressing oocytes with ß-klotho protein (30 ng/ml) 
was followed by a significant increase of IGlu. 

Fig. 4. Effect of recombinant human ß-Klotho protein on electrogenic glutamate transport in EAAT2 ex-
pressing Xenopus laevis oocytes. A: Representative original tracings of glutamate (2 mM) induced current 
in Xenopus oocytes injected with water (a), or with cRNA encoding EAAT2 without (b) or with (c) prior 
ß-Klotho protein (30 ng/ml, 24 h) treatment. B: Arithmetic means ± SEM (n = 7-10) of the normalized gluta-
mate (2 mM) induced current in Xenopus oocytes injected water (dotted bar) or expressing EAAT2 without 
(white bar) or with (black bars) prior ß-Klotho protein (30 ng/ml, 24 h) treatment. * (p<0.05) indicates 
statistically significant difference from EAAT2 expressing oocytes without ß-Klotho protein treatment.
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Exposure of EAAT2 expressing oocytes to glutamate concentrations ranging from 10 µM 
to 5000 µM revealed the dependence of IGlu on extracellular L-glutamate concentration (Fig. 
5). Maximal IGlu was again significantly (p<0.05) higher in ß-Klotho protein treated (310.0 ± 
14.6 nA, n = 7) than in untreated (242.6 ± 21.6 nA, n = 6) EAAT2 expressing Xenopus laevis 
oocytes. The concentration required for half maximal IGlu (apparent Km) tended again to be 
lower  in ß-Klotho protein treated (354 ± 38 µM, n = 7) than in untreated (550 ± 71 µM, 
n = 6) EAAT2 expressing Xenopus laevis oocytes, a difference again not reaching statistical 
significance.

A further series of experiments again revealed that the effect of ß-Klotho protein was 
related to its β-glucuronidase activity. As illustrated in Fig. 6, the effect of ß-Klotho protein on 
electrogenic glutamate transport in EAAT2 expressing Xenopus laevis oocytes was virtually 
abolished by DSAL (10 µM).

Discussion

The present study reveals a novel function of ß-Klotho protein, i.e. the up-regulation 
of the excitatory amino acid transporters EAAT1 and EAAT2. Treatment of either, EAAT1 
and EAAT2 expressing oocytes with human recombinant ß-Klotho significantly increased 
the glutamate-induced inward current (IGlu). Kinetic analysis reveals that ß-Klotho is in large 
part effective by increasing maximal transport rate of the carriers. The large scatter of the 
calculated concentrations required for half maximal current precludes safe conclusions about 
the effect of klotho on carrier affinity. The effect of ß-Klotho on IGlu is virtually abolished by 
β-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate DSAL, an observation 
suggesting that ß-klotho is effective as enzyme. The beta-glucuronidase Klotho belongs to the 
β-glycosidase family [84]. As first shown for the Ca2+ channel TRPV5, the enzyme hydrolyzes 
extracellular sugar residues of target membrane proteins and by this means stabilizes the 
proteins in the cell membrane [84]. Thus, klotho may increase EAAT activity by stabilizing 
the carrier protein in the cell membrane. However, the current was significantly lower in 
klotho and DSAL treated oocytes than in untreated ooytes. We thus cannot exclude that DSAL 
modifies EAAT1 and EAAT2 by mechanisms other than inhibition of klotho enzyme activity. 
Along those lines, we cannot rule out that klotho is effective by mechanisms other than beta-
glucuronidase activity.

Up-regulation of EAAT1 and EAAT2 by ß-Klotho were expected to stimulate the clearance 
of glutamate from the synaptic cleft and thus to accelerate termination of excitation. Up-
regulation of excitatory glutamate transporters would thus decrease neuroexcitablity. 

Fig. 5. Glutamate induced current 
in EAAT2 expressing Xenopus laevis 
oocytes as a function of glutamate 
concentration without and with 
prior ß-Klotho protein treatment. 
Arithmetic means ± SEM (n =6-7) of 
Iglu as a function of glutamate con-
centration in Xenopus laevis oocytes 
expressing EAAT2 without (black 
squares), or with (black circles) pri-
or ß-Klotho protein (30 ng/ml, 24 h) 
treatment. *** (p<0.001) indicates 
statistically significant difference 
from untreated EAAT2 expressing 
oocytes.
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Ample evidence points to a role of EAAT1 and EAAT2 in the regulation of neuroexcitation. 
EAAT1 deficiency in mice results in locomotor hyperactivity, abnormal behavior with reduced 
preference for a novel social stimulus, reduced acoustic startle response, and impaired 
memory consolidation in mice [85, 86]. EAAT2 deficiency in humans may be involved in 
the pathophysiology of several neurological disorders including Alzheimer disease [87, 88], 
schizophrenia [89], HIV associated dementia [90], multiple sclerosis [91, 92], leukomalacia 
[93], epilepsy [94, 95], brain trauma [96], hypoxia and stroke [30, 97-99], reward dependence 
[100], as well as amyotrophic lateral sclerosis (ALS) [61, 101, 102]. Additional experimental 
evidence is needed to test whether altered expression and/or function of ß-Klotho contributes 
to the clinical course of those diseases.

Beyond its influence on EAAT1 and EAAT2, Klotho modifies a variety of channels, carriers, 
and the  Na+/K+ ATPase, which are partially expected to impact on neuronal function. 
Moreover, the beta-glucuronidase activity could modify and stabilize further cell membrane 
proteins, such as receptors. Clearly, additional experimentation is required to dissect the 
various actions of Klotho on neuronal function. 

In conclusion, ß-Klotho up-regulates the activity of the glutamate transporters EAAT1 
and EAAT2. The effect could contribute to the complex regulation of neuronal excitability.

Fig. 6. Effect of recombinant human ß-Klotho protein in the absence and presence of β-glucuronidase in-
hibitor DSAL on electrogenic glutamate transport in EAAT2 expressing Xenopus laevis oocytes. A: Represen-
tative original tracings of glutamate (2 mM) induced current in Xenopus oocytes injected with water (a), or 
with cRNA encoding EAAT2 (b,c,d) without treatment (b) and with treatment with ß-Klotho protein (30 ng/
ml, 24 h) alone (c) or together with β-glucuronidase inhibitor D-saccharic acid 1,4-lactone monohydrate 
(DSAL,10 µM)(d). B: Arithmetic means ± SEM (n = 14-16) of the normalized glutamate (2 mM) induced 
current in Xenopus oocytes injected water (dotted bar) or expressing EAAT2 without (white bars) or with 
prior ß-Klotho protein (30 ng/ml, 24 h) treatment alone (black bar) or together with β-glucuronidase inhib-
itor D-saccharic acid 1,4-lactone monohydrate (DSAL,10 µM) (grey bar). *** (p<0.001) indicates statistically 
significant difference from respective oocytes without ß-Klotho protein treatment, ### (p<0.001) indicates 
statistically significant difference from respective oocytes without presence of DSAL.
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