OPTIMALITY AND EXISTENCE FOR LIPSCHITZ EQUATIONS

JOHNNY HENDERSON
nepartinent of Algebra, Conbinatorics, \& Analysis
Auburn Iniversity
Aubirn, Alabama 36349

(Received January 5, 1987 and in revised form July 28, 1987)

ABSTRACT: Solutions of certain boundary value problems are shown to exist for the nth order differential equation $y^{(n)}=f\left(t, y, y^{\prime}, \ldots, y^{(n-1)}\right.$), where f is continuois on a slab $(a, b) \times R^{n}$ and f satisfies a Lipschitz condition on the slab. Optinal length subintervals of (a, b) are deternined, in terns of the Lipschitz coefficients, on which there extst unlque solutions.

KEY WORDS AND PHRASES: Ordinary differential equation, boundary value problem, Lipschitz condition, optimal length interval, uniqueness imples extstence. 1980 AMS SUBJECT CLASSIFICATION: 34BIO, 34BL5.

1. INTRODUCTION.

We will be concerned with the existence of solutions of boundary value problems for the nth order differential equation

$$
\begin{equation*}
y^{(n)}=f\left(t, y, y^{\prime}, \ldots, y^{(n-1)}\right), \tag{1.1}
\end{equation*}
$$

where f is continuous on a slab (a,b) $\times R^{n}$ and satisfies a Lipschitz condition,

$$
\begin{equation*}
\left|f\left(t, y_{1}, \ldots, y_{n}\right)-f\left(t, z_{1}, \ldots, z_{n}\right)\right| \leq \int_{-1=1}^{n} k_{i}\left|y_{i}-z_{i}\right|, \tag{1.2}
\end{equation*}
$$

on the slab.
A number of papers have appeared in which optimal length subintervals of (a,b) are determined, in terms of the Lipschitz coefficients $k_{i}, 1 \leq i \leq n$, on which solutions of certain boundary value problems for (1.1) are unique; see, for example [1-15]. Of motivational importance in this work are the papers by Jackson [10-11] in which he applied methods from control theory in establishing optimal length subintervals, in terms of the Lipschitz coefficients, on which solutions of conjugate boundary value problems and right focal point boundary value problems for (1.1) are unique. It then follows from uniqueness implies existence results due to Hartman [16-17] and zlazsen [18] in the conjugate case and Henderson [19] in the right focal point case, that unique solutions exist on the optimal intervals given in [10-11].

If [7-3], ve adapted Jackson's control theory argunents, in conjunctinn with unturenes; inplies extstence results, and deterinined optimal lensth subintervals of (a, b) on which there exist anlque solations of severil classes of boundary value problens for thed and fourth order ordinary differential equations satisfyiag ifpschitz conditions. In a recent work $\{\mathcal{H}]$, we followeit the patteri of [7-9, 10-11], by applying the Pontryagla laximum Principle to a linearization of (1.1), and determined optinal length subintervals of (a, b), in terns of k_{i}, on which solations are unique for boundary value problens for (l.l) satisfying

$$
\begin{array}{ll}
y^{(i)}\left(t_{1}^{\prime}\right)=y_{i+l}, & 0 \leq i \leq n-h+k-1, \\
y^{(i)}\left(t_{i}\right)=y_{n-h+(i+1)}, & k \leq 1 \leq h-1, \tag{1.3}
\end{array}
$$

where $a<t_{i}^{\prime}<t_{k} \leq \cdots \leq t_{h-1}<b, n \leq k<h \leq n$, and $y_{i} \varepsilon R, l \leq i \leq n$.
In this work, we now address the problem of exlstence of solutions of (l.l), (1.3) on the optinal intervals for uniqueness givea in [9]. We state in Section 2 some of the results concerning optimality and dilqueness obtained in [9] which are pertinent to the argurnent; here. Then in Section 3, we are able to prove that on subintervals of length less than the optimal length given in Section 2 and for certain values of k and h, solations of (1.1), (1.3) exist. For this restricted set of k and h, the existence result is in sone sense analogous to the aniqueness inplies existence results in [15-19].

2. OPTIMALITTY AND UNIQUENESS.

In this section, we state a Theoren and a Corollary fron [9, Thm. $3 \&$ the Cor.l, in whicin optimal length subintervals of (a,b) in terms of the lipschitz coefficients $k_{i}, l \leq i \leq n$, are determined on which solutions of (1.1), (1.3) are unique.

THEOREM 1 . Let $0 \leq k<h \leq n$ be given and let $\left.\gamma=\operatorname{minfr} \gamma_{\ell} \mid k \leq \ell<h\right\}$, where γ_{0} is the siallast positive number such that there extsts a solution $x(t)$ of the boundary value problen

$$
\begin{gathered}
x^{(n)}=(-1)^{h-\ell}\left[k_{1} x+\sum_{i=1}^{n} k_{i}\left|x^{(i-1)}\right|\right], \\
x^{(i)}(0)=0,0 \leq i \leq a-h+\ell-1, \\
x^{(i)}\left(\gamma_{p}\right)=0, \ell \leq i \leq h-1,
\end{gathered}
$$

with $x(t)>0$ on $\left(0, \gamma_{\ell}\right)$, or $\gamma_{\ell}=+\infty$ if no such solution exists. For any $k \leq \ell<h$, if $y(t)$ and $z(t)$ are ifistinct solutions of (l.1) such that

$$
\begin{gathered}
y^{(i)}\left(t_{1}^{\prime}\right)=z^{(i)}\left(t_{1}^{\prime}\right), 0 \leq 1 \leq n-h+\ell-1, \\
y^{(i)}\left(t_{i}\right)=z^{(i)}\left(t_{i}\right), \ell \leq 1 \leq h-1,
\end{gathered}
$$

$a<t_{1}^{\prime}<t_{0} \leq \cdots \leq t_{k-1}<b$, and 1 f $r_{h-1}-t_{i}^{\prime}<r$, it follows that $y(t) \equiv z(t)$ on (a, b), and this is best possible for the class of all differential equations satisfying the ripscintz condition (1.2).

 follows from holle's Theorem that solutions of a number of other burnary walue prositas for (1.1) are unlque. For example, we can state the following.

COROLLARY 2. Let r be as ta Tharin 1 . "n any $k \leq \ell<h$ and $h-\ell \leq j \leq h$, if $y(t)$ and $z(t)$ are solutions of (l.1) such that

$$
\begin{aligned}
& y^{(i)}\left(t_{1}^{\prime}\right)=z^{(i)}\left(t_{1}^{\prime}\right), 0 \leq i \leq n-h+\ell-1 \\
& y^{(i+j-h)}\left(t_{i}\right)=y^{(i+j-h)}\left(t_{i}\right), \ell \leq i \leq h-1,
\end{aligned}
$$

$a<t_{1}^{\prime}<t_{l} \leq \cdots \leq t_{h-1}<b$, amir if $\quad \therefore \gamma$, it follows that $y(t) \equiv z(t)$ on (a, b), and this is best possibie.
3. EXISTENCE OF SOLUTLOV:
 Klaasen [18], and Hendersoi : 191, we give a proof in this section tivis, wite optinal subintervals for uniquenes: desolflel ta Section 2 and for a restricted :att of values of h and k, the boundary val problems (1.1), (1.3) have unique $\therefore \therefore$ itions. For the proof, we use somewhat standard shooting methods, les $1 \because .3$ give the proof only for two-point problems, with the prof for nultipoint problems being similar.

THEOREM 3. Let $[n / 2] \leq h \leq n$ be given, ([$\cdot]$ denotes til gon:ont finteger function), Let $k=0$ and let $\gamma=\min \left\{\gamma_{\ell} \mid 0 \leq \ell<h\right\}$ be as deflatel finacen 1 . Then the boundary value problem

$$
\begin{aligned}
& y^{(n)}=f\left(t, y, y^{\prime}, \ldots, y^{(n-1)}\right) \\
& y^{(i)}\left(t_{1}\right)=y_{1+1}, 0 \leq 1 \leq n-h+l-i \\
& y^{(i)}\left(t_{2}\right)=y_{n-h+(i+1)}^{\prime}, \ell \leq i \leq h-1
\end{aligned}
$$

where $a<t_{1}<t_{2}<b, 0 \leq \ell<h$, has a unique solution for aty innment of $y_{i} \in R, 1 \leq i \leq n$, provided $t_{2}-t_{1} \leq \gamma$. Furthermore, this resilit is best possible for the class of all differentlal equations which satisfy then indition condition (1, 2).

PROOF. Let $a<t_{1}<t_{2}<b$, with $t_{2}-t_{1}<\gamma$, and $y_{i} \varepsilon R, 1 \leq i \leq n$, be given. We prove the exisitace of solutions for a much larger family of boundary value problens than those in the statement of the theorem. In fact, we prove the existence of solutions of the two-point problems which belous the chass of probiens in Gorollary 2. For induction purposes; we tarange these problems in a lower triangular array,

$$
\begin{array}{cc}
(1,1) & \\
\ddots, 1) & (2.2) \quad . \\
\vdots & \vdots \\
(h, 1) & (h, 2) \cdots . .(h, h)
\end{array}
$$

where the bountary wilue problem for (1) associated with the (μ, v)-position,
$1 \leq v \leq u \leq h$, satisfies

$$
\begin{gathered}
y^{(i)}\left(t_{1}\right)=y_{1+1}, 0 \leq 1 \leq n-v-1, \\
y^{(i)}\left(t_{2}\right)=y_{n-\mu+(i+1)}, u-v \leq 1 \leq \mu-1 .
\end{gathered}
$$

Under this arrangement, the boundary value problems for (1.1) along the principal diagonal $(\mu, \mu), 1 \leq \mu \leq h$, are conjugate type problems, whereas the boundary value problems in the statement of this theorem are associated with the entries along the bottom row $(h, \nu), 1 \leq \nu \leq h$.

By Corollary 2, solutions of all the problems in this array are unique on subintervals of length less than γ. Moreover, by the constraints on h and k, it follows that solutions of all conjugate type boundary value problems for (1.1) are unique. Then, it follows from the uniqueness implies existence result of Hartman [16-17] and Klaasen [18] that the condigate boundary value problems, and in particular those associated with the entries on the main diagonal, have unique solutions. (This is the reason for the constraints on h and $k_{\text {. }}$) For existence of solutions of the remaining problems associated with the array, we will use the shooting method coupled with an induction along the subdiagonals on the array.

In that direction, choose any boundary value problem for (l) associated with the first subdiagonal ($\mu, u-1$), where $2 \leq \mu \leq h ;$ that is, we are concerned with solutions of (1) satisfying

$$
\begin{gathered}
y^{(i)}\left(t_{1}\right)=y_{i+1}, 0 \leq 1 \leq n-\mu, \\
y^{(i)}\left(t_{2}\right)=y_{n-\mu+(i+1)}, 1 \leq i \leq \mu-1 .
\end{gathered}
$$

In applying the shosting method, let $z(t)$ be the solution of (1) satisfying conditions associated with the (μ, u)-position,

$$
\begin{aligned}
& z^{(i)}\left(t_{1}\right)=y_{i+1}, 0 \leq 1 \leq n-\mu-1 \\
& z\left(t_{2}\right)=0, \\
& z^{(i)}\left(t_{2}\right)=y_{n-\mu+(i+1)}, 1 \leq 1 \leq \mu-1,
\end{aligned}
$$

and define $S=f_{y}^{(n-\mu)}\left(t_{1}\right) \mid y(t)$ is a solution of (1) satisfying $y^{(i)}\left(t_{1}\right)=$ $z^{(1)}\left(t_{1}\right), 0 \leq 1 \leq n-u-1$, and $\left.y^{(1)}\left(t_{2}\right)=z^{(1)}\left(t_{2}\right), 1 \leq 1 \leq u-1\right\} . \quad S \neq \varnothing$ since $z^{(n-\mu)}\left(t_{1}\right) \varepsilon S$, and since solutions of the problems corresponding to ($\mu, \mu-1$)position are unique, it follows from a standard application of the Brouwer Invariance of Domain Theorem that S is open, (see [20-21] for a typical argument).

We claim that S is also a closed subset of R. Assuming the claim to be false, it follows that there is a limit point $r_{0} \varepsilon \bar{S} \backslash S$. Hence, there exists a strictly monotone sequence $\left\{r_{j}\right\} \subset S$ of numbers converging to r_{0}. We may assume without loss of generality that $r_{j} \uparrow r_{0}$. For each $j \geq 1$, let $y_{j}(t)$ denote the solution of (1) given by the definition of S satisfying,

$$
\begin{aligned}
& y_{j}^{(l)}\left(t_{1}\right)=z^{i(i)}\left(t_{1}\right), 0 \leq 1 \leq n-u-1, \\
& y_{j}^{(n-u)}\left(t_{1}\right)=r_{j}, \\
& y_{j}^{(1)}\left(t_{2}\right)=z^{(1)}\left(t_{2}\right), 1 \leq 1 \leq u-1 .
\end{aligned}
$$

From Corollary 2, it follows that, fise each $j \geq 1, y_{j}(t)<y_{j+1}(t)$ on $\quad\left(t_{1}, t_{2}\right.$]. Furílermore, since f satisfies the Lipschitz condition (2), it follows that a compactness condition on sequences of solutions of (i) is satisfied, (see [10]); froin this compactness condition and the fact that $\left.r_{n} \notin\right\}$, se live that $\left\{y_{j}(t)\right\}$ is not uniformly boundei mench compact subinterval of (a, b), and in particular, is not uniformly bounded above on each compact subinterval of $\left[t_{1}, t_{2}\right]$.

Now let $i(t)$ be the solition of the problem for (1) associated with the (u-1,u-1)-position,

$$
\begin{aligned}
& u^{(1)}\left(t_{1}\right)=y_{1+1}, 0 \leq 1 \leq n-\mu-1 \\
& u^{(n-11)}\left(t_{1}\right)=r_{0}, \\
& u\left(t_{2}\right)=0, \\
& u^{(i)}\left(t_{2}\right)=y_{n-u+(i+1)}, 1 \leq 1 \leq \mu-2
\end{aligned}
$$

It follows that, for some $\delta>0, y_{1}^{(1)}(t)<u^{(i)}(t)$ on $\left(t_{1}, t_{1}+\delta\right), 0 \leq 1 \leq n-\mu$, and either (i) $(-1)^{i+1} y_{1}(i)(t)<(-1)^{i+1_{u}(i)}(t)$ on $\left(t_{1}-\delta, t_{1}\right), 0 \leq i \leq n-\mu$, when $n-\mu$ is odd, or (i1) $(-1)^{i_{1}}(1)(t)<(-1)^{(i)}(t)$ on $\left(t_{1}-\delta, t_{1}\right), 0 \leq i \leq n-\mu$, when $n-\mu$ is even. We will assume that $2-\mu$ is odd and also that $t_{2}-\left(t_{1}-\delta\right)<\gamma$.

It follows that there exists a subsequence $\left\{y_{f_{k}}(t)\right\}$ such that, for each $k \geq 1$, $y_{j_{k}}(n-\mu)(t)$ intersects $u^{(n-\mu)}(t)$ at point $\rho_{k} \varepsilon\left(t_{1}, t_{1}+\delta\right)$ and $y_{j_{k}}(n-\mu)(t)$ intersects $u^{(n-u)}(t)$ or $y_{1}^{(n-\mu)}(t)$ at a point $\sigma_{k} \varepsilon\left(t_{1}-\delta, t_{1}\right)$ and $\sigma_{k} \uparrow t_{1}$ and $\rho_{k} \downarrow t_{1}$. By choosing successive subsequences and relabeling, we may assume that $t_{1}-\delta<\sigma_{k}<t_{1}<\rho_{k}<t_{1}+\delta$ are the first points where these intersections occur. Now, if there is an infinite subsequence, which we relabel as $\left\{y_{j_{k}}(t)\right\}$, such that
$y_{j_{k}}(n-\mu)\left(\sigma_{k}\right)=y_{1}{ }^{(n-\mu)}\left(\sigma_{k}\right)$, we have that, for each $k,(-1)^{i+1} y_{1}^{(i)}(t)$ $<(-1)^{i+1} y_{j_{k}}(i)(t)<(-1)^{i+1} u_{u}(i)(t)$ on $\quad\left(\sigma_{k}, t_{1}\right), 0 \leq i \leq n-\mu$. In this case $\lim _{k \rightarrow \infty} y_{j_{k}}(i)\left(\sigma_{k}\right)=y_{1}^{(i)}\left(t_{1}\right), 0<1<n-\mu$. But, it is also the case that $y_{j_{k}}^{(i)}\left(t_{2}\right)=y_{1}^{(i)}\left(t_{2}\right), 1<1<\mu-l$, and so from the continuous dependence of solutions
on boundacy conditions of problems associated with the ($\mu, \mu-1$)-position, it follows that $\left\{_{j_{j}}^{(i)}(t)\right\}$ converge: unlfor:nly $t, y_{k}(i)(t)$ on compact subintervals of (a, b), . $\leq i \leq n-1$. This is impossiole, since $y_{j_{k}}^{(n-\mu)}\left(t_{1}\right)=r_{j_{k}} \rightarrow r_{0}>r_{1}=y_{1}^{(n-\mu)}\left(t_{1}\right)$.

In the case that there is an infinite sibioritence, which we relabel again as $\left\{y_{j_{k}}(t)\right\}$, such that $y_{j_{k}}(n-\mu)\left(\sigma_{k}\right)=u^{(n-\mu)}\left(\sigma_{k}\right)$ and $y_{j_{k}}^{(n-\mu)}\left(\rho_{k}\right)=u^{(a-\mu)}\left(\rho_{k}\right)$, it follows that, for each $k,(-1)^{i+1} y_{l}{ }^{(l)}(t)<(-1)^{i+1} y_{j_{k}}(i)(t)<(-1)^{i+1} u^{(i)}(t)$ on $\left(\sigma_{k}, t_{1}\right)$ and $y_{1}^{(i)}(t)<f_{j_{k}}(i)(!): i^{(i)}(t)$ on $\left(t_{1}, \rho_{k}\right), 0 \leq i \leq n-\mu$, and $y_{j_{k}}(n-\mu+1)\left(\tau_{k}\right)=u^{(n-\mu+1)}\left(\tau_{k}\right)$, sone $\tau_{k} \in\left(\sigma_{k}, \rho_{k}\right)$. It follows that $\lim _{k \rightarrow \infty} y_{j_{k}}$ (i) $\left(\sigma_{k}\right)$ $=u^{(i)}\left(t_{1}\right), 0 \leq i \leq n-\mu$, and that $\lim _{k \rightarrow \infty} y_{j_{k}}(n-\mu+1)\left(\tau_{k}\right)=u^{(n-\mu+1)}\left(t_{1}\right)$; it is also the case that $y_{j_{k}}(i)\left(t_{2}\right)=u^{(i)}\left(t_{2}\right), 1 \leq i \leq \|-2$. From uniqueness of solutions of boundary valie problems for (1) corresponding to tive ($\mu-1, \mu-2$) -position coupled with an argment similar to the one used in the proof of the first theorem of [13, Thm. 1] and the fact that $t_{2}-\left(t_{1}-\delta\right)<\gamma$, solutions of this latter type of problem for (1) are unique and thus depend continuously upon boundary conditions; it follows that $\left.\gamma_{y_{k}}(i)(t)\right\}$ converges uniformly to $u^{i i)}(t)$ on compact subintervals of (a, b), $0 \leq 1 \leq n-1$. In particular, $u^{(\mu-1)}\left(t_{2}\right)=y_{j_{k}}(\mu-1)\left(t_{2}\right)$, for all k, and it then follows that ${ }_{i}(n-\mu)\left(t_{1}\right)=r_{0} \varepsilon s ;$ dyain, a contradiction.

Thus, S is also : losed and hence $S \equiv R$. Choosing $y_{n-\mu} \varepsilon S$, the corresponding solution of (1) satisfles the boundary value problem corresponding to the (u,u-1)-position. Hence, boundary value problems for (l) associated with the first subdiagonal, $(\mu, u-1), 2 \leq \mu \leq h$, have unique solutions.

For the induction, assume n an tha: ? $\leq m+1 \leq h$ and that, for each $1 \leq s \leq m$, the boundary value problems for (1) associated with the subdiagonals ($11, u-(;-i)), s \leq u \leq h$, have unique solutions.

For $s=n+1$, we now argue that boundary value problems for (1) corresponding to the subdiagonal ($\mu, \mu-m$), where $m+1 \leq \mu \leq h$, have unique solutions. Choosing any such ($\mu, \|-m$), we are concernei u itiv solutions of (l) satisfying

$$
\begin{aligned}
& y^{(i)}\left(t_{1}\right)=y_{i+1}, 0<1<n-\mu+m-1 \\
& y^{(i)}\left(t_{2}\right)=y_{n-\mu+(i+1)}, m<i<\mu-1
\end{aligned}
$$

For the shooting schene hece, let $z(t)$ be the solution of (1) corresponding to the
($u, u-(m-1))$-position satisfying

$$
\begin{aligned}
& z^{(1)}\left(t_{1}\right)=y_{1+1}, 0<t<i-\mu+m-2, \\
& z^{(m-1)}\left(t_{2}\right)=0, \\
& z^{(i)}\left(t_{2}\right)=y_{n-\mu+(i+1)}: i \leqslant \mu-1 .
\end{aligned}
$$

In this case, define $S_{1}=f_{y}^{(n-\mu+m-1)}\left(t_{1}\right) \mid y(t)$ is a solition fe (1) satisfying $y^{(i)}\left(t_{1}\right):(i)\left(t_{1}\right), 0<1<n-\mu+m-2$, and $\left.y^{(i)}\left(t_{2}\right)=z^{(i)}\left(t_{2}\right), m<i<\mu-1\right\}$. In a manner analogons i:, \because irs, it can be argued that S_{1} is a nonempty subset of R which Is botilat alosed, so that $S_{1} \equiv R$. Choosing $y_{n-\mu+m} \varepsilon S_{1}$, the corresponding solution of (1) is the lasired solution. Hence, boundary value problems for (1) assoctarm $\because 1$ llagonal $(\mu, \mu-m), n+1 \leq \mu \leq h$, have unique solutions.

Therefore, by induct!on, houndary value problems for (1) $1: \rightarrow x$ ciated with each entry in the triangular array have unique solitiont, ul the conclusion of the theorem holds from the cas:- moneming to the bottom row $(h, v), 1 \leq v \leq h$.

Using anot: wethods and an induction similar to above, one can prove existence of solutions of $11^{?}$ eipoint boundary value problems (1), 3) with the same constraints on h and k.
THEOREM 4. Lét $\{n / 2] \leq: \leq n$ be given. Let $k=0$ and let $\gamma=\operatorname{lnfn}\left\{\gamma_{\ell} \mid 0 \leq \ell<h\right\}$ be as defined in Theorem 1. Then the boundary value problem

$$
\begin{aligned}
& y^{(n)}=f\left(t, y, y^{\prime}, \ldots, y^{(i-l)}\right) \\
& y^{(i)}\left(t_{1}^{\prime}\right)=y_{i+1}, 0 \leq 1 \leq n-h+\ell-1, \\
& y^{(i)}\left(t_{1}\right)=y_{n-h+(i+1)}, \ell \leq i \leq h-1,
\end{aligned}
$$

where $a<t_{1}^{\prime}<t_{\ell} \leq \ldots \leq t_{h-1}<h, \cdots \leq \ell<h$, has a unique solution for any assignment of $y_{i} \in R, 1 \leq i \leq n$, provided $t_{h-1}-t_{i}^{\prime}<\gamma$. This result is hest possible for the class of all liffarential equations which satisfy the Lipschitz condition (1.2).

dubrences

$i=$ IARWAL, R., Best possible length estimates for nonlinear boundioy mat: peotiems, Bull. Inst. Math. Acad. Sinica 9 (1931), 169-177.
2. AGARWAL, R, and CHOW, Y., Iterative methods for a fourth order boundary value problem, J. Comp. Appl. Math. 10 (1984), 203-217.
3. AGARITAL, \boldsymbol{A}, and WILSON, S., On a fourth order bomblary value problem, Utilitas Math. 36 (1984), 297-310.
4. GINGOLD, H., Thfiteness of solutions of boundary value problems of systems of ordinary difforatiti duations, Pac. J. Math. 75 (1978), 107-136.
 problems, J. Math. Anal. App1. 73 (1930), 392-410.
6. GINGOLD, '1. and GUSTAFSON, G., Uniqueness for nth order de la Vallee Poussin boundary valie problems, Applicable Anal. ?0 (1985), 201-220.
7. HENDERS:N, J., Best interval lengths for boundary value problens for thiri order Lipschitz equations, SIAM J. Math. Anal., in press.
3. HENDERSON, J. and MCGWIER, R., Uniqueness, existence, and optimality for fourth order Lipschitz equations, J. Differential Equations, in press.
9. HENDERSON, J., Boindary value problems for nth order ifips:hitz equations, J. Yath. Anal. Appl., in press.
10. JACKSON, L., Existence and uniqeness of solutions of boundary value problems for Lipschitz equathois; . Differential Equations 32 (1979), 76-90.
11. JACKSON, L., Bnindary value problems for Lipschitz equations, "Differential Equations" (S. Ahmed, M. Y.iher, A. Lazer, eds.), Academlc Press, New York, 1980, 31-50.
12. MELENTSOVA, YU., A best possible estinate of the nonoscillation interval for a linear differential equation with coefficients bounded in L_{r}, Diff. Urav. 13 (1.977), 1776-1786.
13. MELENTSOVA, Y'J, and :1[G'SHEEIN, G., An optimal estimate of the length on which a multipoint houndary value problem possesses a solution, Diff. Urav. 10 (1.774), 1630-1641.
14. MELENTSOVA, YU. and MIL'SiPEIN, G., Dptimal estimation of the nonoscillation intervil for ilnear ifferential equations with bounded coefficients, Diff. Urav. 17 (1931), 2160-2175.
15. TROCit, T.; Ja the interval of disconjugacy of linear autonomous differential equations, SIAM J. Math. Anal. 12 (1981), 78-89.
16. HARTMAV, P., Unrestricted n-paraneter families, Rend. Circ. Mat. Palermo (2) 7 (1958), 123-142.
17. HARTMAN, P., On n-parameter families and interpolation problems for nonlinear neilary differential equations, Trans. Amer. Math. Soc. 154 (1971), 201-226.
18. KLAASEN, G., Existence theorems for boundary value problems for nth order ordinary differential equations, Rocky Mtn. J. Math. 3 (1973), 457-472.
19. HENDERSON, J. Existence of solutions of right focal point boundary value problems for ordinary differential equations, Nonlinear Anal. 5 (1981), 989-1002.
20. HENDERSON, J., Uniqueness of solutions of right focal potit boundary value problems for ordinary differential equations, J. Differential Equation 41 (1981), 218-227.
21. JACKSON, L., Uniqueness of solutions of boundary value problems for ordinary differential tititions, SIAM J. Math. App1. 24 (1973), 535-538.

Advances in
Operations Research $=-$

The Scientific World Journal

Journal of
Applied Mathematics
-
Algebra
$\xlongequal{=}$

Journal of Probability and Statistics
\qquad

International Journal of Differential Equations

