
Average Conditional Correlation and Tree Structures

for Multivariate GARCH Models

Francesco Audrino∗ and Giovanni Barone-Adesi†

Institute of Finance

University of Lugano

First version: May 2004

Final version: May 2006

Abstract
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ized (historical) correlations. Our model is very parsimonious. Estimation is computationally

feasible in very large dimensions without resorting to any variance reduction technique. We
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1 Introduction

We propose a simple class of multivariate GARCH models to estimate conditional covariance

matrices with time-varying conditional correlations. Our class takes into account possible non-

linear dependence structures across individual series. Modelling and forecasting conditional

covariance matrices is an important and central problem in modern empirical finance, since the

covariance matrix is an essential element of many problems in financial econometrics such as the

computation of risk measure estimates for portfolios of assets, asset allocation or tests of asset

pricing models. In the last decade there has been a tremendous number of studies focusing on

the time-varying behavior of correlations and covariances of financial instruments.

It is now widely accepted that financial volatilities and correlations move together over time

across assets and markets. In most financial applications modelling the covariance matrix dy-

namics by a suitable multivariate approach yields more appropriate empirical models and allows

for better decisions than using a separate univariate model for each individual financial instru-

ment1. Moreover for many relevant problems it is not possible to reduce complexity by working

with univariate models. Consider for example a portfolio with price Pt =
∑

i wiPt,i and portfolio

weights wi. A naive approach may suggest that for predicting volatility of the portfolio returns

the multivariate problem can be bypassed to a large extent by just looking at the univariate

portfolio price process {Pt; t = 1, . . . , n}. Proceeding in this way however, a substantial infor-

mation loss has typically to be paid resulting in less accurate volatility predictions for portfolio

returns. But more important is the fact that for time-changing portfolio weights – which is

most often the case in practice – portfolio returns become typically non-stationary. We then

have to model the multivariate time series of asset returns in order to obtain accurate volatility

predictions.

In this paper, we focus on multivariate extensions of the simple univariate GARCH(1,1)

model firstly introduced by Bollerslev (1986). This model is often used as a benchmark in prac-

tice (see Andersen et al., 1999; Lee and Saltoglu, 2001 or Hansen and Lunde, 2002 among others).

When estimating time-varying conditional covariance matrices using multivariate GARCH-type

models (for a recent survey, see Bauwens et al., 2003), we have to face additional problems espe-

cially when the number of individual instruments is in the order of several dozens or hundreds,

as it is the case in most practical applications.

In particular, when the dimension of the problem is high, it can be almost unfeasible to

estimate general multivariate GARCH models, such as the VEC (Bollerslev et al., 1988) or
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the BEKK models (Engle and Kroner, 1995), due to the well-known curse of dimensionality.

Moreover, further restrictions have to be imposed on the parameters to ensure positivity of

the covariance matrix and to avoid over-fitting. A final issue is related to the selection of the

optimal model based on standard criteria such as the Akaike Information Criterium (AIC) or the

Schwarz Bayesian Information Criterium (BIC). This problem is well illustrated by a standard

BEKK(1,1) model with 10 assets. When using AIC, we have to check and fit more than 1073

models. This is clearly too expensive and not computationally feasible.

For these reasons, researchers have been often constrained to estimate models for time-

varying covariances and correlations under considerable restrictions. Engle et al. (1990) pro-

posed some Factor models, where the co-movements of the different instruments are driven by a

small number of common factors. Alexander and Chibumba (1997) and Alexander (2001) have

recently introduced a particular class of Factor models, called Orthogonal GARCH (O-GARCH)

models. In such models the time-varying covariance matrix is generated by a small number of or-

thogonal univariate GARCH models, identified using principal components analysis. In contrast,

in this paper we propose to estimate the dynamics of time-varying covariances and correlations

using full multivariate GARCH models. This avoids the use of variance reduction or similar

techniques which can yield very poor forecasts in some practical applications.

Bollerslev (1990) introduced a new class of multivariate GARCH models: the Constant

Conditional Correlation (CCC) GARCH models. In such models univariate GARCH processes

are estimated for each financial instrument. The correlation matrix is then computed using

the standard MLE correlation estimator applied to a sequence of standardized residuals. This

constant conditional correlation structure ensures also in large dimensions the feasibility of the

model estimation and the positivity of the covariance matrix. However, conditional correlations

seem not to be constant trough time for many empirical applications (see Tsui and Yu, 1999

and Tse, 2000, among others).

Therefore a lot of work has been recently devoted to develop models allowing also correla-

tions to change over time. Tse and Tsui (2002), Engle (2002) and Engle and Sheppard (2001)

proposed a generalization of the CCC-GARCH model where the conditional correlation matrix

is time dependent. The multivariate Dynamic Conditional Correlation (DCC) GARCH model

introduced by Engle (2002) added to the CCC model some dynamics in the correlations, in-

troducing a GARCH-type structure. The DCC model, which is now very popular, guarantees

the positivity of the conditional correlation matrix under simple conditions on the parameters.
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However, the dynamics are constrained to be equal for all correlations. In the last year, Billio et

al. (2003) generalize the DCC model constraining the dynamics of the conditional correlations

to be equal only among groups of variables. Other models allowing conditional correlations

to change over time have been recently proposed by Ledoit et al. (2003), Pelletier (2002) and

Baur (2003) using different approaches and techniques. However, the forecasting power of such

models has not been yet investigated and compared extensively.

Similarly to the DCC-GARCH model, our approach preserves the ease of estimation of

Bollerslev’s CCC-GARCH model while allowing correlations to change over time. In our model,

estimates and forecasts for time-varying conditional correlations are constructed by means of a

convex combination of realized (historical) correlations and estimates of averaged correlations

(across all series). The estimation of the averaged correlations involves only univariate GARCH

volatility processes for each financial instrument and for the corresponding equally weighted

portfolio and is therefore computationally feasible also in large dimensions. The estimation

procedure is similar to the two-stage one used in the DCC model.

We test our model on a six-dimensional time series of exchange-rate data. We compare its

out-of-sample forecasting power with the CCC-GARCH and the DCC-GARCH models, both

at the multivariate and univariate portfolio level. Moreover, we also use the idea of statistical

hypothesis testing on differences of performance terms across the models to eliminate the strong

noise component. It is generally difficult to answer the question “Which is the best model?”

because asset returns do not contain sufficient information to identify a single volatility model

as “best”. For this reason, we apply the Model Confidence Set (MCS) method proposed by

Hansen et al. (2003) to characterize the set of models that significantly dominate others. In this

exercise, we collect empirical evidence of the strong predictive potential of our model and show

that in the most cases it improves both on the CCC-GARCH and the DCC-GARCH models.

Finally, in a practical application for Value-at-Risk (VaR) computation of an equally weighted

portfolio (similar to Ledoit et al., 2003), we find that our approach yields accurate VaR estimates.

The remainder of the paper is structured as follows. Section 2 presents our model for

time-varying conditional correlations. The estimation procedure is in Section 3. Empirical

goodness-of-fit and forecasting results for a six-dimensional exchange-rate time series both at

the multivariate and at the univariate portfolio level are in Section 4. Section 5 summarizes and

concludes.
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2 The models

This Section describes the new proposed class of multivariate GARCH models for dynamic

conditional correlations.

2.1 Starting point

Let the multivariate time series of daily log-returns (in percentages) of d assets be denoted by

Xt = 100 ·




log
( Pt,1

Pt−1,1

)
...

log
( Pt,d

Pt−1,d

)


 = 100 ·

(
log

(
Pt

)− log
(
Pt−1

))
, (2.1)

where Pt,i is the value of the asset i at day t. We assume stationarity of this series. Our goal is to

find in-sample and out-of-sample estimates for the time-varying conditional covariance matrix of

the returns Xt. To this purpose, we consider a multivariate approach to model the conditional

covariance matrix Vt = Covd×d(Xt|Ft−1) of Xt, where Ft−1 denotes the information available

up to time t− 1.

For exposition purposes it is useful to start by a general semiparametric model for Xt of the

form

Xt = µt + ΣtZt. (2.2)

The following assumptions on the process (2.2) are imposed.

(A1) (innovations) {Zt}t∈Z is a sequence of i.i.d. zero mean multivariate innovations having

covariance matrix Cov(Zt) = Id.

(A2) (conditional correlation construction) The conditional covariance matrix Vt = ΣtΣT
t is

almost surely positive definite for all t. The typical element of Vt is vt,ij = ρt,ij(vt,iivt,jj)1/2

(i, j = 1, . . . , d). In this model ρt,ij = Corr(xt,i, xt,j |Ft−1) equals the conditional correlation

at time t. Hence, −1 ≤ ρt,ij ≤ 1, ρt,ii = 1.

(A3) (functional nonparametric form for conditional variance) The conditional variances are

functions of the form

vt,ii = σ2
t,i = Var(Xt,i|Ft−1) = Fi({Xt−j,k; j = 1, 2, . . . , k = 1, . . . , d})

where Fi is a function that takes values in R+.
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(A4) (conditional mean)2 The conditional mean µt is of the form

µt = (µt,1, . . . , µt,d)T = A0 + A1Xt−1

with both A0 = diag(a0,1, . . . , a0,d) and A1 = diag(a1,1, . . . , a1,d) diagonal d× d matrices.

Note that (A2) can be also rewritten in matrix form as

Vt = ΣtΣT
t = DtRtDt,

Dt = diag(σt,1, . . . , σt,d), Rt = [ρt,ij ]di,j=1.

The functional form (A3) allows for cross-dependence across the different components, since

the conditional variance of all components depends on past multivariate observations. This is

one of the nice features of such a multivariate GARCH-type model and is motivated by the

fact that generally time series of asset returns are highly cross-correlated. The dependence of

σt,i, i = 1, . . . , d on Xt−1,Xt−2, . . . , allows for a broad variety of asymmetric and non-linear

volatility patterns in response to past multivariate market information.

Several models in the literature are special cases of the above general setting. For instance,

the parametric CCC-GARCH(1,1) model of Bollerslev (1990) is encompassed by (2.2) if we

impose the further constraints:

(constant conditional correlations) Rt ≡ R for all t;

(GARCH(1,1) volatilities) σ2
t,i = α0,i + α1,i(Xt−1,i − µt−1,i)2 + βiσ

2
t−1,i,

α0,i > 0, α1,i ≥ 0, βi ≥ 0, α1,i + βi < 1, i = 1, . . . , d. (2.3)

In this model, the correlations are constant over time.

Similarly, the DCC(1,1)-GARCH(1,1) model in Engle (2002) and Engle and Sheppard (2001)

is encompassed by (2.2) if we impose the restrictions

(dynamic conditional correlations) Rt = (diag Qt)−1/2 Qt (diag Qt)−1/2, where

Qt = (1− φ− λ)Q + φεt−1ε
T
t−1 + λQt−1, φ, λ ≥ 0, φ + λ < 1;

(GARCH(1,1) volatilities) σ2
t,i = α0,i + α1,i(Xt−1,i − µt−1,i)2 + βiσ

2
t−1,i,

α0,i > 0, α1,i ≥ 0, βi ≥ 0, α1,i + βi < 1, i = 1, . . . , d. (2.4)

In this model, εt is a standardized error term, εT
t =

(
(Xt,1 − µt,1)/σt,1, . . . , (Xt,d − µt,d)/σt,d

)
,

and Q is the unconditional covariance matrix of the standardized residuals. In particular,
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conditional correlations are allowed to change over time. However, such dynamics must satisfy

strong restrictions to ensure positivity of the conditional covariance matrix and computational

feasibility of the model.

We propose a class of models in (2.2) for dynamic correlations which allows to reach a good

trade-off between parameter parsimony and flexibility. To this purpose, we introduce in the next

Section the concept of averaged conditional correlation across all d assets.

2.2 Averaging conditional correlations

For a date t we define the “averaged conditional correlation” as a weighted sum of all elements

in the conditional correlation matrix Rt. The time-varying weights are constructed as follows.

Let ∆t = 1
d

∑d
i=1 Xt,i be the equally weighted portfolio returns on day t constructed from the d

individual assets.3 Then, the conditional variance of the portfolio return can be computed as

σ2
t,P = Var(∆t|Ft−1) =

1
d2

d∑

i=1

d∑

j=1

σt,iσt,jρt,ij . (2.5)

Consider now the particular case where all assets are perfectly correlated, i.e. ρt,ij = ρij ≡ 1, for

all i, j = 1, . . . , d. In this case, the portfolio conditional variance is

(σ2
t,P )

′
= Var(∆t|Ft−1) =

1
d2

( d∑

i=1

σt,i

)2
. (2.6)

The averaged conditional correlation is constructed as the quotient of the portfolio conditional

variance (2.5) in the general case and the portfolio conditional variance (2.6) in the case of

perfect correlation among all assets:

ρt = σ2
t,P /(σ2

t,P )
′
=

d∑

i=1

d∑

j=1

wt,ijρt,ij , (2.7)

with weights given by wt,ij = (σt,iσt,j)/(
∑d

k=1 σt,k)2. Note that by construction we have that
∑d

i=1

∑d
j=1 wt,ij = 1 and 0 < ρt ≤ 1. As we will see in Section 3, simple estimates for the time-

varying averaged conditional correlation can be easily computed from the univariate volatility

estimates of each individual asset and from those for the equally weighted portfolio.

At this point, the averaged conditional correlations (2.7) can be used to model the dynamics

of the conditional correlation matrix Rt in (2.2).
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2.3 The RW-ACC model and the RW-TACC model

Analogously to the CCC-GARCH(1,1) model (2.3) and the DCC(1,1)-GARCH(1,1) model (2.4),

we assume that the time-varying dynamics of the individual volatilities in (2.2) follow a GARCH(1,1)

model

σ2
t,i = α0,i + α1,i(Xt−1,i − µt−1,i)2 + βiσ

2
t−1,i, where

α0,i > 0, α1,i ≥ 0, βi ≥ 0, α1,i + βi < 1, i = 1, . . . , d. (2.8)

The conditional correlations in (2.2) can have one of the following two forms:

Rt = (1− λ)Qt−1
t−p + λRt, λ ∈ [0, 1[; (2.9)

Rt =
(
1−

N∑

k=1

λkI[(ρt−1,Xt−1)∈Rk]

)
Q

t−1
t−p +

( N∑

k=1

λkI[(ρt−1,Xt−1)∈Rk]

)
Id, λk ∈ [0, 1]∀k, (2.10)

where Id is a rank d identity matrix, I[·] is the indicator function, Q
t−1
t−p is defined as the

unconditional correlation matrix of the standardized residuals εt over the past p days simi-

larly to (2.4), and Rt is a matrix with ones on the diagonal and all other elements equal to

rt = (dρt − 1)/(d − 1) ≤ 1, with ρt defined in (2.7) (note that this particular choice of the off-

diagonal elements of Rt is such that mean(Rt) = ρt). The model (2.9) is a convex combination of

realized dynamic conditional correlations and averaged conditional correlations. Clearly, when

the parameter λ is zero all weight is given to the historical term, meaning that the averaged

conditional correlations are not able to improve the estimation. As we will see, this is not the

case.

The model (2.10) for the dynamics of the conditional correlation matrix Rt is more struc-

tured, although it is still a convex combination of two terms. It can be seen as a model with

different regimes. In such a model, the estimation of the optimal number and type of regimes

involves a partition P of the predictor space G =]0, 1]× Rd of (ρt−1,Xt−1)T :

P = {R1, . . .RN}, G = ∪N
k=1Rk, Rk ∩Rh = ∅ (k 6= h). (2.11)

The construction of the optimal partition is based exactly on the tree-structured AR-GARCH

methodology recently proposed by Audrino and Bühlmann (2001) and generalized by Audrino

and Trojani (2003). Such methodology is applied to the univariate time series of averaged

conditional correlations ρt defined in (2.7). In such a model, the partition P is constructed on

a binary tree where every terminal node represents a rectangular partition cell Rk with edges
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determined by thresholds for the predictor variables (ρt−1,Xt−1)T . Given a partition cellRk, the

dynamics of ρt on this cell are described by a local AR-GARCH model. Note that regimes for the

conditional correlations are in this case determined by multivariate thresholds. Consequently,

tail-dependence effects already in the next period can be described by our model.

In general, the optimal number N of partition cells is small, i.e. N ≤ 4, keeping the complex-

ity of the model (2.10) reasonable. When N = 1, clearly we have no partition of the predictor

space. If all the parameters are equal to one, the data are uncorrelated. Otherwise, some regime-

dependent weight is also given to the historical term, based on the information derived from the

analysis of the averaged conditional correlation series.

The models proposed in (2.8), (2.9) or (2.10) are very simple, involving only a small num-

ber of parameters, and are computationally feasible also in large dimensions d. Analogously

to the DCC(1,1)-GARCH(1,1) model (2.4), they preserve the ease of estimation of the CCC-

GARCH(1,1) model (2.3) yet allowing correlations to change over time. We call the model (2.8)-

(2.9) rolling window, averaged conditional correlation (RW-ACC) GARCH(1,1) model and the

model (2.8)-(2.10) rolling window, tree-structured averaged conditional correlation (RW-TACC)

GARCH(1,1) model.

The following proposition gives us the sufficient conditions to guarantee positive definiteness

of the conditional covariance matrix Vt for both the RW-ACC-GARCH(1,1) model and the

RW-TACC-GARCH(1,1) model.

Proposition 1. (Positive Definiteness)

Let the univariate GARCH(1,1) parameter restrictions given in (2.8) be satisfied for all asset

series i = 1, . . . , d, and let the parameters involved in the conditional correlation dynamics satisfy

the restrictions given in (2.9) and (2.10), respectively. Then:

i) the conditional covariance matrix Vt in the RW-ACC-GARCH(1,1) model is positive def-

inite for all t, if in addition the averaged conditional correlation ρt in (2.7) satisfies

ρt ≥ 1/d ∀t;

ii) the conditional covariance matrix Vt in the RW-TACC-GARCH(1,1) model is positive

definite for all t.

Proof. To ensure positivity of the matrix Vt in the general setting (2.2) we have to ensure that

the individual volatilities are strictly positive for each asset and that the conditional correlation
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matrix Rt is positive definite for all t. From the parameter restrictions in (2.8), we have that

each individual conditional variance σ2
t,i is strictly positive since α0,i > 0. Moreover:

i) from the restriction ρt ≥ 1/d ∀t it follows that 0 ≤ rt ≤ 1, ∀t. Then, we can write the

matrix Rt as a weighted average of a positive definite matrix Id and a positive semi-definite

d× d matrix C with all coefficients equal to one:

Rt = (1− rt)Id + rtC.

Consequently, Rt is positive definite for all t as it is a weighted average of a positive definite

matrix Q
t−1
t−p and a positive (semi-) definite matrix Rt.

ii) Rt is positive definite for all t as it is a weighted average of two positive definite matrices

Q
t−1
t−p and Id.

The restriction on the parameters in Proposition 1 are not necessary, but only sufficient to

guarantee positive definiteness for Vt. The additional restriction on the averaged conditional

correlations ρt ≥ 1/d is satisfied in most of the practical applications, in particular when the

dimension d of the problem is high.

3 The estimation procedure

We describe in this Section the procedure which is applied to estimate the multivariate GARCH

models introduced in the last Section.

The parameters φ = (a0,i, a1,i, α0,i, α1,i, βi, i = 1, · · · , d) and the parameter(s) ψ = λ or

ψ = (λk, k = 1, . . . , N) of the RW-ACC-GARCH(1,1) model (2.8)-(2.9) and of the RW-TACC-

GARCH(1,1) model (2.8)-(2.10), respectively, can be estimated with the pseudo maximum like-

lihood method. To this purpose, we assume the innovations Zt in (2.2) to be multivariate

standard normally distributed. The quasi log-likelihood (conditional on the first observation) in

the general setting (2.2) is then given by

l(φ, ψ;Xn
2 ) =

n∑

t=1

log
(
(2π)−d/2det(Vt)−1/2 exp

(− (Xt − µt)T V −1
t (Xt − µt)/2

))

= −1
2

n∑

t=1

(
d log(2π) + 2 log(det(Dt)) + log(det(Rt)) + εT

t R−1
t εt

)
, (3.1)
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where εt = D−1
t (Xt − µt) as before. Our class of models, similarly to the CCC and DCC ones,

was designed to allow for a two-stage estimation. In the first stage univariate GARCH(1,1)

models are estimated for each series. In the second stage, residuals, standardized using the

volatilities estimated in the first stage, are used to estimate the parameter(s) ψ of the dynamic

correlation structure. The likelihood of the first stage is computed by replacing the conditional

correlation matrix Rt for all t with the constant d × d identity matrix Id. The resulting first

stage quasi log-likelihood from (3.1) is

l1(φ;Xn
2 ) = −1

2

n∑

t=1

(
d log(2π) + 2 log(det(Dt)) + log(det(Id)) + εT

t I−1
d εt

)

= −1
2

n∑

t=1

(
d log(2π) +

d∑

i=1

(
log(σ2

t,i) + ε2
t,i

)
)

= −1
2

d∑

i=1

(
n log(2π) +

n∑

t=1

(
log(σ2

t,i) + ε2
t,i

)
)

. (3.2)

Note that (3.2) is simply the sum of the log-likelihoods of individual AR(1)-GARCH(1,1) models

for each asset.

Before performing the second stage, we have to construct an estimate for the averaged

conditional correlation ρt defined in (2.7). This can be easily achieved from the first-stage

estimates for the individual volatilities σ̂t,i, i = 1, . . . , d and estimating univariate AR(1)-

GARCH(1,1) volatilities σ̂t,P of the equally weighted portfolio ∆t, based on the parameters

φP = (a0,P , a1,P , α0,P , α1,P , βP ). The averaged conditional correlation estimates can then be

constructed as

ρ̂t = σ̂2
t,P /

( d∑

i=1

σ̂t,i

)2
. (3.3)

Based on the estimates (3.3) we can construct the optimal partition P̂ (2.11) necessary for the

second stage estimation of our RW-TACC-GARCH(1,1) model.4

The second-stage parameters for the conditonal correlations dynamics are estimated using

correctly specified likelihood from (3.1), conditioning on first-stage parameters φ̂, φ̂P and P̂

l2

(
ψ;Xn

2 , φ̂, φ̂P , P̂
)

= −1
2

n∑

t=1

(
d log(2π) + 2 log

(
det

(
D̂t

))
+ log(det(Rt)) + ε̂T

t R−1
t ε̂t

)
. (3.4)

Note that the only portion of the second stage likelihood (3.4) that will influence the parameter

selection for ψ is log(det(Rt)) + ε̂T
t R−1

t ε̂t.

Consistency and asymptotic normality of our two-step estimates (φ̂, ψ̂) can be derived in the

usual way under standard regularity conditions for the validity of the quasi-likelihood functions
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(3.2)-(3.4); cf. Newey and McFadden (1994) and Engle and Sheppard (2001). Efficient estimates

can be obtained under the same regularity conditions by applying one step of a Newton-Raphson

estimation of the full likelihood (3.1) using as starting parameters the two-step estimates; for

all details, see Pagan (1986). However, note that the computation of these estimates can be

computationally expensive when dealing with large dimensions d.

4 Empirical tests

This Section presents the results of our estimations of RW-(T)ACC-GARCH(1,1) for a six-

dimensional exchange-rate return time series. Our models are estimated with a rolling-window

of about one year of daily data, i.e. p = 265 in (2.9) and (2.10).

We always compare the in-sample and out-of-sample performance of our models to those

from (i) the classical CCC-GARCH(1,1) model (2.3) and (ii) the DCC(1,1)-GARCH(1,1) model

(2.4). The second comparison is particular useful, because it highlights the exact contribution of

our models relatively to a “benchmark” model allowing for time-varying conditional correlations.

4.1 Data

We consider a six-dimensional multivariate time series of daily log-returns for the following ex-

change rates against the U.S. Dollar: the British Pound USD/GBP, the German Deutschmark

USD/DEM, the Japanese Yen USD/JPY, the Italian Lira USD/ITL, the French Franc USD/FRF

and the Dutch Pound USD/NLG. The data span the time-period between January 2, 1992 and

September 13, 1999, for a total of 1994 observations, and have been downloaded from the

Olsen&Associates Database. We split our sample in a back-testing period used to test the

predictive accuracy of our models and an in-sample estimation period used to initialize the

model parameter estimates. The back-testing period goes from October 15, 1997 to September

13, 1999, for a total of 494 trading days. Summary statistics of in-sample daily returns for the

above exchange rates and the corresponding equally weighted portfolio ∆t are presented in Table

1.

TABLE 1 ABOUT HERE.

Sample means for the different exchange rates are very similar. The USD/JPY exchange rate

shows a negative mean return that is attributable to a strong Japanese Yen during the considered
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in-sample period. The sample standard deviation exhibited by all exchange rates are similar.

As expected, the sample standard deviation is reduced by constructing the equally weighted

portfolio. The Ljung-Box statistics LB(10) testing for autocorrelations in the level of returns

up to the 10th order show in all cases except for the USD/GBP exchange rates no significant

presence of autocorrelation in daily exchange rate returns. The |LB(10)| statistics for testing

the null hypothesis of dependency of the absolute exchange rate and portfolio returns are all

highly significant. The USD/DEM, USD/FRF and USD/NLG exchange rate returns exhibit the

highest sample correlations with each other, indicating a strong dependence structure among the

exchange rates of these markets, whereas the lowest correlations are those with the USD/JPY

exchange rate returns.

4.2 Estimation of the models

This Section presents the estimated multivariate RW-ACC and RW-TACC models for the ex-

change rate data example under scrutiny. Estimated parameters from the two-stage procedure

described in Section 3 for the RW-ACC- and RW-TACC-GARCH(1,1) models are summarized in

Table 2. Standard errors are computed using the sub-sampling model-based bootstrap method-

ology (see Freedman, 1984, or Efron and Tibshirani, 1993). Figure 1 plots the corresponding

estimated averaged conditional correlation series (3.3) in our in-sample period.

TABLE 2 AND FIGURE 1 ABOUT HERE.

As we expect from Table 1, Table 2 shows that all α1’s and β’s parameters in the individ-

ual GARCH(1,1) models are highly significant. Moreover, no significant parameter is found for

the conditional mean functions. The sum α1 + β is for all series near to one, implying strong

persistence in the conditional variances. The dynamic behavior of the averaged conditional cor-

relations is well illustrated in Figure 1. A constant conditional correlations hypothesis is clearly

rejected based on the averaged correlation series. We can identify at least three different short

time-periods with estimated averaged correlations outside a classical two standard deviation

confidence interval implied by the constant conditional correlations hypothesis.

The estimated parameters for the conditional correlations are in the most cases significantly

different from zero, although they are mostly around zero. This implies that most weight in the

conditional correlations dynamics (2.9) and (2.10) is given to the historical term Q
t−1
t−p. However,
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the results in Table 2 and Figure 1 show that information coming from averaged conditional

correlations is important and can not be neglected in the model specification.

In our particular example, Table 2 shows that past values of the USD/JPY individual re-

turn series completely characterize the regime structure of averaged conditional correlations

and consequently the type of regimes for the conditional correlations in the RW-TACC model.

In particular, we found three different regimes: the first one characterized by high negative

(i.e. smaller than the estimated threshold) past USD/JPY returns, a second one by bounded

past USD/JPY returns and a third one by high positive past USD/JPY returns.

Figure 2 shows our sample period conditional correlation dynamics for two representative ex-

amples estimated using the RW-TACC-GARCH(1,1) model, the DCC(1,1)-GARCH(1,1) model

and the CCC-GARCH(1,1) model.

FIGURE 2 ABOUT HERE.

The constant conditional correlations approach yields clearly only a rough approximation of

the conditional correlations dynamics, in particular for our back-testing period (last 494 days).

Our RW-TACC model yields conditional correlation estimates and predictions which change

more slowly and exhibit more small scale fluctuations than those from a DCC(1,1) approach.

As we will see in the next Sections, results of multivariate and univariate performance tests favor

this behavior of conditional correlations.

4.3 Standardized residuals

We also analyze the goodness of the standardized residuals estimated using the different multi-

variate models introduced so far. The comparison is performed using the same two goodness of

fit criteria already proposed by Engle and Sheppard (2001).

Consider the standardized residuals Zt = Σ−1
t (Xt−µt) in (2.2). From assumption (A1) they

have constant conditional covariance matrix equal the identity. Moreover, cross products ZtZT
t

are uncorrelated over time. It is therefore natural to test whether (i) the multivariate standard-

ized residual estimated with the different models have unit variance and (ii) the estimated cross

products are uncorrelated over time.

The first criteria are the percentage of multivariate standardized residuals which have vari-

ance in a confidence interval of one. The second criteria are the percentages of rejected classical

Ljung-Box tests investigating whether there is excess serial correlation in the squares and cross
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products of standardized residuals up to the 15th lag at a confidence level of 5%. The results

of such tests on the in-sample standardized residuals estimated using the different multivariate

models proposed in the paper are summarized in Table 3.

TABLE 3 ABOUT HERE.

All the models considered perform well with respect to the percentage of standardized resid-

uals with conditional variance in a confidence interval of one. Models with time-varying con-

ditional correlations perform better than models with constant conditional correlations with

respect to the percentage of failing Ljung-Box tests. More than 20% of the CCC models stan-

dardized residuals fail the test. In contrast, when allowing for dynamic conditional correlations

the percentage of failures is substantially reduced. Similarly to Engle and Sheppard (2001), we

find that the percentage failing is always greater than the 5% which would have been expected.

4.4 Multivariate performance results

To measure and compare precision of the conditional covariance matrix estimates and forecasts

from the different models we use several in-sample and out-of-sample statistics. The multivariate

negative log-likelihood statistics (NL), a multivariate version of the classical mean absolute error

(MAE), a multivariate version of the root mean squared error (RMSE) and the mean of absolute

empirical correlations (R2) between actual values and one-step ahead predicted values of the

conditional covariance, averaged over all possible components. More specifically, the following

15



statistics are used (where IS and OS denote in-sample and out-of-sample, respectively):

IS-NL: − 2 log-likelihood (3.1)

OS-NL: − log-likelihood
(
X̃nout

1 ; φ̂, ψ̂
)

IS-MAE:
1
d2

d∑

i,j=1

1
n

n∑

t=1

| v̂t,ij − (Xt,i − µ̂t,i)(Xt,j − µ̂t,j) |

OS-MAE:
1
d2

d∑

i,j=1

1
nout

nout∑

t=1

| v̂t,ij − (X̃t,i − µ̂t,i)(X̃t,j − µ̂t,j) |

IS-RMSE:
( 1

d2

d∑

i,j=1

1
n

n∑

t=1

| v̂t,ij − (Xt,i − µ̂t,i)(Xt,j − µ̂t,j) |2
)1/2

OS-RMSE:
( 1

d2

d∑

i,j=1

1
nout

nout∑

t=1

| v̂t,ij − (X̃t,i − µ̂t,i)(X̃t,j − µ̂t,j) |2
)1/2

IS-R2:
1
d2

d∑

i,j=1

| Cor
(
v̂t,ij , (Xt,i − µ̂t,i)(Xt,j − µ̂t,j)

)
|

OS-R2:
1
d2

d∑

i,j=1

| Cor
(
v̂t,ij , (X̃t,i − µ̂t,i)(X̃t,j − µ̂t,j)

)
|,

where X̃nout
1 = Xn+1, . . . ,Xn+nout are the test data and the parameter estimates equipped with

hats have been constructed from the training sample Xn
1 = X1, . . .Xn. Clearly we see the OS

statistics as the most important ones to judge the predictive potential of the different models.

The goodness of fit results of the different models are summarized in Table 4. Note that

“low is better” for all goodness of fit statistics except for the R2 measures.

TABLE 4 ABOUT HERE.

The optimal values with respect to the different statistics are reached in-sample by the

DCC(1,1) model with respect to all performance measures. In contrast, when focusing on the

most important out-of-sample statistics, we see that the optimal values are reached by the RW-

(T)ACC-FGD models. As expected, the CCC model is clearly beaten by models allowing for

dynamic conditional correlations with respect to most of the out-of-sample statistics. Moreover,

we observe over-fitting problems when using the DCC(1,1) model: it reaches the optimal values

in-sample, but it does not seem to be as good as the RW-(T)ACC models for prediction.

Table 4 shows that differences between the models are in general small, except for the

multivariate NL statistics. Such small differences with respect of goodness of fit measures like
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MAE or RMSE could be obscured by a low signal to noise ratio when replacing the unobservable

conditional covariances by their corresponding actual return values which are noisy estimates. It

is well known that in real data examples the noise component is often dominant and differences

in the conditional covariance estimates may be masked. Thus, such criteria typically allows only

to discriminate between forecasts whose performance is different by orders of magnitude.

One possible solution to avoid this problem is to construct estimates for the actual unob-

served conditional covariances which are less noisy, for example by using the integrated volatility

approach (see, among others, Andersen et al., 1999 or 2001). An alternative is to consider differ-

ences of performance terms and to use the concept of hypothesis testing. This is our approach

in this Section and in Section 4.5.

We consider differences of each term in the OS-NL statistic5,

D̂t,ij = Ũt;modeli − Ũt;modelj , t = 1, . . . , nout, i, j = 1, . . . , 4, i < j,

where
nout∑

t=1

Ũt;model = OS-NL.

Moreover, similarly to Audrino and Bühlmann (2003), we also consider the “direction” of the

differences of each term in the OS-NL statistic

Ŵt,ij =





1 , if D̂t,ij ≤ 0

−1, else
, t = 1, . . . , nout, i, j = 1, . . . , 4, i < j.

These type of tests allow us to investigate whether there is a systematic difference between the

estimates from the models. We denote the first and second class of tests as t-type and sign-type

tests, respectively. Since it is difficult to identify a single model as the “best” model due to the

fact that returns do not contain generally sufficient information, we apply the Model Confidence

Set (MCS) method proposed by Hansen et al. (2003) to characterize the multivariate GARCH

models that significantly dominate others.

The MCS is determined after sequentially trimming the set of candidate models (in our case

the CCC, DCC(1,1), RW-ACC and RW-TACC specifications). At each step, the null-hypothesis

of equal predictive ability (EPA) H0 : E[Dt,ij ] = 0, ∀i, j ∈ M (respectively H0 : E[Wt,ij ] = 0)

is tested for a set of models M. The first test is for the full set of candidate models. If H0 is

rejected, the worst performing model is eliminated from M. This trimming is repeated until

the first non-rejection occurs, an the set of surviving models is the model confidence set M̂α,

for a fixed confidence level α.
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Our tests of EPA employ the range statistic TR and the less conservative semi-quadratic

statistic TSQ

TR = max
i,j∈M

∣∣Dij

∣∣
√

v̂ar(Dij)
and TSQ =

∑

i<j

D
2
ij

v̂ar(Dij)
,

where the sum is taken over the models in M, Dij = 1/nout
∑nout

t=1 D̂t,ij , and v̂ar(Dij) is an

estimate of var(Dij) that is obtained from a block-bootstrap implementation of the series

D̂t,ij , t = 1, . . . , nout. Estimates of the (asymptotic) distributions of TR and TSQ to test for

EPA under the null hypothesis can also be consistently derived under mild regularity conditions

from the bootstrap. For more details and for a complete description of the procedure we remand

the reader to Hansen et al. (2003).

Results of the t-type and sign-type tests introduced above as well as resulting model confi-

dence sets for the real data example under investigation are summarized in Tables 5 and 6.

TABLES 5 AND 6 ABOUT HERE.

Table 5 clearly shows that, as expected, models allowing for dynamic conditional correla-

tions are preferred by t-type tests to the classical CCC-GARCH(1,1) model. Both 95% and 90%

confidence sets M̂0.05 and M̂0.1 consist in fact only of dynamic conditional correlation models.

Moreover, significant differences can also be seen when considering differences of OS-NL per-

formance terms between models allowing for dynamic conditional correlations. The proposed

RW-(T)ACC models belong in the most cases to the 95% and 90% confidence sets with respect

to both the range and semi-quadratic statistics. On the contrary, the DCC(1,1) model is always

eliminated from the model confidence set, except for the more conservative range statistic at

the 95% confidence level.

The results in Table 6 are even more significant. This finding may be just a fact of a low

power of the t-test due to non-Gaussian observations. On the other hand, the sign-type tests

are robust against deviations from Gaussianity. Dynamic conditional correlations models are

better than the standard CCC-GARCH(1,1) model, and our RW-(T)ACC-GARCH(1,1) models

are better than the DCC(1,1)-GARCH(1,1) model. Moreover, predictions estimated using the

RW-TACC-GARCH(1,1) model show significant advantages also over the ones from the RW-

ACC-GARCH(1,1) model. The model confidence set at both the 95% and 99% confidence

levels consists only of the RW-TACC-GARCH(1,1) model, which is clearly the best model for

prediction purposes with respect to the sign-type test.

18



4.5 Portfolio performance results

We test in this Section the accuracy of volatility estimates and predictions for the equally

weighted portfolio ∆t constructed on the six-dimensional exchange-rate data introduced in Sec-

tion 4.1. To measure and compare goodness of fit from the different models we use standard

univariate versions of the in-sample and out-of-sample MAE, RMSE and R2 measures introduced

in Section 4.4. Results are summarized in Table 7.

TABLE 7 ABOUT HERE.

Table 7 shows similar results to those found at the multivariate level and summarized in

Table 4. The RW-(T)ACC models yield more accurate volatility predictions than both standard

CCC and DCC(1,1) models. Similarly to Table 4, differences between the models are in general

small. Hence, we consider differences of each term in the OS-MAE6 statistic and use again the

concept of EPA hypothesis testing to construct model confidence sets. Results based on t-type

tests for the equally weighted portfolio ∆t are summarized in Table 8.

TABLE 8 ABOUT HERE.

As expected, multivariate GARCH(1,1) models with time-varying conditional correlations

are preferred to the classical CCC-GARCH(1,1) approach and belong to the 95% model con-

fidence set with respect to both range and semi-quadratic statistics. Moreover, from Table 8

the RW-(T)ACC-GARCH(1,1) models belong also to the 90% model confidence set with respect

to the range statistic. On the contrary the DCC(1,1)-GARCH(1,1) model is eliminated from

the 90% model confidence sets. With respect to the less conservative EPA hypothesis based

on the semi-quadratic statistic, the 90% model confidence set consists only of the RW-TACC-

GARCH(1,1) model. All these results support the already collected empirical evidence at the

multivariate level of the better predictive power of our multivariate models over a DCC(1,1)-

GARCH(1,1) approach. Results of statistical tests for the EPA hypothesis based on sign-type

differences of performance terms are similar and therefore not reported here.

4.6 A practical application: Value-at-Risk computation

As a practical application, we investigate the forecasting power of volatility predictions from

the different models in computing 1-day ahead Value-at-Risk (VaR) estimates for the univariate

equally weighted portfolio ∆t at the 5% and 1% confidence levels.

19



To construct daily VaR estimates for the equally weighted portfolio, we use the same strategy

recently proposed by Ledoit et al. (2003). Once that portfolio conditional means and volatilities

are estimated (using the different multivariate approaches), portfolio standardized residuals

(∆t− µ̂t,P )
/
σ̂t,P are fitted using a univariate scaled tξ distribution in order to allow for fat tails.

The optimal degrees of freedom parameter ξ̂ is estimated by maximum likelihood. The 1-day

VaR estimates for our back-testing period at the confidence level x are then given by

V̂aRt = µ̂t,P + σ̂t,P

√
(ξ̂ − 2)/ξ̂ tbξ;x, t = 1, . . . , nout, (4.1)

where tbξ;x denotes the x-quantile of the standard tbξ distribution.

Let

Hitt = I{∆t<
dVaRt}

, t = 1, . . . , nout, (4.2)

be the sequence of hit indicator variables. If the model is correctly specified, the hit series should

be uncorrelated over time and have expected value equal to the desired confidence level.

Results of classical binomial tests on the number of hits and of Ljung-Box tests for auto-

correlation in the hit sequence up to the 12th order for the 5% and 1% confidence levels are

summarized in Table 9. Our back-testing period goes from October 15, 1997, to September 13,

1999, for a total of 494 trading days. Asterisks denote significance at the 5% confidence level or

better.

TABLE 9 ABOUT HERE.

The hit rates are all reasonably close to the target levels, although they tend to be larger,

with the only exception of the DCC(1,1)-GARCH(1,1) model at the 1% coverage rate, which is

the only loser in terms of hit rates. Differences between the models with respect to the Ljung-

Box tests are also small. The only rejection at the 5% confidence level was recorded by the

CCC-GARCH(1,1) model at the 5% coverage rate.

5 Conclusions

We proposed a simple class of semiparametric multivariate GARCH models. Our models are

more flexible and accurate for the estimation and prediction of conditional variance-covariance

matrices than two popular alternative multivariate GARCH models, namely the CCC and the
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DCC models. Analogously to the DCC-GARCH model proposed by Engle (2002), our multivari-

ate GARCH models preserve the ease of estimation of Bollerslev’s CCC-GARCH model while

allowing for possible asymmetric non-linear individual volatilities and time-varying conditional

correlations.

Our models can be easily estimated using a classical two-stage procedure. Non-parametric

estimates for the individual volatility functions can be easily constructed using the Functional

Gradient Descent (FGD) technique introduced in Audrino and Bühlmann (2003).

Testing the models on real exchange-rate data we collect empirical evidence of the strong

forecasting power of our multivariate GARCH models with respect to various goodness-of-fit

criteria and statistical tests for the equal predictive ability hypothesis. In particular, we consid-

ered forecasting accuracy at the multivariate and at the portfolio, univariate level, persistence

of multivariate standardized residuals and precision of portfolio Value-at-Risk estimates.
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Notes

1See, for example, Audrino and Bühlmann (2004) for an application to the measurement of

risk in global stock markets.

2The model for the conditional mean is kept very simple, because our primary focus is on

the covariance matrix. Moreover, in the empirical investigations of Section 4 we found that all

conditional mean parameters were not significantly different from zero.

3The choice of the equally weighted portfolio is not restrictive. One can also apply the same

strategy for portfolios with non-equal weights. However, the explanation and computations are

in the particular case of equal weights straightforward.

4The estimation of the optimal partition P̂ (2.11) is performed by applying to the series (3.3)

of estimated averaged conditional correlations the tree-structured AR(1)-GARCH(1,1) model

and using the same methodology already introduced in Audrino and Bühlmann (2001).

5The choice of the OS-NL statistic is clearly not restrictive. However, we think that, at the

multivariate level, OS-NL is the most interesting measure.

6We choose differences of OS-MAE terms because they are more robust and less affected by a

few large outliers. Tests on difference of OS-MSE terms (defined as the square of the OS-RMSE

statistic) yield similar results.
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Figure 1: Estimated averaged conditional correlation series during the in-sample period between

January 2, 1992 and October 14, 1997 for a total of 1500 trading days. The dotted line and

the dashed lines indicate the mean of estimated averaged conditional correlations and a classical

two standard deviations confidence interval for a constant mean averaged conditional correlation

hypothesis, respectively.
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Figure 2: Conditional correlation dynamics between USD/GBP and USD/DEM (top) and be-

tween USD/GBP and USD/JPY (bottom) during the entire sample beginning January 2, 1992

and ending September 13, 1999. Conditional correlations are estimated using the RW-TACC-

GARCH(1,1) model (solid line), the DCC(1,1)-GARCH(1,1) model (dotted line) and the CCC-

GARCH(1,1) model (dashed line).
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Exchange rate Sample mean Sample sdev LB(10) |LB(10)|
USD/GBP 0.0095 0.5947 24.615∗ 304.30∗

USD/DEM 0.0096 0.6534 8.9746 177.80∗

USD/JPY -0.0016 0.6608 15.244 149.74∗

USD/ITL 0.0267 0.6547 21.472 326.34∗

USD/FRF 0.0084 0.6161 9.8358 190.94∗

USD/NLG 0.0096 0.6492 10.086 183.64∗

Eq. weighted Portf. ∆ 0.0066 0.5295 10.167 136.09∗

USD/GBP USD/DEM USD/JPY USD/ITL USD/FRF USD/NLG

USD/GBP 1 0.67207 0.32942 0.57703 0.67617 0.66925

USD/DEM 0.67207 1 0.54209 0.68017 0.95554 0.99377

USD/JPY 0.32942 0.54209 1 0.34134 0.50855 0.54195

USD/ITL 0.57703 0.68017 0.34134 1 0.72297 0.67890

USD/FRF 0.67617 0.95554 0.50855 0.72297 1 0.95360

USD/NLG 0.66925 0.99377 0.54195 0.67890 0.95360 1

Table 1: Summary statistics on log-returns of six exchange rates against the U.S. dollar and the

corresponding equally weighted portfolio ∆t for the time period between January 2, 1992 and

October 14, 1997, for a total of 1500 in-sample observations. Sample sdev, LB(10) and |LB(10)|
are the sample standard deviations and the Ljung-Box statistics testing for autocorrelation in

the level of returns and the level of absolute returns, respectively, up to the 10th lag. Asterisks

indicate statistical significance at the 1% level or better. Instantaneous empirical correlations

among the exchange rates are given in the second table.
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Exchange rate
GARCH(1,1) parameters AR(1) parameters

α0 α1 β a0 a1

USD/GBP
0.0022 0.0359∗ 0.9570∗ -0.0093 0.0129

(0.0032) (0.0124) (0.0190) (0.0135) (0.0290)

USD/DEM
0.0054 0.0347∗ 0.9516∗ 0.0087 -0.0025

(0.0065) (0.0129) (0.0248) (0.0158) (0.0266)

USD/JPY
0.0141 0.0639∗ 0.9034∗ 0.0049 0.0229

(0.0097) (0.0204) (0.0363) (0.0162) (0.0283)

USD/ITL
0.0028 0.0596∗ 0.9350∗ 0.0007 -0.0032

(0.0036) (0.0177) (0.0197) (0.0134) (0.0279)

USD/FRF
0.0037 0.0345∗ 0.9548∗ 0.0043 0.0060

(0.0071) (0.0118) (0.0275) (0.0152) (0.0283)

USD/NLG
0.0060 0.0355∗ 0.9491∗ 0.0085 -0.0089

(0.0089) (0.0141) (0.0332) (0.0142) (0.0278)

Eq. weighted Portf. ∆
0.0016 0.0311∗ 0.9633∗ 0.0059 -0.0027

(0.0048) (0.0107) (0.0290) (0.0127) (0.0276)

Model
Cond. corr. structure Cond. corr. parameters

Rk λk

RW-ACC −
0.0042∗

(0.0021)

RW-TACC

Xt−1,usd/jpy ≤ −0.6084
0.0088∗

(0.0015)

−0.6084 ≤ Xt−1,usd/jpy ≤ 0.3486
0.0013∗

(0.0005)

Xt−1,usd/jpy ≥ 0.3486
0.0005

(0.0026)

Table 2: Estimated parameters of the RW-ACC- and the RW-TACC-GARCH(1,1) models from

the two-stage procedure described in Section 3 for the six-dimensional real data example under

scrutiny. Asterisks denote significance at the 5% level or better.
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Model % variance of stand. res. in CI % Ljung-Box rejected

CCC-GARCH(1,1) 100 (6/6) 27.667 (10/36)

DCC(1,1)-GARCH(1,1) 100 (6/6) 16.667 (6/36)

RW-ACC-GARCH(1,1) 83.3 (5/6) 19.444 (7/36)

RW-TACC-GARCH(1,1) 83.3 (5/6) 19.444 (7/36)

Table 3: Multivariate tests on standardized residuals using different models. Percentages of

in-sample multivariate standardized residuals having variance in a confidence interval of one

and percentages of rejected classical Ljung-Box tests investigating whether there is excess serial

correlation in the squares and cross products of standardized residuals up to the 15th lag at a

confidence level of 5%. Results are computed for our six-dimensional real data example.
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Model
IS- OS-

NL MAE RMSE R2 NL MAE RMSE R2

CCC-GARCH(1,1) 1583.4 0.3566 0.7465 0.0331 610.39 0.3149 0.5768 0.0088

DCC(1,1)-GARCH(1,1) 1266.4 0.3549 0.7381 0.0376 191.13 0.3079 0.5707 0.0066

RW-ACC-GARCH(1,1) 1551.8 0.3592 0.7397 0.0371 -50.354 0.3061 0.5702 0.0097

RW-TACC-GARCH(1,1) 1522.5 0.3589 0.7397 0.0372 -2.6861 0.3059 0.5702 0.0096

Table 4: Multivariate in-sample and out-of-sample goodness of fit results of the different models

for our six-dimensional real data example. NL, MAE, RMSE and R2 are multivariate versions

of the standard univariate negative log-likelihood statistic, the mean absolute error, the root

mean squared error and the R2 statistics, respectively.
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Model 1 Model 2
Statistic

range semi-quadratic

DCC(1,1)-GARCH(1,1) CCC-GARCH(1,1) 3.7272 13.892

RW-ACC-GARCH(1,1) CCC-GARCH(1,1) 4.7137 22.219

RW-TACC-GARCH(1,1) CCC-GARCH(1,1) 3.9684 15.748

RW-ACC-GARCH(1,1) DCC(1,1)-GARCH(1,1) 1.9566 3.8284

RW-TACC-GARCH(1,1) DCC(1,1)-GARCH(1,1) 1.4416 2.0781

RW-TACC-GARCH(1,1) RW-ACC-GARCH(1,1) 1.4876 3.1955

Global value for EPA test: 1st step 4.7137 (0.0010) 60.961 (0.0015)

Global value for EPA test: 2nd step 1.9566 (0.0925) 9.1019 (0.0492)

Global value for EPA test: 3rd step 1.4876 (0.1115) 3.1955 (0.0715)

Model
Worst performing index

1st step 2nd step 3rd step

CCC-GARCH(1,1) 4.6281 − −
DCC(1,1)-GARCH(1,1) 0.0707 1.6956 −
RW-ACC-GARCH(1,1) -4.1429 -0.4056 -1.4876

RW-TACC-GARCH(1,1) -3.3064 -0.9772 1.4876

Table 5: Testing differences of multivariate OS-NL performance terms among different multi-

variate GARCH models. Upper panel: Values of pairwise t-type test statistics, values of the

range statistic TR and the semi-quadratic statistic TSQ for global test of equal predictive ability

(EPA). Corresponding P -values are given between parentheses. Lower panel: Worst performing

index results for the construction of the confidence model sets. If the null hypothesis of EPA is

rejected, the model with the largest worst performing index value is eliminated.
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Model 1 Model 2
Statistic

range semi-quadratic

DCC(1,1)-GARCH(1,1) CCC-GARCH(1,1) 10.843 117.56

RW-ACC-GARCH(1,1) CCC-GARCH(1,1) 33.502 1122.4

RW-TACC-GARCH(1,1) CCC-GARCH(1,1) 32.936 1084.9

RW-ACC-GARCH(1,1) DCC(1,1)-GARCH(1,1) 21.104 445.37

RW-TACC-GARCH(1,1) DCC(1,1)-GARCH(1,1) 19.798 391.95

RW-TACC-GARCH(1,1) RW-ACC-GARCH(1,1) 2.7151 22.232

Global value for EPA test: 1st step 33.502 (0) 3184.3 (0)

Global value for EPA test: 2nd step 21.104 (0) 859.56 (0)

Global value for EPA test: 3rd step 2.7151 (0.0064) 22.232 (0)

Model
Worst performing index

1st step 2nd step 3rd step

CCC-GARCH(1,1) 26.583 − −
DCC(1,1)-GARCH(1,1) 8.7035 20.941 −
RW-ACC-GARCH(1,1) -19.597 -8.7309 2.7151

RW-TACC-GARCH(1,1) -20.748 -13.419 -2.7151

Table 6: Testing differences of multivariate OS-NL performance terms among different multi-

variate GARCH models. Upper panel: Values of pairwise sign-type test statistics, values of the

range statistic TR and the semi-quadratic statistic TSQ for global test of equal predictive ability

(EPA). Corresponding P -values are given between parentheses. Lower panel: Worst performing

index results for the construction of the confidence model sets. If the null hypothesis of EPA is

rejected, the model with the largest worst performing index value is eliminated.
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Model
IS- OS-

MAE RMSE R2 MAE RMSE R2

CCC-GARCH(1,1) 0.3052 0.6127 0.0431 0.2500 0.4373 0.0210

DCC(1,1)-GARCH(1,1) 0.3044 0.6067 0.0443 0.2437 0.4341 0.0169

RW-ACC-GARCH(1,1) 0.3083 0.6075 0.0446 0.2422 0.4336 0.0199

RW-TACC-GARCH(1,1) 0.3081 0.6075 0.0447 0.2421 0.4337 0.0206

Table 7: In-sample and out-of-sample goodness of fit results of the different models for the

equally weighted portfolio ∆ constructed on the six-dimensional exchange-rate return series

introduced in Section 4. MAE, RMSE are the standard univariate mean absolute errors and

root mean squared errors.
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Model 1 Model 2
Statistic

range semi-quadratic

DCC(1,1)-GARCH(1,1) CCC-GARCH(1,1) 3.7726 14.233

RW-ACC-GARCH(1,1) CCC-GARCH(1,1) 4.4346 19.666

RW-TACC-GARCH(1,1) CCC-GARCH(1,1) 4.5190 20.421

RW-ACC-GARCH(1,1) DCC(1,1)-GARCH(1,1) 1.5570 2.4241

RW-TACC-GARCH(1,1) DCC(1,1)-GARCH(1,1) 1.7142 2.9383

RW-TACC-GARCH(1,1) RW-ACC-GARCH(1,1) 1.4954 2.2363

Global value for EPA test: 1st step 4.5190 (0.0012) 61.919 (0.0008)

Global value for EPA test: 2nd step 1.7142 (0.092) 7.5987 (0.0555)

Global value for EPA test: 3rd step 1.4954 (0.1340) 2.2363 (0.0570)

Model
Worst performing index

1st step 2nd step 3rd step

CCC-GARCH(1,1) 4.4019 − −
DCC(1,1)-GARCH(1,1) -1.1403 1.6360 −
RW-ACC-GARCH(1,1) -4.0013 -1.3963 1.4954

RW-TACC-GARCH(1,1) -4.2501 -1.8674 -1.4954

Table 8: Testing differences of univariate OS-MAE performance terms among different multi-

variate GARCH models. Upper panel: Values of pairwise t-type test statistics, values of the

range statistic TR and the semi-quadratic statistic TSQ for global test of equal predictive ability

(EPA). Corresponding P -values are given between parentheses. Lower panel: Worst performing

index results for the construction of the confidence model sets. If the null hypothesis of EPA is

rejected, the model with the largest worst performing index value is eliminated.
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Model
Hit rate Ljung-Box P-value

x = 0.05 x = 0.01 x = 0.05 x = 0.01

CCC-GARCH(1,1) 0.0668 0.0162 0.0193∗ 0.5329

DCC(1,1)-GARCH(1,1) 0.0648 0.0182∗ 0.0754 0.1887

RW-ACC-GARCH(1,1) 0.0688 0.0162 0.1700 0.5329

RW-TACC-GARCH(1,1) 0.0688 0.0162 0.1700 0.5329

Table 9: Value-at-Risk application: results of classical binomial test on the total number of

hits and of Ljung-Box tests for autocorrelation in the hit sequence. VaR predictions for the

equally weighted portfolio ∆ constructed on the six-dimensional exchange-rate data described

in Section 4.1 are estimated using the different multivariate models described in the paper. The

back-testing period goes from October 15, 1997, to September 13, 1999, for a total of 494 trading

days. Asterisks denote significance at the 5% confidence level or better.
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