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We consider the Wick-type stochastic Schamel-Korteweg-de Vries equation with variable coefficients in this paper. With the aid
of symbolic computation and Hermite transformation, by employing the (𝐺/𝐺, 1/𝐺)-expansion method, we derive the new exact
travelling wave solutions, which include hyperbolic and trigonometric solutions for the considered equations.

1. Introduction

Thepartial differential equations arise inmany physical fields
like the condense matter physics, fluid mechanics, plasma
physics, optics, and so on, which exhibit a rich variety of non-
linear phenomena. It is known that to find exact solutions of
the partial differential equations is always one of the central
themes in mathematics and physics.

In [1], Lee and Sakthivel used the exp-functionmethod to
obtain some exact travelling waves solutions for the following
Schamel-Korteweg-de Vries equation [2–4].

𝑢𝑡 + (𝛼𝑢1/2 + 𝛽𝑢) 𝑢𝑥 + 𝛿𝑢𝑥𝑥𝑥 = 0, (1)

where 𝑢 = 𝑢(𝑡, 𝑥) denotes the unknown function of the space
variable 𝑥 and time 𝑡 and the parameters 𝛼, 𝛽, and 𝛿 are
constants which refer to the activation trapping, the convec-
tion, and the dispersion coefficients, respectively. Equation (1)
arises in number of scientific models, such as plasma physics
and optical fibre. This equation describes the nonlinear
interaction of ion-acoustic waves when electron trapping is
present and also it governs the electrostatic potential for a
certain electron distribution in velocity space. In addition, a
generalized KdV equation is a special case of (1) which has
been studied in a variety of mathematical physics contexts.
Equation (1) incorporates the well-known KdV equation
when 𝛼 = 0 and the Schamel equation when 𝛽 = 0 [5].

In [6], Kangalgil used the extended (𝐺/𝐺)-expansion
method to obtain some hyperbolic function solutions and
trigonometric functions with free parameters of (1). In [7], by
using the sine-cosinemethod and the extended tanhmethod,
Yang and Tang obtained the soliton-like solutions, the kink
solutions, and the plural solutions of (1).

When the inhomogeneities of media and nonuniformity
of boundaries are taken into account in various real physical
situations, the variable coefficient partial differential equa-
tions often can provide more powerful and realistic models
than their constant coefficient counterparts in describing a
large variety of real phenomena. Recently, the importance of
taking random effects into account in modeling, analyzing,
simulating, and predicting complex phenomena has been
widely recognized in geophysical and climate dynamics,
materials science, chemistry, biology, and other fields [8, 9].
Stochastic partial differential equations are appropriatemath-
ematical models for complex systems under random influ-
ence in fluids.

The Wick-type stochastic Schamel-Korteweg-de Vries
equation with variable coefficients is one of the most impor-
tant stochastic partial differential equations and it has many
applications. In [10], Holden et al. gave white noise functional
approach to research stochastic partial differential equations
in Wick versions. In [11], Li et al. introduced a new direct
method called the (𝐺/𝐺, 1/𝐺)-expansion method to look
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for travelling wave solutions of nonlinear evolution equa-
tions. The determination of exact solutions to the variable
coefficients partial differential equations is a complicated
problem that challenges researchers greatly. We will use their
theory and the (𝐺/𝐺, 1/𝐺)-expansion method to give exact
solutions of the following Wick-type stochastic Schamel-
Korteweg-de Vries equation with variable coefficients:

𝑢𝑡 + [𝛼 (𝑡) ♢𝑢1/2 + 𝛽 (𝑡) ♢𝑢]♢𝑢𝑥 + 𝛿 (𝑡) ♢𝑢𝑥𝑥𝑥 = 0, (2)

where ♢ is the Wick production on the Hida distribution
space (𝑆(𝑅𝑑))∗, namely, (𝑆(𝑅𝑑))∗ is the white noise functional
space which is defined in [12], and 𝛼(𝑡), 𝛽(𝑡), and 𝛿(𝑡) are
white noise functionals.

This paper is organized as follows. In Section 2, we briefly
describe some basic concepts onWick-type andmain steps of
finding solutions. In Section 3, we describe the (𝐺/𝐺, 1/𝐺)-
expansion method. In Section 4, we use white noise analysis
and Hermite transformation to obtain a number of Wick
versions of hyperbolic, trigonometric, and rational solutions.
The conclusions are given in the final section.

2. Some Basic Concepts and Main Steps

Assume that S(R𝑑) and (S(R𝑑))∗ are the Hida test function
space and the Hida disturbance space on R𝑑, respectively.
And let ℎ𝑛(𝑥) be the 𝑑-order Hermite polynomials. Put

𝜉𝑛 (𝑥) = 𝑒−(1/2)𝑥2 ℎ𝑛 (√2𝑥)
(𝜋 (𝑛 − 1)!)1/2 , 𝑛 ≥ 1. (3)

We have that the collection {𝜉𝑛}𝑛≥1 constitutes an orthogonal
basis of 𝐿2(R).

If we denote 𝛼 = (𝛼1, . . . , 𝛼𝑑) as 𝑑-dimensional multi-
indices with 𝛼1, . . . , 𝛼𝑑 ∈ N, we have that the family of tensor
products 𝜉(𝛼1 ,...,𝛼𝑑) = 𝜉𝛼1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜉𝛼𝑑 (𝛼 ∈ N𝑑) forms an
orthogonal basis for 𝐿2(R𝑑). Let 𝛼(𝑖) = (𝛼(𝑖)1 , . . . , 𝛼(𝑖)𝑑 ) be the𝑖th multi-index number in some fixed ordering of all 𝑑-
dimensional multi-indices 𝛼 = (𝛼1, . . . , 𝛼𝑑) ∈ N𝑑.We assume
that this ordering has the following property:

𝑖 < 𝑗 ⇒
𝛼(𝑖)1 + ⋅ ⋅ ⋅ + 𝛼(𝑖)𝑑 ≤ 𝛼(𝑗)1 + ⋅ ⋅ ⋅ + 𝛼(𝑗)

𝑑
. (4)

We define

𝜂𝑖 = 𝜉𝛼(𝑖) = 𝜉𝛼(𝑖)1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝜉𝛼(𝑖)𝑑 , (𝑖 ≥ 1) , (5)

and denote multi-indices as elements of the space (NN
0 )𝑐 of all

sequences 𝛼 = (𝛼1, 𝛼2, . . .) with elements 𝛼𝑖 ∈ N0 and with
compact support, that is, with only finitely many 𝛼𝑖 ̸= 0.We
denoteJ ≡ (NN

0 )𝑐.
Fixing 𝑛 ∈ N, let (S)𝑛1 consist of those

𝑥 = ∑
𝛼

𝑐𝛼𝐻𝛼 (𝑤) ∈ 𝑛⨁
𝑘=1

𝐿2 (𝜇) , (6)

where 𝑐𝛼 ∈ R𝑛, ‖𝑥‖21,𝑘 ≡ ∑𝛼 𝑐2𝛼(𝛼!)2(2N)𝑘𝛼 < ∞, ∀𝑘 ∈ N

with 𝑐2𝛼 = |𝑐𝛼|2 = ∑𝑛𝑘=1(𝑐(𝑘)𝛼 )2, 𝑐𝛼 = (𝑐(1)𝛼 , . . . , 𝑐(𝑛)𝛼 ) ∈ R𝑛, 𝛼! =∏∞𝑘=1𝛼𝑘!, and (2N)𝛼 = ∏𝑗(2𝑗)𝛼𝑗 , where 𝜇 is the white noise
measure on (S∗(R),B(S∗(R))),
𝐻𝛼 (𝑤) = ∞∏

𝑖=1

𝐻𝛼𝑖 (⟨𝑤, 𝜂𝑖⟩) ,
𝑤 ∈ (S (R𝑑))∗ , 𝛼 = (𝛼1, 𝛼2, . . .) ∈ J.

(7)

The space (S)𝑛−1 consists of all formal expansions

𝑋 = ∑
𝛼

𝑏𝛼𝐻𝛼, (8)

where 𝑏𝛼 ∈ R𝑛, ‖𝑋‖−1,−𝑞 ≡ ∑𝛼 𝑏2𝑎 (2N)−𝑞𝛼 < ∞, ∀𝑞 ∈ N.The
family of seminorms ‖𝑥‖1,𝑘, 𝑘 ∈ N gives rise to a topology
on (S)𝑛1, and we can regard (S)𝑛−1 as the dual of (S)𝑛1 by the
action

⟨𝑋, 𝑥⟩ = ∑
𝛼

(𝑏𝛼, 𝑐𝛼) 𝛼!, (9)

where (𝑏𝛼, 𝑐𝛼) is the usual inner product in R𝑛.
For 𝑋 = ∑𝛼 𝑎𝛼𝐻𝛼, 𝑌 = ∑𝛼 𝑏𝛼𝐻𝛼 ∈ (S)𝑛−1 with 𝑎𝛼, 𝑏𝛼 ∈

R𝑛,

𝑋♢𝑌 = ∑
𝛼,𝛽

(𝑎𝛼, 𝑏𝛽)𝐻𝛼+𝛽 (10)

is called the Wick product of𝑋 and 𝑌.
We can prove that the spaces S(R𝑑),S(R𝑑)∗, (S)1, and(S)−1 are closed under Wick products.
For 𝑋 = ∑𝛼 𝑎𝛼𝐻𝛼 ∈ (S)𝑛−1 with 𝑎𝛼 ∈ R𝑛, the Hermite

transform of𝑋 is denoted as follows:

H (𝑋) = 𝑋 (𝑧) = ∑
𝛼

𝑎𝛼𝑧𝛼 ∈ C
𝑛,

(when convergent) , (11)

where 𝑧 = (𝑧1, 𝑧2, . . .) ∈ C𝑛 (the set of all sequences of
complex numbers), 𝑧𝛼 = 𝑧𝛼11 𝑧𝛼22 ⋅ ⋅ ⋅ 𝑧𝛼𝑛𝑛 ⋅ ⋅ ⋅ when 𝛼 = (𝛼1, 𝛼2,. . .) ∈ J.

For𝑋,𝑌 ∈ (S)𝑛−1, we can find

𝑋♢𝑌 (𝑧) = 𝑋 (𝑧) �̃� (𝑧) , (12)

for all 𝑧 such that 𝑋(𝑧) and �̃�(𝑧) exist. The product on the
right-hand side of the above formula is the complex bilinear
product between two elements of CN defined by

(𝑧11 , . . . , 𝑧1𝑛) ⋅ (𝑧21 , . . . , 𝑧2𝑛) = 𝑛∑
𝑘=1

𝑧1𝑘𝑧2𝑘, 𝑧𝑖𝑘 ∈ C. (13)

Let 𝑋 = ∑𝛼 𝑎𝛼𝐻𝛼, ∈ (S)𝑛−1.Then the vector 𝑐0 = 𝑋(0) ∈
R𝑛 is called the generalized expectation of 𝑋 and is denoted
by 𝐸(𝑋). Suppose that 𝑓 : 𝑉 → C𝑚 is an analytic function,
where 𝑉 is a neighborhood of 𝐸(𝑋). Assume that the Taylor
series of 𝑓 around 𝐸(𝑋) has coefficients in R𝑛, and we can
find the Wick version 𝑓♢(𝑋) = H−1(𝑓 ∘ 𝑋) ∈ (𝑆)𝑚−1.
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We define the Wick exponential of𝑋 ∈ (S)𝑛−1 as follows:
exp♢ {𝑋} = ∞∑

𝑛=0

𝑋♢𝑛
𝑛! . (14)

We can find that theWick exponential has the same algebraic
properties as the usual exponential with the use of the
Hermite transformation. For example, exp♢{𝑋 + 𝑌} =
exp♢{𝑋}♢ exp♢{𝑌}.

Suppose that modeling considerations lead us to consider
an SPDE expressed formally as𝐴(𝑡, 𝑥, 𝜕𝑡, ∇𝑥, 𝑈, 𝑤) = 0, where𝐴 is some given function and 𝑈 = 𝑈(𝑡, 𝑥, 𝑤) is unknown
(generalized) stochastic process, where the operators

𝜕𝑡 = 𝜕𝜕𝑡 ,
∇𝑥 = ( 𝜕𝜕𝑥1 , . . . ,

𝜕𝜕𝑥𝑑) , 𝑥 = (𝑥1, . . . , 𝑥𝑑) ∈ R
𝑑.

(15)

Firstly, we interpret all products as Wick products and all
functions as their Wick versions indicate this as

𝐴♢ (𝑡, 𝑥, 𝜕𝑡, ∇𝑥, 𝑈, 𝑤) = 0. (16)

Secondly, we take the Hermite transformation of (16).
This turns Wick products into ordinary products and the
equation takes the following form:

𝐴(𝑡, 𝑥, 𝜕𝑡, ∇𝑥, �̃�, 𝑧1, 𝑧2, . . .) = 0, (17)

where �̃� = H(𝑈) is the Hermite transformation of 𝑈 and𝑧1, 𝑧2, . . . are complex number. Supposewe find a solution 𝑢 =𝑢(𝑡, 𝑥, 𝑧) of the equation 𝐴(𝑡, 𝑥, 𝜕𝑡, ∇𝑥, 𝑢, 𝑧) = 0 for each 𝑧 =(𝑧1, 𝑧2, . . .) ∈ K𝑞(𝑟), where
K𝑞 (𝑟)

= {𝑧 = (𝑧1, 𝑧2, . . .) ∈ C
N, ∑
𝛼 ̸=0

𝑧𝛼2 (2N)𝑞𝛼 < 𝑟2} . (18)

Then, under certain conditions, we can take the inverse
Hermite transformation 𝑈 = H−1𝑢 ∈ (𝑆)−1 and obtain a
solution 𝑈 of the original Wick equation (16). We have the
following theorem, which was proved by Holden et al. [10].

Theorem1. Suppose 𝑢(𝑡, 𝑥, 𝑧) is a solution (in the usual strong,
pointwise sense) of (17) for (𝑡, 𝑥) in some bounded open set𝐺 ⊂
R×R𝑑, and for all 𝑧 ∈ K𝑞(𝑟), for some 𝑞, 𝑟.Moreover, suppose
that 𝑢(𝑡, 𝑥, 𝑧) and all its partial derivatives, which are involved
in (17), are bounded for (𝑡, 𝑥, 𝑧) ∈ 𝐺 × K𝑞(𝑟), continuous with
respect to (𝑡, 𝑥) ∈ 𝐺 for all 𝑧 ∈ K𝑞(𝑟), and analytic with respect
to 𝑧 ∈ K𝑞(𝑟), for all (𝑡, 𝑥) ∈ 𝐺.

Then there exists 𝑈(𝑡, 𝑥) ∈ (S)−1 such that 𝑢(𝑡, 𝑥, 𝑧) =(�̃�(𝑡, 𝑥))(𝑧) for all (𝑡, 𝑥, 𝑧) ∈ 𝐺 × K𝑞(𝑟), and 𝑈(𝑡, 𝑥) solves (in
the strong sense in (S)−1) (16) in (S)−1.
3. Description of the(𝐺/𝐺,1/𝐺)-Expansion Method

In this section, we describe themain steps of the (𝐺/𝐺, 1/𝐺)-
expansion method for finding travelling wave solutions of

nonlinear evolution equations. As preparations, consider the
second order linear ordinary differential equation

𝐺 (𝜉) + 𝜆𝐺 (𝜉) = 𝜇, (19)

and we let

𝜙 = 𝐺𝐺 ,
𝜓 = 1𝐺,

(20)

for simplicity here and after. Using (19) and (20) yields

𝜙 = −𝜙2 + 𝜇𝜓 − 𝜆,
𝜓 = −𝜙𝜓. (21)

From the three cases of general solutions of the linear
ordinary differential equation (19), we have the following.

Case 1. When 𝜆 < 0, the general solution of the linear ordi-
nary differential equation (19) is

𝐺 (𝜉) = 𝐴1 sinh√−𝜆𝜉 + 𝐴2 cosh√−𝜆𝜉 + 𝜇𝜆 , (22)

and we have

𝜓2 = −𝜆𝜆2𝜎1 + 𝜇2 (𝜙2 − 2𝜇𝜓 + 𝜆) , (23)

where 𝐴1 and 𝐴2 are two arbitrary constants and 𝜎1 = 𝐴21 −𝐴22.
Case 2. When 𝜆 > 0, the general solution of the linear ordi-
nary differential equation (19) is

𝐺 (𝜉) = 𝐴1 sin√𝜆𝜉 + 𝐴2 cos√𝜆𝜉 + 𝜇𝜆 , (24)

and we have

𝜓2 = 𝜆𝜆2𝜎2 − 𝜇2 (𝜙2 − 2𝜇𝜓 + 𝜆) , (25)

where 𝐴1 and 𝐴2 are two arbitrary constants and 𝜎2 = 𝐴21 +𝐴22.
Case 3. When 𝜆 = 0, the general solution of the linear ordi-
nary differential equation (19) is

𝐺 (𝜉) = 𝜇2 𝜉2 + 𝐴1𝜉 + 𝐴2, (26)

and we have

𝜓2 = 1𝐴21 − 2𝜇𝐴2 (𝜙
2 − 2𝜇𝜓) , (27)

where 𝐴1 and 𝐴2 are two arbitrary constants.
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Now we consider a nonlinear evolution equation, say in
two independent variables 𝑥 and 𝑡,

𝑃 (𝑢, 𝑢𝑡, 𝑢𝑥, 𝑢𝑡𝑡, 𝑢𝑥𝑡, 𝑢𝑥𝑥, . . .) = 0. (28)

In general, the left-hand side of (28) is a polynomial in 𝑢
and its various partial derivatives. The main steps of the(𝐺/𝐺, 1/𝐺)-expansion method are as follows.

Step 1. By coordinates transformation 𝜉 = 𝑥 − 𝑉𝑡 and with𝑢(𝑥, 𝑡) = 𝑢(𝜉), (28) can be reduced to an ordinary differential
equation on 𝑢(𝜉) with

𝑃 (𝑢, −𝑉𝑢, 𝑢, 𝑉2𝑢, −𝑉𝑢, 𝑢, . . .) = 0. (29)

Step 2. Suppose that the solution of the ordinary differential
equation (29) can be expressed by a polynomial in 𝜙 and 𝜓 as

𝑢 (𝜉) = 𝑁∑
𝑖=0

𝑎𝑖𝜙𝑖 + 𝑁∑
𝑖=1

𝑏𝑖𝜙𝑖−1𝜓, (30)

where𝐺 = 𝐺(𝜉) satisfies the second-order linear ordinary dif-
ferential equation (19), 𝑎𝑖 (𝑖 = 0, . . . , 𝑁), 𝑏𝑖 (𝑖 = 1, . . . , 𝑁), 𝑉,𝜆, and 𝜇 are constants to be determined later, and 𝑎2𝑁+𝑏2𝑁 ̸= 0.
Step 3. Determine the positive integer𝑁 in (30) by using the
homogeneous balance between the highest order derivatives
and the nonlinear terms appearing in the ordinary differential
equation (29). More precisely, we define the degree of 𝑢(𝜉)
as 𝐷[𝑢(𝜉)] = 𝑁, which gives rise to the degree of other
expressions as follows:

𝐷[𝑑𝑞𝑢𝑑𝜉𝑞 ] = 𝑁 + 𝑞,
𝐷 [𝑢𝑝 (𝑑𝑞𝑢𝑑𝜉𝑞 )

𝑠] = 𝑁𝑝 + 𝑠 (𝑞 + 𝑁) .
(31)

Therefore, we can get the value of 𝑁 in (30). In some non-
linear equations the balance number𝑁 is not a positive inte-
ger. In this case, we make the following transformations [13]:

(a) When𝑁 = 𝑞/𝑝, where 𝑞/𝑝 is a fraction in the lowest
terms, we let

𝑢 (𝜉) = V𝑞/𝑝 (𝜉) , (32)

then substituting (32) into (29) to get a new equation in the
new function V(𝜉) with a positive integer balance number.

(b) When𝑁 is a negative number, we let

𝑢 (𝜉) = V𝑁 (𝜉) , (33)

then substituting (33) into (29) to get a new equation in the
new function V(𝜉) with a positive integer balance number.

Step 4. Substituting (30) into (29), using (21) and (23) (here
Case 1 is taken as an example), the left-hand side of (29)
can be converted into a polynomial in 𝜙 and 𝜓, in which the
degree of𝜓 is not larger than one. Equating each coefficient of
the polynomial to zero yields a system of algebraic equations

about 𝑎𝑖 (𝑖 = 0, . . . , 𝑁), 𝑏𝑖 (𝑖 = 1, . . . , 𝑁), 𝑉, 𝜆, 𝜇, 𝐴1 and 𝐴2.
Then we solve the algebraic equations with the aid of Maple
or Mathematica. Substituting the values of 𝑎𝑖 (𝑖 = 0, . . . , 𝑁),𝑏𝑖 (𝑖 = 1, . . . , 𝑁), 𝑉, 𝜆, 𝜇, 𝐴1, and 𝐴2 obtained into (30), one
can obtain the travelling wave solutions expressed by the
hyperbolic functions of (29).

Step 5. Similar to Steps 3 and 4, substituting (30) into (29),
using (21) and (25) (or (21) and (27)), we obtain the travelling
wave solutions of (29) expressed by trigonometric functions
(or expressed by rational functions).

4. Exact Solutions of Stochastic
Schamel-Korteweg-de Vries Equation

In this section, we will give exact solutions of (2).
Taking the Hermite transformation of (2), we can get the

equation

�̃�𝑡 (𝑡, 𝑥, 𝑧) + [�̃� (𝑡, 𝑧) �̃�1/2 (𝑡, 𝑥, 𝑧) + 𝛽 (𝑡, 𝑧) �̃� (𝑡, 𝑥, 𝑧)]
⋅ �̃�𝑥 (𝑡, 𝑥, 𝑧) + 𝛿 (𝑡, 𝑧) �̃�𝑥𝑥𝑥 (𝑡, 𝑥, 𝑧) = 0,

(34)

where 𝑧 = (𝑧1, 𝑧2, . . .) ∈ CN is a parameter.
For the sake of simplicity, we denote 𝑢(𝑡, 𝑥, 𝑧) =�̃�(𝑡, 𝑥, 𝑧), 𝛼(𝑡, 𝑧) = �̃�(𝑡, 𝑧), 𝛽(𝑡, 𝑧) = 𝛽(𝑡, 𝑧), and 𝛿(𝑡, 𝑧) =𝛿(𝑡, 𝑧). In the following, we apply the (𝐺/𝐺, 1/𝐺)-expansion

method to construct the travelling wave solutions of (34).
In order to obtain exact solutions of (34), we consider the
transformation

𝑢 (𝑡, 𝑥, 𝑧) = 𝑢 (𝜉) , 𝜉 = 𝑝 (𝑡, 𝑧) 𝑥 + 𝑞 (𝑡, 𝑧) , (35)

where𝑝(𝑡, 𝑧) and 𝑞(𝑡, 𝑧)will be determined later. Substituting
(35) into (34), we have

𝑢𝑡 (𝑡, 𝑥, 𝑧) + [𝛼 (𝑡, 𝑧) 𝑢1/2 (𝑡, 𝑥, 𝑧) + 𝛽 (𝑡, 𝑧) 𝑢 (𝑡, 𝑥, 𝑧)]
⋅ 𝑢𝑥 (𝑡, 𝑥, 𝑧) + 𝛿 (𝑡, 𝑧) 𝑢𝑥𝑥𝑥 (𝑡, 𝑥, 𝑧) = 𝑢 (𝜉)
⋅ [𝑝𝑡 (𝑡, 𝑧) 𝑥 + 𝑞𝑡 (𝑡, 𝑧)]
+ [𝛼 (𝑡, 𝑧) 𝑢1/2 (𝜉) + 𝛽 (𝑡, 𝑧) 𝑢 (𝜉)] 𝑢 (𝜉) 𝑝 (𝑡, 𝑧)
+ 𝛿 (𝑡, 𝑧) 𝑢 (𝜉) 𝑝3 (𝑡, 𝑧) = 0.

(36)

This implies

𝑢 (𝜉) 𝑝𝑡 (𝑡, 𝑧) 𝑥 = 0, (37)

𝑢 (𝜉) 𝑞𝑡 (𝑡, 𝑧)
+ [𝛼 (𝑡, 𝑧) 𝑢1/2 (𝜉) + 𝛽 (𝑡, 𝑧) 𝑢 (𝜉)] 𝑢 (𝜉) 𝑝 (𝑡, 𝑧)
+ 𝛿 (𝑡, 𝑧) 𝑢 (𝜉) 𝑝3 (𝑡, 𝑧) = 0.

(38)

Equation (37) means 𝑝𝑡(𝑡, 𝑧) = 0. These imply that𝑝(𝑡, 𝑧) is a constant; denote it by 𝑝. Suppose 𝑞𝑡(𝑡, 𝑧) =𝑐𝛼(𝑡, 𝑧), 𝛽(𝑡, 𝑧) = 𝛽𝛼(𝑡, 𝑧) and 𝛿(𝑡, 𝑧) = 𝛿𝛼(𝑡, 𝑧), where 𝑐, 𝛽,
and 𝛿 are real constants. From (38), we obtain

𝑞 (𝑡, 𝑧) = 𝑐∫𝑡
0
𝛼 (𝑠, 𝑧) 𝑑𝑠. (39)
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Then by (38) and (39), we get the following ordinary differ-
ential equations with constant coefficients:

𝑐𝑢 (𝜉) + [𝑝𝑢1/2 (𝜉) + 𝑝𝛽𝑢 (𝜉)] 𝑢 (𝜉) + 𝑝3𝛿𝑢 (𝜉)
= 0. (40)

Integrating (40) once, and considering the constants of
integration as zero, we can find

𝑐𝑢 (𝜉) + 23𝑝𝑢3/2 (𝜉) + 12𝑝𝛽𝑢2 (𝜉) + 𝑝3𝛿𝑢 (𝜉) = 0. (41)

When we consider the transformations

𝑢 (𝜉) = V2 (𝜉) ,
𝑢 (𝜉) = 2V (𝜉) V (𝜉) ,
𝑢 (𝜉) = 2 {[V (𝜉)]2 + V (𝜉) V (𝜉)} ,

(42)

where 𝜉 = 𝑝𝑥 + 𝑞(𝑡, 𝑧), we can rewrite (41) as

𝑐V2 (𝜉) + 23𝑝V3 (𝜉) + 12𝑝𝛽V4 (𝜉) + 2𝑝3𝛿 [V (𝜉)]2
+ 2𝑝3𝛿V (𝜉) V (𝜉) = 0.

(43)

For simplicity, (43) can be written as

V2 (𝜉) + 𝜗V3 (𝜉) + 𝜄V4 (𝜉) + 𝜅 [V (𝜉)]2 + 𝜅V (𝜉) V (𝜉)
= 0, (44)

where 𝜗 = 2𝑝/3𝑐, 𝜄 = 𝑝𝛽/2𝑐, 𝜅 = 2𝑝3𝛿/𝑐, and 𝑐 ̸= 0.
By balancing between V(𝜉)V(𝜉) and V4(𝜉) in (44), we get

𝑁 +𝑁 + 2 = 4𝑁 ⇒
𝑁 = 1. (45)

Consequently, we assume

V (𝜉) = 𝑎1𝜙 (𝜉) + 𝑏1𝜓 (𝜉) , (46)

where 𝑎1 and 𝑏1 are constants to be determined later satisfying𝑎21 + 𝑏21 ̸= 0.
By employing the (𝐺/𝐺, 1/𝐺)-expansion method with

the aid of symbolic computation, we derive new exact travel-
ling wave solutions, which include hyperbolic, trigonometric,
and rational solutions for (34); there are three cases to be
discussed as follows.

Case 1 (hyperbolic function solution). If 𝜆 < 0, substituting
(46) into (44) and using (21) and (23), the left-hand side of
(44) becomes a polynomial in𝜙 and𝜓. Setting the coefficients
of this polynomial to be zero, we yield a system of algebraic
equations in 𝑎1, 𝑏1, 𝜇, and 𝜆 as follows:

𝜙4 : 𝑎41 𝜄 + 𝑎21𝜅 − 𝜆 (6𝑎21𝑏21 𝜄 + 3𝜅𝑏21 )𝜎1𝜆2 + 𝜇2
+ 𝑏41𝜆2𝜄(𝜎1𝜆2 + 𝜇2)2 = 0,

𝜙3 : 𝑎31𝜗 + 𝜆 (6𝜅𝜇𝑎1𝑏1 − 3𝜗𝑎1𝑏21 )𝜎1𝜆2 + 𝜇2
− 8𝜄𝜇𝜆2𝑎1𝑏31(𝜎1𝜆2 + 𝜇2)2 = 0,

𝜙3𝜓 : 2𝜅𝑎1𝑏1 + 𝜄𝑎31𝑏1 − 𝜄𝜆𝑎1𝑏31𝜎1𝜆2 + 𝜇2 = 0,
𝜙2 : 𝑎21 − 4𝜆𝜅𝑎21

− 𝜆𝜎1𝜆2 + 𝜇2 [𝑏21 + 𝜆 (6𝜄𝑎21𝑏21 + 4𝜅𝑏21 ) + 𝜅𝜇2𝑎21]

+ 2𝜄𝜆3𝑏41(𝜎1𝜆2 + 𝜇2)2 +
2𝜇𝜆2 (𝜅𝜇𝑏21 − 2𝜗𝑏31 )

(𝜎1𝜆2 + 𝜇2)2
− 4𝜄𝜇2𝜆3𝑏41(𝜎1𝜆2 + 𝜇2)3 = 0,

𝜙2𝜓 : 3𝜗𝑎21𝑏1 − 5𝜇𝜅𝑎21 + 𝜆 (5𝜇𝜅𝑏21 − 𝜗𝑏31 )𝜎1𝜆2 + 𝜇2
+ 2𝜆𝜇 (6𝜄𝑎21𝑏21 + 𝜅𝑏21 )𝜎1𝜆2 + 𝜇2 − 16𝜅𝜇𝜆2𝑏41(𝜎1𝜆2 + 𝜇2)2 = 0,

𝜙 : 6𝜇𝜅𝑎1𝑏1 − 3𝜗𝑎1𝑏21𝜎1𝜆2 + 𝜇2 − 8𝜄𝜇𝑎1𝜆𝑏31(𝜎1𝜆2 + 𝜇2)2 = 0,

𝜙𝜓 : 2𝑎1𝑏1 + 5𝜆𝜅𝑎1𝑏1 + 2𝜆𝜇 (3𝜗𝑎1𝑏21 − 6𝜅𝜇𝑎1𝑏1)𝜎1𝜆2 + 𝜇2
− 4𝜄𝜆2𝑎1𝑏31𝜎1𝜆2 + 𝜇2 +

16𝜄𝜇2𝜆2𝑎1𝑏31(𝜎1𝜆2 + 𝜇2)2 = 0,

𝜓 : 2𝜇𝜅𝑎21 − 𝜆 (3𝜇𝜅𝑏21 − 𝜗𝑏31 )𝜎1𝜆2 + 𝜇2 − 2𝜇 (𝑏21 + 2𝜅𝜇2𝑎21)𝜎1𝜆2 + 𝜇2
− 4𝜇2𝜆 (𝜗𝑏31 − 𝜅𝜇𝑏21 )

(𝜎1𝜆2 + 𝜇2)2 − 8𝜄𝜇3𝜆2𝑏41(𝜎1𝜆2 + 𝜇2)3
+ 4𝜄𝜇𝜆2𝑏41(𝜎1𝜆2 + 𝜇2)2 = 0,

𝜓0 : 𝑎21𝜅 − 𝑏21 − 𝑎21𝜇2𝜅 − 𝑏21𝜆𝜅𝜎1𝜆2 + 𝜇2 + 2𝜆𝜇 (𝑏21𝜇𝜅 − 𝜗𝑏31 )
(𝜎1𝜆2 + 𝜇2)2

+ 𝜄𝜆2𝑏41(𝜎1𝜆2 + 𝜇2)2 −
4𝜄𝜇2𝜆2𝑏41(𝜎1𝜆2 + 𝜇2)3 = 0.

(47)
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Solving the above algebraic equations, we get the follow-
ing solutions: when 3𝜅𝜎1/(𝜄𝜆𝜅2(7𝜄 − 48𝜅)2 − 3𝜄𝜅𝜗2) > 0, then

𝑎1 = 0,
𝑏1 = ±𝜅𝜆 (7𝜄 − 48𝜅)√ 3𝜅𝜎1𝜄𝜆𝜅2 (7𝜄 − 48𝜅)2 − 3𝜄𝜅𝜗2 ,
𝜆 = 30𝜄𝜗2 + 12𝜄𝜗2 (7𝜄 − 48𝜅) + (7𝜄 − 48𝜅)22𝜅 (7𝜄 − 48𝜅)2 ,

𝜇 = ±𝜗𝜄𝜆√ 3𝜅𝜎1𝜄𝜆𝜅2 (7𝜄 − 48𝜅)2 − 3𝜄𝜅𝜗2 .

(48)

From these solutions, we obtain the hyperbolic function solu-
tions of (34).

Theorem 2. Suppose that (30𝜄𝜗2 + 12𝜄𝜗2(7𝜄 − 48𝜅) + (7𝜄 −48𝜅)2)/2𝜅(7𝜄−48𝜅)2 < 0 and 3𝜅𝜎1/(𝜄𝜆𝜅2(7𝜄−48𝜅)2−3𝜄𝜅𝜗2) >0.Then (34) admits an exact solution

𝑢 (𝑡, 𝑥, 𝑧) = 3𝜅3𝜆2𝜎1 (7𝜄 − 48𝜅)2[𝜄𝜆𝜅2 (7𝜄 − 48𝜅)2 − 3𝜄𝜅𝜗2] 𝑑2 (𝑡, 𝑥, 𝑧) , (49)

where

𝑑 (𝑡, 𝑥, 𝑧) = 𝐴1
⋅ sinh[

[
√−30𝜄𝜗2 + 12𝜄𝜗2 (7𝜄 − 48𝜅) + (7𝜄 − 48𝜅)22𝜅 (7𝜄 − 48𝜅)2 𝜉]

]
+ 𝐴2
⋅ cosh[

[
√−30𝜄𝜗2 + 12𝜄𝜗2 (7𝜄 − 48𝜅) + (7𝜄 − 48𝜅)22𝜅 (7𝜄 − 48𝜅)2 𝜉]

]
± 𝜗𝜄√ 3𝜅𝜎1𝜄𝜆𝜅2 (7𝜄 − 48𝜅)2 − 3𝜄𝜅𝜗2 ,

(50)

𝜉 = 𝑝𝑥 + 𝑐 ∫𝑡
0
𝛼(𝑠, 𝑧)𝑑𝑠, 𝜗 = 2𝑝/3𝑐, 𝜄 = 𝑝𝛽/2𝑐, 𝜅 = 2𝑝3𝛿/𝑐,𝑐 ̸= 0, 𝜎1 = 𝐴21 − 𝐴22, and 𝐴1 and 𝐴2 are two arbitrary

constants.

Case 2 (trigonometric function solution). If 𝜆 > 0, substitut-
ing (46) into (44) and using (21) and (25), the left-hand side of
(44) becomes a polynomial in𝜙 and𝜓. Setting the coefficients
of this polynomial to be zero, we yield a system of algebraic
equations in 𝑎1, 𝑏1, 𝜇, and 𝜆 as follows:

𝜙4 : 3𝜅𝑎21 + 𝜅𝑎41 + 𝜆 (6𝜄𝑎21𝑏21 + 3𝜅𝑏21 )𝜎2𝜆2 − 𝜇2
+ 𝜆𝜄𝑏41(𝜎2𝜆2 − 𝜇2)2 = 0,

𝜙3 : 𝑎31𝜗 + 𝜆 (3𝜗𝑎1𝑏21 − 6𝜅𝜇𝑎1𝑏1)𝜎2𝜆2 − 𝜇2 − 8𝜄𝜇𝜆2𝑏31(𝜎2𝜆2 − 𝜇2)2 = 0,

𝜙3𝜓 : 2𝜅𝑎1𝑏1 + 𝜄𝑎31𝑏1 + 𝜄𝜆𝑎1𝑏31𝜎2𝜆2 − 𝜇2 = 0,
𝜙2 : 𝑎21 + 4𝜅𝜆𝑎21

+ 𝜆𝜎2𝜆2 − 𝜇2 [𝑏21 + 𝜆 (4𝜅𝑏21 + 6𝜄𝑎21𝑏21 ) + 𝜅𝑎21𝜇2]

+ 2𝜄𝜆3𝑏41(𝜎2𝜆2 − 𝜇2)2 +
2𝜇𝜆2 (𝜅𝜇𝑏21 − 𝜗𝑏31 )

(𝜎2𝜆2 − 𝜇2)2
+ 4𝜄𝜇2𝜆3𝑏41(𝜎2𝜆2 − 𝜇2)3 = 0,

𝜙2𝜓 : −5𝜅𝜇𝑎21 + 3𝜗𝑎21𝑏1 + 𝜆 (𝜗𝑏31 − 3𝜅𝜇𝑏21 )𝜎2𝜆2 − 𝜇2
− 2𝜆𝜇 (6𝜄𝑎21𝑏21 + 2𝜅𝑏21 )𝜎2𝜆2 − 𝜇2 − 4𝜄𝜇𝜆2𝑏41(𝜎2𝜆2 − 𝜇2)2 = 0,

𝜙 : 3𝜗𝑎1𝑏21 − 6𝜅𝑎1𝑏1𝜎2𝜆2 − 𝜇2 + 8𝜄𝜇𝜆𝑎1𝑏31(𝜎2𝜆2 − 𝜇2)2 = 0,

𝜙𝜓 : 2𝑎1𝑏1 + 5𝜅𝜆𝑎1𝑏1 + 2𝜇𝜆 (6𝜇𝜅𝑎1𝑏1 − 3𝜗𝑎1𝑏21 )𝜎2𝜆2 − 𝜇2
+ 4𝜄𝜆2𝑎1𝑏31𝜎2𝜆2 − 𝜇2 +

16𝜄𝜇2𝜆2𝑎1𝑏31(𝜎2𝜆2 − 𝜇2)2 = 0,

𝜓 : 2𝜅𝜇𝑎21 − 𝜆 (𝜗𝑏31 − 3𝜅𝜇𝑏21 )𝜎2𝜆2 − 𝜇2 + 2𝜇 (𝑏21 + 𝜅𝜇2𝑎21)𝜎2𝜆2 − 𝜇2
− 4𝜆𝜇2 (𝜗𝑏31 − 𝜅𝜇𝑏21 )

(𝜎2𝜆2 − 𝜇2)2 + 8𝜄𝜇3𝜆2𝑏41(𝜎2𝜆2 − 𝜇2)3 = 0,

𝜓0 : 𝜅𝑎21 + 𝑏21 + 𝜅𝜇2𝑎21 + 𝜅𝜆𝑏21𝜎2𝜆2 − 𝜇2 + 2𝜇𝜆 (𝜅𝜇𝑏21 − 2𝜗𝑏31 )
(𝜎2𝜆2 − 𝜇2)2

+ 𝜄𝜆2𝑏41(𝜎2𝜆2 − 𝜇2)2 +
4𝜄𝜇2𝜆2𝑏41(𝜎2𝜆2 − 𝜇2)3 = 0.

(51)

Solving the above algebraic equations, we get the follow-
ing solutions: when 3𝜎2/(12𝜗2 − 100𝜄) > 0, then

𝑎1 = 0,
𝑏1 = ±5√ 3𝜎212𝜗2 − 100𝜄 ,
𝜆 = 12𝜅 ,
𝜇 = ∓𝜗𝜅√ 3𝜎212𝜗2 − 100𝜄 .

(52)
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From these solutions, we obtain the hyperbolic function
solutions of (34).

Theorem 3. Suppose that 3𝜎2/(12𝜗2 − 100𝜄) > 0 and 𝜅 > 0.
Then (34) admits an exact solution

𝑢 (𝑡, 𝑥, 𝑧) = 75𝜎2(12𝜗2 − 100𝜄) 𝑒2 (𝑡, 𝑥, 𝑧) , (53)

where

𝑒 (𝑡, 𝑥, 𝑧) = 𝐴1 sin 𝜉√2𝜅 + 𝐴2 cos
𝜉√2𝜅

∓ 2𝜗√ 3𝜎212𝜗2 − 100𝜄 ,
(54)

𝜉 = 𝑝𝑥 + 𝑐 ∫𝑡
0
𝛼(𝑠, 𝑧)𝑑𝑠, 𝜗 = 2𝑝/3𝑐, 𝜄 = 𝑝𝛽/2𝑐, 𝜅 = 2𝑝3𝛿/𝑐,𝑐 ̸= 0, 𝜎2 = 𝐴21 + 𝐴22, and 𝐴1 and 𝐴2 are two arbitrary

constants.

Case 3 (rational function solutions). If 𝜆 = 0, substituting
(46) into (44) and using (21) and (27), the left-hand side of
(44) becomes a polynomial in𝜙 and𝜓. Setting the coefficients
of this polynomial to be zero, we yield a system of algebraic
equations in 𝑎1, 𝑏1, 𝜇, and 𝜆 as follows:

𝜙4 : 3𝜅𝑎21 + 𝜄𝑎41 + 3𝑏21 (𝜅 + 2𝜄𝑎21)𝐴21 − 2𝜇𝐴2
+ 𝜄𝑏41(𝐴21 − 2𝜇𝐴2)2 = 0,

𝜙3 : 𝜗𝑎31 + 3𝜗𝑎1𝑏21 − 6𝜅𝜇𝑎1𝑏1𝐴21 − 2𝜇𝐴2 − 8𝜄𝜇𝑎1𝑏31(𝐴21 − 2𝜇𝐴2)2 = 0,

𝜙3𝜓 : 3𝜅𝑎1𝑏1 + 2𝜄𝑎31𝑏1 + 2𝜄𝑎1𝑏31𝐴21 − 2𝜇𝐴2 = 0,
𝜙2 : 𝑎21 + 4𝜅𝜆𝑎21 + 𝑏21 + 𝜅𝜇2𝑎21𝐴21 − 2𝜇𝐴2 +

𝜆𝜅𝑏21𝐴21 − 2𝜇𝐴2
+ 2𝜇 (𝜅𝜇𝑏21 − 𝜗𝑏31 )

(𝐴21 − 2𝜇𝐴2)2 + 4𝜄𝜇2𝑏41(𝐴21 − 2𝜇𝐴2)3 = 0,

𝜙2𝜓 : 3𝜗𝑎21𝑏1 − 5𝜅𝜇𝑎21 + 𝜗𝑏31 − 12𝜄𝜇𝑎21𝑏21 − 7𝜅𝜇𝑏21𝐴21 − 2𝜇𝐴2
− 4𝜄𝜇𝑏41(𝐴21 − 2𝜇𝐴2)2 = 0,

𝜙𝜓 : 2𝑎1𝑏1 + 5𝜅𝜆𝑎1𝑏1 + 2𝜇 (6𝜅𝜇𝑎1𝑏1 − 3𝜗𝑎1𝑏21 )𝐴21 − 2𝜇𝐴2
+ 16𝜄𝜇2𝑎1𝑏31(𝐴21 − 2𝜇𝐴2)2 = 0,

𝜓 : 𝜇𝜅𝜆𝑎21 + 𝜇 (𝑏21 + 𝜇2𝑎21 + 𝜅𝜆𝑏21 )𝐴21 − 2𝜇𝐴2

+ 2𝜇2 (𝜅𝜇𝑏21 − 𝜗𝑏31 )
(𝐴21 − 2𝜇𝐴2)2 + 4𝜄𝜇3𝑏41(𝐴21 − 2𝜇𝐴2)3 = 0,

𝜓0 : 𝜅𝑎21𝜆2 = 0.
(55)

Solving the above algebraic equations, we get the follow-
ing solutions: when 3𝜅(𝐴21 − 2𝜇𝐴2)/𝜄 < 0, then

𝑎1 = 0,
𝑏1 = ±√−3𝜅 (𝐴

2
1 − 2𝜇𝐴2)𝜄 ,

𝜇 = ∓ 𝜗5𝜅√−
3𝜅 (𝐴21 − 2𝜇𝐴2)𝜄 ,

𝜄 = 0.

(56)

From the above expression of 𝑏1, 𝜇, and 𝜄, we can get a contra-
diction. In Case 3, (34) does not admit an exact solution.

In order to get exact solutions of (2), we give the following
conditions: (⋆) suppose 𝛼(𝑡), 𝛽(𝑡), and 𝛿(𝑡) satisfy the condi-
tions that there exist a bounded open set 𝐺 ⊂ R ×R𝑑, 𝑞 > 0,
and 𝑟 > 0 such that 𝑢𝑡(𝑡, 𝑥, 𝑧), 𝑢1/2(𝑡, 𝑥, 𝑧)𝑢𝑥(𝑡, 𝑥, 𝑧), 𝑢(𝑡, 𝑥,𝑧)𝑢𝑥(𝑡, 𝑥, 𝑧), and 𝑢𝑥𝑥𝑥(𝑡, 𝑥, 𝑧) are uniformly bounded for all(𝑡, 𝑥, 𝑧) ∈ 𝐺 × K𝑞(𝑟), continuous with respect to (𝑡, 𝑥) ∈ 𝐺
for all 𝑧 ∈ K𝑞(𝑟) and analytic with respect to 𝑧 ∈ K𝑞(𝑟), for
all (𝑡, 𝑥) ∈ 𝐺.

Under condition (⋆) Theorem 1 implies that there exists𝑢(𝑡, 𝑥) ∈ (S)−1 such that

𝑢 (𝑡, 𝑥, 𝑧) = H𝑢 (𝑡, 𝑥) , (57)

which solves (34) for all (𝑡, 𝑥, 𝑧) ∈ 𝐺 × K𝑞(𝑟), 𝑢(𝑡, 𝑥) which
solves (2). From (57), we can find that 𝑢(𝑡, 𝑥) is the inverse
Hermite transformation of 𝑢(𝑡, 𝑥, 𝑧).

Hence, byTheorems 2 and 3, we yield the solutions of (2)
as follows.

Theorem 4. Suppose that (30𝜄𝜗2 + 12𝜄𝜗2(7𝜄 − 48𝜅) + (7𝜄 −48𝜅)2)/2𝜅(7𝜄−48𝜅)2 < 0 and 3𝜅𝜎1/(𝜄𝜆𝜅2(7𝜄−48𝜅)2−3𝜄𝜅𝜗2) >0.Then (2) admits an exact solution

𝑢 (𝑡, 𝑥) = 3𝜅3𝜆2𝜎1 (7𝜄 − 48𝜅)2[𝜄𝜆𝜅2 (7𝜄 − 48𝜅)2 − 3𝜄𝜅𝜗2] [ℎ (𝑡, 𝑥)]♢2 , (58)

where

ℎ (𝑡, 𝑥) = 𝐴1
⋅ sinh♢ {{{

√−30𝜄𝜗2 + 12𝜄𝜗2 (7𝜄 − 48𝜅) + (7𝜄 − 48𝜅)22𝜅 (7𝜄 − 48𝜅)2 [𝑝𝑥

+ 𝑐∫𝑡
0
𝛼 (𝑠) 𝑑𝑠]}}}

+ 𝐴2
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⋅ cosh♢ {{{
√−30𝜄𝜗2 + 12𝜄𝜗2 (7𝜄 − 48𝜅) + (7𝜄 − 48𝜅)22𝜅 (7𝜄 − 48𝜅)2 [𝑝𝑥

+ 𝑐∫𝑡
0
𝛼 (𝑠) 𝑑𝑠]}}}

± 𝜗𝜄√ 3𝜅𝜎1𝜄𝜆𝜅2 (7𝜄 − 48𝜅)2 − 3𝜄𝜅𝜗2 ,
(59)

𝜗 = 2𝑝/3𝑐, 𝜄 = 𝑝𝛽/2𝑐, 𝜅 = 2𝑝3𝛿/𝑐, 𝑐 ̸= 0, 𝜎1 = 𝐴21 − 𝐴22,𝐴1 and 𝐴2 are two arbitrary constants.
Theorem 5. Suppose that 3𝜎2/(12𝜗2 − 100𝜄) > 0 and 𝜅 > 0.
Then (2) admits an exact solution

𝑢 (𝑡, 𝑥) = 75𝜎2(12𝜗2 − 100𝜄) [𝑖 (𝑡, 𝑥)]♢2 , (60)

where

𝑖 (𝑡, 𝑥) = 𝐴1 sin♢ { 1√2𝜅 [𝑝𝑥 + 𝑐∫
𝑡

0
𝛼 (𝑠) 𝑑𝑠]}

+ 𝐴2 cos♢ { 1√2𝜅 [𝑝𝑥 + 𝑐∫
𝑡

0
𝛼 (𝑠) 𝑑𝑠]}

∓ 2𝜗√ 3𝜎212𝜗2 − 100𝜄 ,
(61)

𝜗 = 2𝑝/3𝑐, 𝜄 = 𝑝𝛽/2𝑐, 𝜅 = 2𝑝3𝛿/𝑐, 𝑐 ̸= 0, 𝜎2 = 𝐴21 + 𝐴22,
and 𝐴1 and 𝐴2 are two arbitrary constants.

Since Wick versions of functions are usually difficult to
evaluate, we will give some non-Wick versions of solutions of
(2) in special cases.

Let 𝛼(𝑡) = 𝑓(𝑡) + 𝑎𝑊(𝑡), where 𝑎 is a constant. 𝑓(𝑡) is
an integral or bounded measurable function on R+. 𝑊(𝑡) is
Wiener white noise: that is,𝑊(𝑡) = �̇�𝑡, 𝐵𝑡 is a Brownmotion.
We have the Hermite transforms: 𝛼(𝑡, 𝑧) = 𝑓(𝑡) + 𝑎�̃�(𝑡, 𝑧),
where �̃�(𝑡, 𝑧) = ∑∞𝑘=1 ∫𝑡0 𝜂𝑘(𝑠)𝑑𝑠 𝑧𝑘, 𝑧 = (𝑧1, 𝑧2, . . .) ∈ CN is
parameter, and 𝜂𝑘(𝑠) is defined in the second section.

Using exp♢{𝑋} = exp{𝑋} for nonrandom 𝑋, exp♢{𝐵𝑡} =
exp{𝐵𝑡 −(1/2)𝑡2} and the definitions of sin(𝜉), cos(𝜉), sinh(𝜉),
and cosh(𝜉), we have

sin♢𝐵𝑡 = 12 [exp♢ (𝑖𝐵𝑡) − exp♢ (−𝑖𝐵𝑡)]
= sin(𝐵𝑡 − 12𝑡2) ,

cos♢𝐵𝑡 = 12 [exp♢ (𝑖𝐵𝑡) + exp♢ (−𝑖𝐵𝑡)]
= cos(𝐵𝑡 − 12𝑡2) ,

sinh♢𝐵𝑡 = 12 [exp♢ (𝐵𝑡) − exp♢ (−𝐵𝑡)]
= sinh(𝐵𝑡 − 12𝑡2) ,

cosh♢𝐵𝑡 = 12 [exp♢ (𝐵𝑡) + exp♢ (−𝐵𝑡)]
= cosh (𝐵𝑡 − 12𝑡2) .

(62)

Hence, byTheorems 4 and 5, we yield the solutions of (2)
in special cases as follows.

Theorem 6. Suppose that (30𝜄𝜗2 + 12𝜄𝜗2(7𝜄 − 48𝜅) + (7𝜄 −48𝜅)2)/2𝜅(7𝜄−48𝜅)2 < 0 and 3𝜅𝜎1/(𝜄𝜆𝜅2(7𝜄−48𝜅)2−3𝜄𝜅𝜗2) >0.Then (2) admits an exact solution

𝑢 (𝑡, 𝑥) = 3𝜅3𝜆2𝜎1 (7𝜄 − 48𝜅)2[𝜄𝜆𝜅2 (7𝜄 − 48𝜅)2 − 3𝜄𝜅𝜗2] [𝑚 (𝑡, 𝑥)]2 , (63)

where
𝑚(𝑡, 𝑥) = 𝐴1

⋅ sinh{{{
√−30𝜄𝜗2 + 12𝜄𝜗2 (7𝜄 − 48𝜅) + (7𝜄 − 48𝜅)22𝜅 (7𝜄 − 48𝜅)2 [𝑝𝑥

+ 𝑐∫𝑡
0
𝑓 (𝑠) 𝑑𝑠 + 𝑐𝑎 (𝐵𝑡 − 12𝑡2)]

}}}
+ 𝐴2

⋅ cosh{{{
√−30𝜄𝜗2 + 12𝜄𝜗2 (7𝜄 − 48𝜅) + (7𝜄 − 48𝜅)22𝜅 (7𝜄 − 48𝜅)2 [𝑝𝑥

+ 𝑐∫𝑡
0
𝑓 (𝑠) 𝑑𝑠 + 𝑐𝑎 (𝐵𝑡 − 12𝑡2)]

}}}
± 𝜗𝜄√ 3𝜅𝜎1𝜄𝜆𝜅2 (7𝜄 − 48𝜅)2 − 3𝜄𝜅𝜗2 ,

(64)

𝜗 = 2𝑝/3𝑐, 𝜄 = 𝑝𝛽/2𝑐, 𝜅 = 2𝑝3𝛿/𝑐, 𝑐 ̸= 0, 𝜎1 = 𝐴21 − 𝐴22,
and 𝐴1 and 𝐴2 are two arbitrary constants.
Theorem 7. Suppose that 3𝜎2/(12𝜗2 − 100𝜄) > 0 and 𝜅 > 0.
Then (2) admits an exact solution

𝑢 (𝑡, 𝑥) = 75𝜎2(12𝜗2 − 100𝜄) [𝑛 (𝑡, 𝑥)]2 , (65)

where

𝑛 (𝑡, 𝑥) = 𝐴1 sin{ 1√2𝜅 [𝑝𝑥 + 𝑐∫
𝑡

0
𝑓 (𝑠) 𝑑𝑠

+ 𝑐𝑎 (𝐵𝑡 − 12𝑡2)]} + 𝐴2 cos{ 1√2𝜅 [𝑝𝑥
+ 𝑐∫𝑡
0
𝑓 (𝑠) 𝑑𝑠 + 𝑐𝑎 (𝐵𝑡 − 12𝑡2)]}

∓ 2𝜗√ 3𝜎212𝜗2 − 100𝜄 ,

(66)

𝜗 = 2𝑝/3𝑐, 𝜄 = 𝑝𝛽/2𝑐, 𝜅 = 2𝑝3𝛿/𝑐, 𝑐 ̸= 0, 𝜎2 = 𝐴21 + 𝐴22,
and 𝐴1 and 𝐴2 are two arbitrary constants.
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5. Conclusion

On the earlier works given in the reference list, the authors
considered the exact solutions of the Schamel-Korteweg-
de Vries equation. But in this paper, we use the (𝐺/𝐺, 1/𝐺)-
expansion method to study the Wick-type stochastic
Schamel-Korteweg-de Vries equation. We derive some new
exact travelling wave solutions, which include hyperbolic and
trigonometric solutions for the considered equations. The
obtained solutions with free parameters may be important
to expose most complex physical phenomena or to find new
phenomena. It is shown in this paper that the (𝐺/𝐺, 1/𝐺)-
expansion method, with the help of symbolic computation
likeMaple orMathematica, is direct, concise, and elementary.

Compared to other methods, like the exp-function
method [1], the extended (𝐺/𝐺)-expansion method [6], the
sine-cosine method, and the extended tanh method [7], the(𝐺/𝐺, 1/𝐺)-expansion method is effective and powerful in
finding exact solutions of many other nonlinear evolution
equations inmathematical physics, appliedmathematics, and
engineering. The equations are very difficult to be solved by
traditional methods.
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