
Research Article
Energy Conservation Using Dynamic Voltage Frequency
Scaling for Computational Cloud

A. Paulin Florence,1,2 V. Shanthi,3 and C. B. Sunil Simon4

1Sathyabama University, Chennai 600 119, India
2St. Joseph’s Institute of Technology, Chennai 600 119, India
3St. Joseph’s College of Engineering, Chennai 600 119, India
4Zoho Corporation, Chennai, India

Correspondence should be addressed to A. Paulin Florence; apaulinselva@gmail.com

Received 14 October 2015; Accepted 17 February 2016

Academic Editor: Juha Plosila

Copyright © 2016 A. Paulin Florence et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

Cloud computing is a new technology which supports resource sharing on a “Pay as you go” basis around the world. It provides
various services such as SaaS, IaaS, and PaaS. Computation is a part of IaaS and the entire computational requests are to be served
efficiently with optimal power utilization in the cloud. Recently, various algorithms are developed to reduce power consumption
and even Dynamic Voltage and Frequency Scaling (DVFS) scheme is also used in this perspective. In this paper we have devised
methodology which analyzes the behavior of the given cloud request and identifies the associated type of algorithm. Once the type
of algorithm is identified, using their asymptotic notations, its time complexity is calculated. Using best fit strategy the appropriate
host is identified and the incoming job is allocated to the victimized host. Using the measured time complexity the required clock
frequency of the host is measured. According to that CPU frequency is scaled up or down using DVFS scheme, enabling energy to
be saved up to 55% of total Watts consumption.

1. Introduction

Today the world’s mantra is big data. Every domain requires
deft handling of voluminous data for their survival with
example being social networking sites like Facebook, stock
exchanges, online shopping portals, travel portals, hospital
management, government sectors, and so forth. In order to
process data they depend on computational resources which
need a huge amount of capital expense. Hence all organiza-
tions are moving towards cloud.

With every passing day, world is waking up to the impor-
tance of staying connected seamlessly and this is becoming
possible only with cloud computing enabled devices making
its way into the work and personal world enabling us to
continue the work from where it is left. Cloud computing
works on principle of two slogans “Pay as you go” and
“Anything as a Service (AaaS)” [1]. For example, as citizen of a
country, you can consume power by connecting yourself with
a service provider and have to pay only for as much power

as you consume. However any resource like infrastructure,
software, and network platform can be availed as a service
from the cloud.

Cloud caters IaaS, SaaS, PaaS, and so forth and facili-
tates dynamic resource provisioning [1]. It meets fluctuating
demand by varying the resources and service requirement
needs of customers. In order to provide reliable service
it is essential to structure Service Level Agreement (SLA)
[2] and also Quality of service (QoS) [3]. SLA is a legal
binding contract which encompasses guaranteed QoS that
an execution environment (provider) agrees to provide to
its hosted application. It should be noted that every service
provider has to fulfil the obligation of the client based
on their SLA and provide complete service. Some of the
characteristics of customer requirements can be summed up
by QoS [3] among which the most important are availability
of services, security, and reliability.

It can also be noted that QoS is fundamental for cloud
users [2]. Cloud service providers have to find the right

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2016, Article ID 9328070, 13 pages
http://dx.doi.org/10.1155/2016/9328070

2 The Scientific World Journal

tradeoffs between QoS levels and operational costs together
with which they are able to deliver the advertised quality
characteristics [3].

Availing services from cloud reduce capital expenditure
of an organization [4]. There are varying numbers of cloud
providers offering dynamic resource provisioning. Cloud
data centers consume enormous amount of power and in turn
generate large amount of heat which posesmassive impact on
environmental conditions [4] and inflates power bill.

Many approaches are devised to address this major
concern; however it has its own repercussion. Trying to
operate a processor at lower power state degrades the overall
performance and this impacts the output.

To ensure optimal performance of servers and at the
same time ensure quality of output, we have devised a new
methodology which studies the pattern of the incoming
request, categorizes the algorithm adopted, identifies its time
complexity using asymptotic notations, and applies a new
approach which saves energy consumption.

2. Related Work

Lin et al. [5] proposed a novel algorithm for the mobile cloud
computing (MCC) task scheduling problem to minimize
the total energy consumption of an application in a mobile
device. It generates a task schedule and then migrates the
task either to the local core or to the cloud to reduce energy
consumption. It identifies tasks that need to be offloaded onto
the cloud and then forwards the remaining tasks to the local
core and further tries to reduce energy consumption based on
execution time requirements of each task by applying DVFS.
It focuses mainly on battery-powered devices and tries to
reduce scheduling delay involved in offloading the tasks onto
the cloud. A linear-time rescheduling algorithm is proposed
for task migration.

Two-layer control architecture called EvGPU (energy-
efficient SLA guarantees virtualized GPU) is devised by Guan
et al. [6] for cloud gaming. At the first layer of the con-
trol architecture the author has implemented Proportional-
Integral (PI) controller which guarantees SLA and measures
the number of Frames Per Second (FPS) for each online game
based on the set threshold level. Then at the second level
to reduce power consumption GPU frequency is adjusted
through DVFS based on the current FPS. Hence EvGPU
could dynamically assign virtual GPU resources for cloud
gaming.This approach helps in reducing power consumption
ofGPU throughDVFSwith a givenGPUutilization or a given
workload.

Jeyarani et al. [7] propose a power aware meta scheduler
which predicts the incoming VM request pattern based on
recent history of arrivals and allocates resources. To conserve
power, adaptive provisioning policy along with power aware
allocation policy and chip aware VM scheduler is adapted.
Here PEs are transitioned between shallow power saving state
to deep sleep state. This system fails to identify exact request
pattern, because it follows arrival history of VM request in
order to allocate resources.

Quan et al. [8] devised an algorithm to optimize resource
allocation and workload consolidation and finally frequency

of the core gets adjusted. This is achieved by moving heavy
load applications to new servers with great number of cores
with an assumption that new generation computer compo-
nents have higher performance and consume less energy than
the old generation and by also moving light load applications
to old servers with less number of core servers and switch off
the idle old servers.

3. Methodology for Energy Conservation Using
Dynamic Voltage and Frequency Scaling for
Computational Cloud

The reason why organizations are moving to cloud rather
than establishing their own infrastructure is to save money.
They can share their geographically distributed resources. But
processing big data has its own disadvantages. It involves
usage of lot of power and every unit consumed will have
a direct impact on the balance sheet of a company and
secondly when the use of power increases, heat generation
increases, which is hazardous to the environment. Besides it
also reduces the efficiency of electrical components, which is
inversely proportional to increasing temperature due to the
deteriorating state of those components. For the aforemen-
tioned reasons, we try to find a way to reduce the energy
consumed at data centers [4].

3.1. Architecture Diagram. Common user performs an action
(e.g., search), which is grabbed as a request by any random
broker or whoever providing that service. As it could be any
unknown broker, the broker can use any kind of unknown
algorithm at one end to have that request executed from
within cloud systems. Hence he fits that request inside his
own framework,which is redirected to theCloudOperational
Control Center (COCC). Thus now it is the job of the
COCC to analyze the resource requirements of that unknown
algorithm by means of identifying the type of that algorithm
and execute it as per resource availability and bymanipulating
better energy utilization.

COCC is comprised of three components such as pattern
analyzer, green conservative load balancer, and DVFS. The
pattern analyzer analyzes the incoming unknown algorithm
and constructs Data Flow Table (DFT) which in turn extracts
the algorithm pattern which is depicted as Data Flow Graph
(DFG). The DFG helps to derive the type of algorithm and
computes the time complexity. Green load balancer locates
the most promising node to execute the user request based
on the computed time complexity. Then the frequency of the
victimized node is adjusted as per the requirement. Figure 1
shows the overall view of system architecture.

4. Discussion

In cloud, requests are to be served efficiently which in turn
enables optimal utilization of power. Since power plays a
very vital role in the way entire cloud computing architecture
operates, it is quiet critical that optimization or in other terms
minimal utilization of power is important.

The Scientific World Journal 3

Cloud data center

User Broker Cloud Operational Control Center (COCC)

GHz 3.10 2.4 2.0 1.8 0.2

TDM 150 115 95 70 45

Pattern analyzer

Data Flow Table

GHz 3.10 2.4 2.0 1.8 0.2

TDM 150 115 95 70 45

User request Unknown algorithm

Data Flow Graph

User view
Returned

process/data

Conservative green
load balancer

DVFS

Cloud processor 1

Cloud processor 2

GHz 3.10 2.4 2.0 1.8 0.2

TDM 150 115 95 70 45

Time
complexity

Cloud processor n

.

.

.

Figure 1: Architecture diagram.

Various strategies are developed to reduce power con-
sumption and one of them is the DVFS scheme which can
be used to minimize the overall power consumption, thus
enabling cloud computing to work effectively [5]. DVFS
scheme facilitates frequency adjustment of processor accord-
ing to the need, where the processor has to operate at its full
speed and vice versa.

DVFS is a power conservation technique [9], whereby
CPU frequency can be dynamically scaled according to its
load [10]. DVFS can be activated in 4 different modes [11]:

(i) high frequency,
(ii) low frequency,
(iii) available frequency for the CPU,
(iv) on demand dynamically choosing the frequency level.
Jobs arriving to the cloud may be CPU bound, I/O,

or Memory bound. If the job request is CPU bound, the
frequency of the processor needs to be adjusted to its required
level. If it is I/O bound it needs to be run at its least frequency
rate. Hence it becomes important to classify the request as
CPU bound or I/O or Memory bound.

The entire incoming request follows one or the other
algorithm. Basically every algorithm falls under certain class.
From increasing order of growth they are classified as
constant time algorithm, logarithmic algorithm, linear-time
algorithm, polynomial time algorithm, and exponential time
algorithm.

Formally, the complexity of any algorithm can be repre-
sented using asymptotic notation. It is classified into 𝜃 (theta),

𝑂 (Big𝑂), andΩ (omega) where𝑂(𝑔(𝑛)) establishes an upper
bound on the function, 𝜃(𝑔(𝑛)) defines two functions that
bound the function 𝑔(𝑛) from both upper and lower limits,
andΩ(𝑔(𝑛)) defines a lower bound of the function [12, 13].

However in this paper we have constrained on using only
Big 𝑂’s worst-case time complexity [13]. Hence the processor
can be used and optimized according to its requirement. We
have devised a methodology which analyzes the behavior of
the algorithm coming as a request. Its behavioral pattern is
recorded in a DFT and using that DFT the corresponding
DFG is derived, and then the fitness of the incoming request
is tested withmathematical or procedural functions using the
data retrieved from the DFG and once it satisfies a certain
algorithm its corresponding time complexity is derived using
asymptotic notation. Then total micro instruction sets clock
cycles specific to that algorithm which is evaluated and then
multiplied with its asymptotic range. A constant variance
error variable is added to it formore precision. Based on these
requirementswe applyDVFS and adjust the host’s voltage and
CPU frequency according to the requirement.

With the assumption that every request that comes to the
cloud follows a particular algorithm, the following algorithms
which are generally in use under different domains such as
financial markets, networking, artificial intelligence, gaming,
and medical are considered:

(i) linear algorithm,
(ii) geometric algorithm,
(iii) backtracking algorithm,

4 The Scientific World Journal

(iv) 𝐾-means clustering algorithm,

(v) Warshall and Floyd’s algorithm,

(vi) binary search algorithm,

(vii) merge algorithm.

4.1. Phases of the Proposed Work. This paper focuses on
energy conservation in a way of classifying jobs according to
their behavioral pattern. It involves three phases. They are

(i) pattern analyzer,

(ii) conservative green load balancer,

(iii) DVFS implementation.

4.1.1. Pattern Analyzer. In our work we focus on efficient
utilization of cloud resources alongwith energy conservation.
Pattern analyzer reads the incoming cloud request (cloudlet)
which is framed as an algorithm by the broker and constructs
Data Flow Table (DFT), from which it derives its DFG. The
flow of the iterators from its pattern of DFG is analyzed
and algorithm followed by the request is identified. Its data
size based time complexity and micro instruction clock
cycle (MICC) count time complexity are calculated following
which Million Instructions Per Second (MIPS) is computed.
Algorithms considered for analysis are discussed below.

Linear Algorithm. One of the widely used search algorithms
is linear search algorithm. It is a kind of brute force search.
Its time complexity is defined as linear denoted by 𝑂(𝑁).
Upon receiving the incoming job request, our classification
algorithm studies the flow of the incoming pattern, if it is
found to be single loop from 1 to 𝑁, it identifies that the
algorithm is linear [14, 15].The pattern is shown in Table 1(a).

Geometric Algorithm. Our classification algorithm after ana-
lyzing the incoming request finds the value between any two
successive iterations, and if the multiplicative progression
ratio between them is the same, then it identifies that the
particular algorithm is geometric algorithm [14, 15]. Its
pattern is shown in Table 1(b).

Backtracking Algorithm. By analyzing the incoming request,
our algorithm decides it is a backtracking algorithm when it
finds that the iterator builds candidates to solution incremen-
tally; it prunes and backtracks as soon as it decides that the
candidate cannot be a valid solution [14, 15] which is shown
in Table 1(c).

K-Means Clustering Algorithm.𝐾-means is one of the famous
clustering algorithms in data mining. 𝐾-means clustering
aims to partition 𝑛 number of observations into 𝑘 number
of clusters in which each observation belongs to the cluster
with the nearest mean. Each subsequent element is put into 𝑘
clusters and individual means are updated simultaneously by
finding which element is near to which mean and eventually
dropped into that cluster [14, 15]. The pattern thus derived is
shown in Table 1(d).

Warshall and Floyd’s Algorithm. Warshall’s is a graph analysis
algorithm that is used to identify existence of a path, while
Floyd’s is a graph analysis algorithm for finding all pairs
shortest path using aweighted graphwith positive or negative
edge weights. A single execution of the algorithm returns the
summed lengths or summed weights of the shortest paths
between all pairs of vertices [14, 15]. Its pattern is depicted
in Table 1(e).

Binary Search Algorithm. Binary search is also known as half-
interval search algorithm that finds the position of a searched
value within an array that has to be arranged in ascending
or descending order. In each step, the algorithm compares
the search value with the value of the middle element of the
array and accordingly adjusts its bound limits for subsequent
searches until the element is found and then its position is
returned [14, 15]. The pattern attained from DFT is shown in
Table 1(f).

Merge Algorithm. Merge algorithm is a divide and conquer
type algorithm that runs sequentially over unsorted lists and
accordingly adjusts its bound limits for subsequent merges
typically producing more sorted lists as output by means
of breaking down and joining back [14, 15]. The pertaining
pattern is shown in Table 1(g).

The patterns of various algorithms derived as a result of
analysis are shown in Table 1.

(1) Computation of Time Complexity. Once pattern analyzer
ascertains the type of algorithm shadowed by the incoming
cloudlet, time complexity is evaluated by using two tech-
niques named “data size based time complexity” and “micro
instruction clock cycle count time complexity.” Data size
based time complexity of an algorithm’s performance time
may vary with different input size. In our case, we have used
worst-case time complexity of Big𝑂 notation [13], denoted as
𝑂(𝑇(𝑛)), which is defined as the maximum amount of time
taken on any input of size 𝑛.

The data size based time complexities by the nature of the
function 𝑂(𝑇(𝑛)) considered for experimental purpose are
shown in Table 2.

After data size based time complexity is evaluated its
micro instruction clock cycle is derived. Each algorithm is
composed of a particular set of instructions. Each instruction
execution is a four-process cycle called machine cycle which
involves the following steps:

(1) instruction fetch cycle (IF),
(2) instruction decode cycle (ID),
(3) execution cycle (EX),
(4) write cycle (WB).

Each instruction cycle is comprised of micro instruc-
tions referred to as micro program. Micro instruction clock
cycle count time complexity means clock pulses needed
for individual instruction cycle that is accumulated for the
entire code and accordingly total clock cycle consumption
is derived. Hence the MIPS estimation of the algorithm is
achieved by multiplying the data size based time complexity

The Scientific World Journal 5

Ta
bl
e
1:
D
er
iv
ed

D
at
aF

lo
w
G
ra
ph

sw
ith

re
sp
ec
tt
o
th
ei
ra

lg
or
ith

m
pa
tte

rn
s.

Ty
pe

D
at
aF

lo
w
G
ra
ph

(D
FG

)
A
lg
or
ith

m

Li
ne
ar

“I
te

ra
ti

o
n”

1
2

3
4

5
6

7
8

9
1
0
1
1
1
2
1
3
1
4

13579

1
1

1
3

1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6

2
7

(a
)L

in
ea
r

If
al
g
is
un

kn
ow

n
th
en

as
su
m
ea

lg
is
lin

ea
ra

lg
or
ith

m
fo
rs
hi
ft
ℎ←

1t
o
𝑛−

2t
he
n

if
(𝑡𝑎

𝑏𝑙𝑒
[sh

ift
V][

sh
ift

ℎ+
2])

−(
𝑡𝑎𝑏

𝑙𝑒[
sh
ift

V][
sh
ift

ℎ+
1])

no
te
qu

al
s(𝑡

𝑎𝑏
𝑙𝑒[

sh
ift

V][
sh
ift

ℎ+
1])

−(
𝑡𝑎𝑏

𝑙𝑒[
sh
ift

V][
sh
ift

ℎ])
)th

en
al
g
is
un

kn
ow

n
br
ea
k

en
d
if

en
d
fo
r

en
d
if

G
eo
m
et
ric

“I
te

ra
ti

o
n”

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

13579

1
1

1
3 (b
)G

eo
m
et
ric

If
al
gi
su

nk
no
w
n
th
en

As
su
m
ea

lg
is
a
ge
om

et
ric

al
go
rit
hm

Fo
rs
hi
ft
h
←

1t
o
n
−2

th
en

If
(ta

bl
e[
sh
ift

V]
[sh

ift
h
+
2]
)/(
ta
bl
e[
sh
ift

V]
[sh

ift
h
+
1])

no
te
qu
al
s(
ta
bl
e[
sh
ift

V]
[sh

ift
h
+
1])

/(t
ab
le[
sh
ift

V]
[sh

ift
ℎ])

th
en

al
gi
su

nk
no
w
n

br
ea
k

en
d
if

en
d
fo
r

en
d
if

6 The Scientific World Journal

Ta
bl
e
1:
C
on

tin
ue
d.

Ty
pe

D
at
aF

lo
w
G
ra
ph

(D
FG

)
A
lg
or
ith

m

Ba
ck
tr
ac
ki
ng

“I
te

ra
ti

o
n”

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

13579

1
1

1
3 (c
)B

ac
kt
ra
ck
in
g

If
al
g
is
un

kn
ow

n
th
en

As
su
m
ea

lg
is
ab

ac
kt
ra
ki
ng

al
go
rit
hm

Fo
rs
hi
ft
ℎ←

1t
o
𝑛t

he
n

If
ta
bl
e[
sh
ift

V]
[s
hi
ft
ℎ]

is
gr
ea
te
rt
ha
n
𝑛t

he
n

al
g
eq
ua
ls
un

kn
ow

n
sh
ift

ℎe
qu

al
s𝑛

Br
ea
k

en
d
if

If
ta
bl
e[
sh
ift

V]
[s
hi
ft
ℎ]

is
eq
ua
ls
to

1t
he
n

al
g
eq
ua
ls
un

kn
ow

n
sh
ift

ℎe
qu

al
s𝑛

br
ea
k

en
d
if

if
ta
bl
e[
sh
ift

V]
[s
hi
ft
ℎ]

eq
ua
ls
ta
bl
e[
sh
ift

V]
[s
hi
ft
ℎ−

1]
al
g
eq
ua
ls
un

kn
ow

n
sh
ift

ℎe
qu

al
s𝑛

br
ea
k

en
d
if

fo
r𝑘

←
sh
ift

ℎ−
1𝑘

gr
ea
te
rt
ha
n
1a
nd

𝑘−
−t

he
n

if
ta
bl
e[
sh
ift

V]
[𝑘]

eq
ua
ls
ta
bl
e[
sh
ift

V]
[s
hi
ft
ℎ]

th
en

fo
r𝑝

←
𝑘+

1t
o
sh
ift

ℎt
he
n

ba
ck
[ta

bl
e[
sh
ift

V]
[𝑝]

]e
qu

al
s1
;

en
d
fo
r

𝑘e
qu

al
s−

1;
en
d
if

en
d
fo
r

en
d
if

en
d
fo
r

The Scientific World Journal 7

Ta
bl
e
1:
C
on

tin
ue
d.

Ty
pe

D
at
aF

lo
w
G
ra
ph

(D
FG

)
A
lg
or
ith

m

𝐾-
m
ea
ns

clu
ste

rin
g

“I
te

ra
ti

o
n”

“Fetch value”
3 15

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

“I
te

ra
ti

o
n”

“Fetch value”

“I
te

ra
ti

o
n”

“Fetch value”

“I
te

ra
ti

o
n”

“Fetch value”

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

13579

1
1

1
3 13579

1
1

1
3 13579

1
1

1
3

(d
)𝐾

-m
ea
ns

clu
ste

rin
g

𝑘 m
ea
n
to
te
qu

al
s0

;
if
al
g
eq
ua
ls
un

kn
ow

n
th
en

as
su
m
ea

lg
is
a𝑘

m
ea
ns

al
go
rit
hm

fo
r
𝑘←

0t
o
2

fo
r
𝑝←

1t
o
𝑛−

1
𝑘m

ea
n
to
te
qu

al
s0

fo
rs
hi
ft
ℎ←

1t
o
le
ss
th
an

or
eq
ua
ls
𝑝

𝑘m
ea
n
to
te
qu

al
s𝑡𝑎

𝑏𝑙𝑒
[𝑘]

[sh
ift

ℎ]
+𝑘

m
ea
n
to
t;

en
d
fo
r

if
𝑘m

ea
n
to
t/𝑝

no
te
qu

al
s𝑡𝑎

𝑏𝑙𝑒
[𝑘
+2

][𝑝
]th

en
al
g
is
un

kn
ow

n
𝑝e

qu
al
s𝑛

𝑘e
qu

al
s2

br
ea
k

en
d
if

en
d
fo
r

en
d
fo
r

en
d
if

8 The Scientific World Journal

Ta
bl
e
1:
C
on

tin
ue
d.

Ty
pe

D
at
aF

lo
w
G
ra
ph

(D
FG

)
A
lg
or
ith

m

W
ar
sh
al
la
nd

Fl
oy
d’s

“Fetch value”

3 1

“Fetch value”

“I
te

ra
ti

o
n”

1
2

3
4

5
6

7
8

9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9

“I
te

ra
ti

o
n”

“Fetch value”

“I
te

ra
ti

o
n”

“Fetch value”

“I
te

ra
ti

o
n”

1
2

3
4

5
6

7
8

9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9

1
2

3
4

5
6

7
8

9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9

1
2

3
4

5
6

7
8

9
1
0
1
1
1
2
1
3
1
4
1
5
1
6
1
7
1
8
1
9
2
0
2
1
2
2
2
3
2
4
2
5
2
6
2
7
2
8
2
9

13579

1
1

1
3 13579

1
1

1
3 13579

1
1

1
3

(e
)W

ar
sh
al
la
nd

Fl
oy
d’s

If
al
g
is
un

kn
ow

n
th
en

As
su
m
ea

lg
is
w
ar
sh
al
/fl
oy
d

Fo
rs
hi
ft

V
←

0t
o
en
d
of

da
ta
flo

w
ta
bl
e

sh
ift

ℎe
qu

al
s1
;

W
hi
le
ta
bl
e[
sh
ift

V]
[s
hi
ft
ℎ]

no
te
qu

al
se

nd
of

lin
e

If
ta
bl
e[
sh
ift

V]
[s
hi
ft
ℎ]

gr
ea
te
rt
ha
n
no

.o
fe
dg
es
∧
3

th
en

al
g
eq
ua
ls
un

kn
ow

n
br
ea
k

en
d
if

sh
ift

ℎ+
+

w
en
d

If
sh
ift

ℎ−
1n

ot
eq
ua
ls
no

.o
fe
dg
es
∧
3
th
en

al
g
eq
ua
ls
un

kn
ow

n
Br
ea
k

En
d
if

En
d
fo
r

En
d
if

Bi
na
ry

“Fetch value”

“I
te

ra
ti

o
n”

“Fetch value”

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

13579

1
1

1
3

(f
)B

in
ar
y

If
al
g
is
un

kn
ow

n
th
en

As
su
m
ea

lg
is
bi
na
ry

Fo
rs
hi
ft
ℎ←

1t
o
le
ss
th
an

𝑛−
1t

he
n

if
(ta

bl
e[
sh
ift

V]
[s
hi
ft
ℎ+

1])
no

te
qu

al
s(
ta
bl
e[
sh
ift

V]
[s
hi
ft
ℎ])

/2
)

al
g
is
un

kn
ow

n
br
ea
k

en
d
if

en
d
fo
r

en
d
if

The Scientific World Journal 9

Ta
bl
e
1:
C
on

tin
ue
d.

Ty
pe

D
at
aF

lo
w
G
ra
ph

(D
FG

)
A
lg
or
ith

m

M
er
ge

“Fetch value”

“I
te

ra
ti

o
n”

“Fetch value”

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

13579

1
1

1
3

(g
)M

er
ge

If
al
g
is
un

kn
ow

n
As
su
m
ea

lg
is
am

er
ge

al
go
rit
hm

fo
rs
hi
ft
ℎ←

1t
o
le
ss
th
an

(𝑛
−1

)/2
If
(ta

bl
e[
sh
ift

V]
[s
hi
ft
ℎ+

1])
no

te
qu

al
s(
ta
bl
e[
sh
ift

V]
[s
hi
ft
ℎ])

/2
al
g
is
un

kn
ow

n
br
ea
k

en
d
if

en
d
fo
r

fo
rs
hi
ft
ℎ←

(𝑛
−1

)/2
to

le
ss
th
an

𝑛−
1

if
(ta

bl
e[
sh
ift

V]
[s
hi
ft
ℎ+

1])
no

te
qu

al
s(𝑡

𝑎𝑏
𝑙𝑒[

sh
ift

V][
sh
ift

ℎ])
∗2

)
al
g
is
un

kn
ow

n
br
ea
k

en
d
if

en
d
fo
r

en
d
if

10 The Scientific World Journal

Table 2: Algorithm and time complexity.

S. number Algorithm type Worst-case function 𝑇(𝑛) Variables and their definitions Mathematical functions

1 Linear algorithm 𝑂(𝑛) Number of entities to be
linear-searched

((𝑛 + 2)(𝑛 − 1))/2𝑛
For all 𝑛 when 𝑘 = 0

or (𝑛 + 1)/(𝑘 + 1) when 𝑘 is 1 to 𝑛
2 Binary search

algorithm 𝑂(𝑛) 𝑛 is the number of entities to
be binary-searched

2𝑥 = 𝑛 ,
where 𝑥 = log2𝑛

3 Geometric
algorithm 𝑂(𝑛/gr)

gr is a constant geometric
multiplier and 𝑛 is the number

of entities

𝑎𝑛 = 𝑟 ⋅ 𝑎𝑛−1
for 𝑛 ≥ 1

4 Merge algorithm 𝑂(𝑛 log(𝑛)) Number of entities to be
merged 𝑇(𝑛) = 2𝑇(𝑛2) + 𝑛

5 Warshall and
Floyd’s algorithm 𝑂(|𝑉|∧3) 𝑉 is the number of vertices

within a network
Shortestpath(𝑖, 𝑗, 𝑘+1) = min(shortestpath(𝐼, 𝑗, 𝑘),
shortestpath(𝑖, 𝑘 + 1, 𝑘) + shortestpath(𝑘 + 1, 𝑗, 𝑘))

6 Backtracking
algorithm 𝑂(𝑛!) 𝑛 is the number of entities to

be backtracked argmin∑
𝑠

𝑘

∑
𝑖=1,𝑥∈𝑠𝑖

𝑥 − 𝜇2

7
𝑘-means
clustering
algorithm

𝑂(𝑛∧(𝑑𝑘 + 1)) | 𝑂(𝑔(𝑛))
𝑘 and 𝑑 (the dimension) are
fixed, the problem can be

exactly solved, where 𝑛 is the
number of entities to be

clustered

𝑚(𝑡+1)𝑖 = 1𝑆(𝑡)𝑖

∑
𝑥𝑗∈𝑆
(𝑡)
𝑖

𝑥𝑗

of the identified algorithm with its corresponding MICC
which is added with a constant for more precision subse-
quently.

Algorithm 1 (pattern analyzer).

Input. Incoming algorithm (cloud request) called cloudlet.

Output. MIPS of incoming cloudlet.

Step 1. Read cloudlet.

Step 2. Construct Data Flow Table (DFT).

Step 3. Read DFT and construct Data Flow Graph (DFG).

Step 4. Evaluate the pattern followed in DFG and find out the
algorithm and its data size based time complexity.

Step 5. Assume micro instruction clock cycle [MICC] for the
derived algorithm.

MIPS = (time complexity [algorithm] ∗ MICC [Algo-
rithm]) + 𝑐, where 𝑐 is a constant for error deviation.

Considering the following approximation values, size
based time complexities of some of the algorithms are
analyzed and it is shown in Figure 2:

data search size (𝑛) = 4 (in millions),

Warshall’s number of network edges (V) = 4 (in
millions),

geometric ratio = 2,

log of base 2 only,

𝑘.means dimension = 1,

𝑘.means 𝑘 clusters = 2.

0

50

100

150

200

250

300

L
in

ea
r

G
eo

m

B
in

ar
y

M
er

ge

W
ar

sh
al

l

k
-m

ea
n

s

B
ac

k
tr

ac
k

Size based time complexity

Algorithm type

Si
ze

 b
as

ed
 t

im
e

co
m

p
le

xi
ty

Figure 2: Size based time complexity of various algorithms.

4.1.2. Conservative Green Load Balancer. In the cloud envi-
ronment themachines are registered with Cloud Information
System (CIS) regarding their characteristics such as their
individual id, ram size, and machine name For simulation
purpose we have considered 8 virtual machines with MIPS
capacity of 3100MHz and a 1GB RAM for each of them is
configured and registered with the CIS under one common
data center. The broker accesses the CIS for the execution of
their with respect to cloudlets using their registered informa-
tion. The cost effective efficiency of a data center depends on
the optimal balancing of incoming cloudlets from the queue
for execution over available machines. In order to utilize
the resources optimally without having to lose efficiency,
green conservative load balancing strategy is implemented
on the basis of their executional length in terms of millions
of instruction execution strength per second (exe length).
When a request comes in for execution over cloud, the request
is diverted for execution as per its requirements by means of

The Scientific World Journal 11

Table 3: Watts consumption of 5-level scaling.

Vendor MIPS Cache and series Cores TDP
Intel� Xeon� Processor E5-2687W 3.1 20M, GT/s 8 150
Intel� Xeon� Processor E5-2665 2.4 20M, GT/s 8 115
Intel� Xeon� Processor E5-2650 2.0 20M, GT/s 8 95
Intel� Xeon� Processor E5-2648L 1.8 20M, GT/s 8 70
Intel� Pentium pro 0.2 1.12M 4 45

best fit strategy available from among the overall availability
of each virtualmachine’s idle clock pulse (mach[𝑚].capacity).

This green load balancer which adapts “best fit strategy”
looks for an appropriate VM and adjusts its frequency by
applying DVFS. Thus the VM is allowed to operate at the
required clock frequency rather than in its defined speed.

Algorithm 2 (green load balancer).

Input. Cloudlet MIPS.

Output. Victimized VM, required frequency scale.

Step 1. Let 𝑞 = 0.
Step 2. Let𝑚 = 0.
Step 3. If cloudlet[𝑞].exe length less than mach[𝑚].capacity
then go to Step 4 else go to Step 8.

Step 4. Assign Cloudlet[𝑞] to mach[𝑚].

Step 5. mach[𝑚].capacity = mach[𝑚].capacity-cloudlet[𝑞]
.exe length.

Step 6. Call DVFS.

Step 7. Go to Step 10.

Step 8.𝑚 + +.
Step 9. If𝑚 < 8 then go to Step 3.

Step 10. 𝑞 + +.
Step 11. If 𝑞 < 𝑛 then go to Step 3.

𝑛 is number of cloudlets,𝑚 is number of virtualmachines,
and 𝑞 is number of cloudlets.

4.1.3. DVFS Implementation. Thermal Design Power (TDP)
in Watts is the energy produced in terms of heat [16]. The
energy in terms of heat is derived by multiplying Volts with
ampere; that is, the amount of work (Watts) that can be done
depends on both the amount (Amps) and the pressure of
the electricity (Volts) where Watts = Volts × Amps. Hence
Volts is directly proportional to Watts; for instance, as Volt
increases Watts increases automatically. Thus by using DVFS
scheme, voltage can be adjusted. Undervolting can be done in
order to conserve power and efficient use of cooling devices.
Overvolting can also be done in order to increase computing
performance.

Now DVFS methodology is applied individually to the
victimized processor, therefore reducing the overall Watts
needed as generated by each request, and thus dynamically
adjusts by scaling the MIPS frequency of the processor and
optimizing the use of electricity by fluctuating it as per
required and also reduces the voltage [9].

Algorithm 3 (DVFS).

Input. Victimized VM, required frequency scale.

Output. Optimized energy consumption in Watts

Step 1. DVFS = 0.

Step 2. If (3.1-mach[𝑚].capacity) < range [dvfs] then go to
Step 3 else go to Step 5.

Step 3. Scale the vm to range [dvfs].
Step 4. Go to Step 7.

Step 5. dvfs++.

Step 6. If dvfs < 5 then go to Step 2.

Step 7. Return.

5. Experimental Section

For simulation, we have considered Facebook’s new data
center in Lulea, Sweden. It has nearly 60000 servers and each
server uses two Intel Xeon Processors 3.10GHz which needs
150Watts of energy. Therefore per server 300 Watts of power
is essential, which is nearly 18000000W or 18MW power. It
is necessary just for processors out of 120MW for the entire
3000000 sqfeet plant [17]. This is nearly 15% of the entire
consumption. We have implemented our DVFS strategy
based on 5-level scaling, that is, at 3.1 GHz, 2.4GHz, 2GHz,
1.8 GHz, and 0.2GHz of 2600 series Intel Xeon Processors.

Table 3 shows 5 level scaling options with respect to their
Watts energy requirement configured by Intel [18].

Figure 3 shows standard Watts consumption of different
processors at different speeds.

5.1. Consideration for Experimental Purpose

5.1.1. Pattern Analyzer

Algorithm identified is linear search algorithm,
Time complexity for linear search algorithm is 𝑂(𝑛)

12 The Scientific World Journal

0

20

40

60

80

100

120

140

160

0.2 1.8 2.0 2.4 3.1

W
at

ts
 c

o
n

su
m

p
ti

o
n

Processor speed (GHz)

Figure 3: Standard Watts consumption of different processors.

Assume that MICC as per linear algorithm for our
purpose consumes 50 clock cycles:

(i) therefore 𝑂(100000) = 100000,
(ii) time taken to execute one microprogram in

MIPS = 50,
(iii) MIPS = size based time ∗MICC + 𝑐,

= 100000 ∗ 50 + 0 (as for now 𝑐 is constant 0
error deviation)
= 5000000 (5 million clock cycles).

5.2. Conservative Green Load Balancer

Processor type is 3.1 GHz processor.
Data set size (𝑛) is 100000 million.

(i) 3.1 GHz machine = 3.1 billion clock cycles per
second.

(ii) Therefore (3.1 billion − 5 million clock cycles) =
2.95 billion clock cycles unused.

5.3. DVFS. Scale the machine to .2 GHz, which is sufficient
to execute 5000000 (5 million clock cycles).

The 2.95 remaining clock cycles can be used for incoming
cloudlets.

6. Results

Load on eight virtual machines recorded over 50 times
randomly generated sets of 5, 10, 20, 25, 30, 35, 40, 45, and 50
and requests are shown in Figure 4, which eventually depict
how load is balanced among the virtual machines.

Figure 5 displays the energy requirement statistics from a
simulationmodel of randomly generated test case of 5, 10, 20,
25, 30, 35, 40, 45, and 50 into our proposed research model.
The horizontal axis shows Watts consumption range and
the vertical axis calibrates the three-stage test such as using
conservative model, load balance before applying DVFS, and
load balance after applying DVFS.

It is obvious from the graph that the energy consumption
has drastically reduced to a higher extent from 12000 Watts
to 6500 Watts after the full implementation of our research
model.Thus our extensive simulation shows the effectiveness

0 20 40 60 80 100 120 140 160

5

10

15

20

25

30

35

40

45

50

VM8

VM7

VM6

VM5

VM4

VM3

VM2

VM1

Watts usage

N
u

m
b

er
 o

f
sa

m
p

le
s

p
er

 s
et

Figure 4: Load on 8 virtual machines for randomly generated
requests.

0 2000 4000 6000 8000 10000 12000 14000

After DVFS

General

Watts consumption

After load
balance

Figure 5: Watts consumption.

of our research proposal model that saves and reduces the
energy consumption to a phenomenal rate.

7. Conclusion

This work analyses the incoming cloud task request, studies
the flow pattern of the task, and identifies the algorithm,
hence computing the time complexity based on asymptotic
notation and MICC. So by considering the time complexity
this new approach victimizes a VM whose frequency best
fits the incoming task and subsequently scales the frequency
of the VM to the required level, thus allowing the VM to
operate at its desired frequency. Simulation results exhibit
efficiency of the proposed approach. This technique can be

The Scientific World Journal 13

used for creating custom built cooling systems control, which
can dynamically work together for more accurate power
saving methodologies. Likewise processors with finer scaling
capacities can be built on the basis of this technique in order
to attain more flexibility in frequency scaling.

Disclosure

A. Paulin Florence is a Research Scholar at Sathyabama
University and Associate Professor at St. Joseph’s Institute of
Technology, respectively; Dr. V. Shanthi is a Professor at St.
Joseph’s College of Engineering; and C. B. Sunil Simon works
at Zoho Corporation.

Competing Interests

The authors declare that they have no competing interests.

References

[1] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud computing and emerging IT platforms: vision, hype,
and reality for delivering computing as the 5th utility,” Future
Generation Computer Systems, vol. 25, no. 6, pp. 599–616, 2009.

[2] D. Ardagna, G. Casale, M. Ciavotta, J. F. Pérez, and W. Wang,
“Quality-of-service in cloud computing: modeling techniques
and their applications,” Journal of Internet Services and Applica-
tions, vol. 5, article 11, 2014.

[3] N. Ani Brown Mary and K. Jayapriya, “An extensive survey on
QoS in cloud computing,” International Journal of Computer
Science and Information Technologies, vol. 5, no. 1, pp. 1–5, 2014.

[4] C.-M. Wu, R.-S. Chang, and H.-Y. Chan, “A green energy-
efficient scheduling algorithm using the DVFS technique for
cloud datacenters,” Future GenerationComputer Systems, vol. 37,
pp. 141–147, 2014.

[5] X. Lin, Y. Wang, Q. Xie, and M. Pedram, “Task scheduling with
dynamic voltage and frequency scaling for energyminimization
in the mobile cloud computing environment,” IEEE Transac-
tions on Services Computing, vol. 8, no. 2, pp. 175–186, 2014.

[6] H.Guan, J. Yao, Z.Qi, andR.Wang, “Energy-efficient SLA guar-
antees for virtualized GPU in cloud gaming,” IEEE Transactions
on Parallel and Distributed Systems, vol. 26, no. 9, pp. 2434–
2443, 2014.

[7] R. Jeyarani, N. Nagaveni, S. K. Sadasivam, and V. R. Rajarathi-
nam, “Power aware meta scheduler for adaptive VM provision-
ing in IaaS cloud,” International Journal of Cloud Applications
and Computing, vol. 1, no. 3, pp. 36–51, 2011.

[8] D. M. Quan, F. Mezza, D. Sannenli, and R. Giafreda, “T-Alloc:
a practical energy efficient resource allocation algorithm for
traditional data centers,” Future Generation Computer Systems,
vol. 28, no. 5, pp. 791–800, 2012.

[9] E. Le Sueur and G. Heiser, “Dynamic voltage and frequency
scaling: the laws of diminishing returns,” in Proceedings of
the International Conference on Power Aware Computing and
Systems (HotPower ’10), ACM Digital Library, 2010.

[10] T. Chen, J. Huang, Z. Zheng, and L. Xiang, “A practical
dynamic frequency scaling scheduling algorithm for general
purpose embedded operating system,” in Proceedings of the 2nd
International Conference on Future Generation Communication
and Networking (FGCN ’08), vol. 2, pp. 213–216, Hainan Island,
China, December 2008.

[11] T. Guérout, T. Monteil, G. Da Costa, R. Neves Calheiros,
R. Buyya, and M. Alexandru, “Energy-aware simulation with
DVFS,” Simulation Modelling Practice and Theory, vol. 39, pp.
76–91, 2013.

[12] C. P. Kumar, M. S. Kumar, and S. R. Kumar, “Analysis of time
complexity of algorithm (dependent and independent loops),”
European Journal of Academic Essays, vol. 1, pp. 27–30, 2014.

[13] N. Iqbal, Formalization of asymptotic notations in higher-order-
logic [Ph.D. thesis], Research Centre for Modeling and Simula-
tion, National University of Sciences and Technology (NUST),
Islamabad, Pakistan, April 2012.

[14] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction
to Algorithms, Prentice Hall of India, New Delhi, India, 3rd
edition, 2014.

[15] E.Horowitz, S. Sahni, and S. Rajasekaran,Computer Algorithms,
Galgotia, New Delhi, India, 1985.

[16] J. Brodkin, “Facebook now designs all its own servers,” 2013,
http://arstechnica.com/information-technology/2013/02/who-
needs-hp-and-dell-facebook-now-designs-all-its-own-servers/.

[17] R. Waugh, “Facebook puts your photos into the deep freeze as
it unveils massive new five acre data center near Arctic circle,”
2011, http://www.dailymail.co.uk/sciencetech/article-2054168/
Facebook-unveils-massive-data-center-Lulea-Sweden.html.

[18] Intel XeonProcessor E5 Family, http://ark.intel.com/it/products/
family/59138/Intel-Xeon-Processor-E5-Family.

Submit your manuscripts at
http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

