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A robust attitude motion synchronization problem is investigated for multiple 3-degrees-of-freedom (3-DOF) helicopters with
input disturbances. The communication topology among the helicopters is modeled by a directed graph, and each helicopter can
only access the angular position measurements of itself and its neighbors. The desired trajectories are generated online and not
accessible to all helicopters. The problem is solved by embedding in each helicopter some finite-time convergent (FTC) estimators
and a distributed controller with integral action.The FTC estimators generate the estimates of desired angular acceleration and the
derivative of the local neighborhood synchronization errors.The distributed controller stabilizes the tracking errors and attenuates
the effects of input disturbances.The conditions under which the tracking error of each helicopter converges asymptotically to zero
are identified, and, for the cases with nonzero tracking errors, some inequalities are derived to show the relationship between the
ultimate bounds of tracking errors and the design parameters. Simulation and experimental results are presented to demonstrate
the performance of the controllers.

1. Introduction

In the field of multivehicle cooperative control, robust
consensus tracking under model uncertainties and exoge-
nous disturbances has received increasing attention in
recent years, where the output (or state) of each vehicle is
required to robustly track a common, desired trajectory. For
instance, switching controllers or sliding-mode controllers
were designed in works [1–3] to reject input disturbances;
a sliding-mode disturbance observer is combined with a
consensus tracking algorithm in recent work [4] to improve
the robustness and control accuracy of a multimotor system.
Alternative robust control approaches include the ones based
on uncertainty and disturbance estimators as in works [5–
7], adaptive control approach [8], and the output-regulation
approach [9].

In practice, integral control (IC) is widely used to
attenuate disturbances in various (single) vehicle systems.
This mainly owes to its structural simplicity and the well-
known performance property that IC can asymptotically
reject constant input disturbances. Noting these facts, many

researchers begin to study IC-based robust control schemes
for multivehicle systems (MVSs) as in [10–12]. In particular,
the recent work [10] shows that PI controllers successfully
attenuate constant disturbances in the network of multi-
ple single-integrator dynamics or the network of multiple
double-integrator dynamics.

Another practical issue encountered in many control
systems is the lack of sensors. As a result, state observers
are often needed to generate the estimates of some necessary
states. State observers can be roughly classified into two types:
model-dependent ones and model-independent ones. As
two representative model-dependent observers, Luenberger
observer and Kalman filter suffer from the limitation that the
estimation accuracy cannot be guaranteed when the system
model suffers from severe uncertainties. To deal with this
problem, many model-independent observers are proposed.
For instance, some higher-order sliding modes (HOSM)
observers (differentiators) were designed in work [13, 14] to
ensure finite-time convergence even in the presence of input
disturbances.
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The main objective of this paper is to use integral control
to improve the robustness of a distributed control algorithm
for consensus tracking without velocity measurements. The
effectiveness of the approach is proved by showing that
(a) the resulting tracking errors are ultimately bounded for
any input disturbances satisfying a simple Lipschitz-constant
condition, and (b) zero-error asymptotic tracking is achieved
for a constant input disturbance.Thekey technical differences
between this paper and work [10] are summarized as follows:

(1) The paper [10] considers the consensus problem
without a common reference. In contrast, this paper
considers a consensus tracking problem, where a
common desired trajectory exists (and is supposed to
be accessible only to partial vehicles in the group).
In [10], velocity signals were used in the control
design for second-order systems. We here assume
that neither the velocity of leader nor the velocity of
neighboring vehicles is accessible for control design.

(2) Concerning the robustness improvement owing to
integral control, the discussion in work [10] is
restricted to the rather special case with constant
input disturbances. This is not the case in this paper.
Actually, we will use the concepts of input-to-state
stability to study the general cases where the dis-
turbances are nonconstants and are not completely
rejected.

(3) In work [10], the controller performance is verified by
numerical simulation. In this paper, both numerical
simulation results and experimental results on three
3-DOF helicopters are presented, to demonstrate
the performance improvement owing to the use of
integral control.

The experimental platform of “three 3-DOF helicopters”
used in this paper is shown in Figure 1. The single laboratory
3-DOF helicopter with a so-called active disturbance system
(ADS) is the same as that in [5] and is shown in Figure 2.
This experimental apparatus was developed by Quanser
Consulting Inc. for the purpose of control education and
research [15–21].

The rest of this paper is organized as follows. In Section 2,
some preliminary knowledge is described and the problem is
formulated. The robust distributed consensus tracking con-
trollers are designed in Section 3. Numerical simulation and
experimental results are presented in Section 4. Some con-
cluding remarks are drawn in Section 5.

2. Preliminaries

2.1. Notation and GraphTheory. Formatrix𝑀, 𝑀−1 denotes
its inversion and rank(𝑀) denotes its rank. 𝐼𝑛 ∈ 𝑅𝑛×𝑛 refers
to the identity matrix. For vector 𝑋 ∈ 𝑅𝑛×1 and matrix𝑀 =[𝑚𝑖𝑗] ∈ 𝑅𝑚×𝑛, ‖𝑋‖2 = (∑𝑛𝑖=1 |𝑥𝑖|2)1/2, ‖𝑋‖∞ = max1≤𝑖≤𝑛|𝑥𝑖|,‖𝑀‖∞ = max1≤𝑖≤𝑚∑𝑛𝑗=1 |𝑚𝑖𝑗|, and ‖𝑀‖2 = (𝜆max(𝑀𝑇𝑀))1/2,
where 𝜆max(⋅) = max𝑖|𝜆𝑖| with 𝜆𝑖 being eigenvalues. 0𝑛 refers
to 𝑛-dimensional column vector with all elements being 0. |𝑎|
denotes absolute value (modulus) of real number 𝑎.

Helicopter 1

Helicopter 2

Helicopter 3

Figure 1: Experimental platform of “three 3-DOF helicopters” (see
[15]).
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Figure 2: 3-DOF helicopter with ADS (see [5]).

The notations related to 𝑖th 3-DOF helicopter (see Fig-
ure 2), 𝑖 ∈ I = {1, . . . , 𝑛}, are listed in Notations.

The communication networks of 𝑛 helicopters can be
modeled by directed graph G(V,E,A), where V ={𝜐1, 𝜐2, . . . , 𝜐𝑛}, E ⊂ V × V, and nonnegative matrix A =[𝑎𝑖𝑗] ∈ 𝑅𝑛×𝑛 denote the set of nodes, the set of edges, and
the weighted adjacency matrix of G, respectively. Node 𝜐𝑖
(𝑖 = 1, . . . , 𝑛) represents 𝑖th helicopter, and an edge (𝜐𝑗, 𝜐𝑖) ∈
E denotes that 𝑖th helicopter can obtain information from𝑗th helicopter; that is, 𝜐𝑗 is a neighbor of 𝜐𝑖. Use 𝑁𝑖 to
denote all the neighbors of 𝜐𝑖, and 𝑁𝑖 ⊂ V. A directed
path from 𝜐𝑖 to 𝜐𝑗 is a sequence of ordered edges of form(𝜐𝑖, 𝜐𝑖1), (𝜐𝑖1 , 𝜐𝑖2), . . . , (𝜐𝑖𝑙 , 𝜐𝑗), with distinct nodes 𝜐𝑖𝑘 , 𝑘 =1, 2, . . . , 𝑙, and 𝜐𝑗 is said to be reachable from 𝜐𝑖. A node is
called the root node andG is said to have a directed spanning
tree, if all the other nodes are reachable from this node.

The elements of the weighted adjacency matrixA satisfy𝑎𝑖𝑖 = 0 and 𝑎𝑖𝑗 > 0 (𝑖, 𝑗 = 1, . . . , 𝑛 and 𝑗 ̸= 𝑖) if and
only if (𝜐𝑗, 𝜐𝑖) ∈ E. The Laplacian matrix of G is denoted
by 𝐿 = [𝑙𝑖𝑗] ∈ 𝑅𝑛×𝑛, where 𝑙𝑖𝑗 = −𝑎𝑖𝑗, if 𝑖 ̸= 𝑗, and 𝑙𝑖𝑖 =∑𝑗∈𝑁𝑖 𝑎𝑖𝑗. Note that the desired trajectory information is not
accessible to all helicopters in this paper. Use constant matrix
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𝐵 = diag(𝑏1, . . . , 𝑏𝑛) ∈ 𝑅𝑛×𝑛, which is defined as 𝑏𝑖 > 0 if 𝑖th
helicopter can access the desired trajectory information and
otherwise 𝑏𝑖 = 0, to describe this fact by allowing 𝑏𝑖 = 0 for
some 𝑖 ∈ I.

2.2. Problem Formulation. The elevation and pitch motions
of 𝑖th helicopter can be modeled as follows (see [5] or
[21]):

𝐽𝑒𝑖𝛼̈𝑖 (𝑡) = 𝐾𝑓𝑖𝑙𝑎𝑖 cos (𝛽𝑖 (𝑡)) 𝑉𝑠𝑖 (𝑡) − 𝑚𝑖𝑔𝑙𝑎𝑖 cos (𝛼𝑖 (𝑡))
+ 𝑓𝛼𝑖 (𝑡) , 𝑖 ∈ I,

𝐽𝑝𝑖𝛽̈𝑖 (𝑡) = 𝐾𝑓𝑖𝑙ℎ𝑖𝑉𝑑𝑖 (𝑡) + 𝑓𝛽𝑖 (𝑡) , 𝑖 ∈ I,
(1)

where

𝑉𝑠𝑖 (𝑡) = 𝑉𝑓𝑖 (𝑡) + 𝑉𝑏𝑖 (𝑡) , 𝑖 ∈ I,
𝑉𝑑𝑖 (𝑡) = 𝑉𝑓𝑖 (𝑡) − 𝑉𝑏𝑖 (𝑡) , 𝑖 ∈ I. (2)

The pitch angle is limited to within (−𝜋/2, 𝜋/2)mechanically.
We made the following assumption on 𝑓𝛼𝑖(𝑡) and 𝑓𝛽𝑖(𝑡).

Assumption 1. For each 𝑖 ∈ I, the first-order derivatives
of 𝑓𝛼𝑖(𝑡) and 𝑓𝛽𝑖(𝑡) with respect to 𝑡 exist and are piecewise
continuous and bounded for all 𝑡 ≥ 0.

As shown in recent work [5], by applying the standard
normalization and feedback linearization technique, the
above nonlinear helicopter model can be reduced to the
following 2-dimensional, disturbed double integrators:

𝑦̈𝑖 = 𝑢𝑖 + 𝑑𝑖, 𝑖 ∈ I, (3)

where 𝑦𝑖 = (𝛼𝑖(𝑡), 𝛽𝑖(𝑡))𝑇 ∈ 𝑅2, 𝑢𝑖 = [𝑢𝛼𝑖, 𝑢𝛽𝑖]𝑇 ∈ 𝑅2, and the
new disturbances 𝑑𝑖 = [𝑑𝛼𝑖, 𝑑𝛽𝑖]𝑇 ∈ 𝑅2.

Under Assumption 1, 𝑑̇𝑖 = (𝑑̇𝛼𝑖, 𝑑̇𝛽𝑖)𝑇 also exist and are
bounded. Define

𝑑𝑑 = (𝑑𝑑𝛼, 𝑑𝑑𝛽)𝑇
= (max
1≤𝑖≤𝑛

(sup
𝑡≥0

󵄨󵄨󵄨󵄨󵄨𝑑̇𝛼𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨) ,max
1≤𝑖≤𝑛

(sup
𝑡≥0

󵄨󵄨󵄨󵄨󵄨𝑑̇𝛽𝑖 (𝑡)󵄨󵄨󵄨󵄨󵄨))
𝑇 , (4)

where 𝑑𝑑𝛼 and 𝑑𝑑𝛽 are positive scalars.
For each 𝑖 ∈ I, we define 𝑦𝑖 = (𝛼𝑖, 𝛽𝑖)𝑇 ∈ 𝑅2 and

use 𝑦𝑑 = (𝛼𝑑, 𝛽𝑑)𝑇 ∈ 𝑅2 to denote the desired attitude
trajectory for 𝑦𝑖, which may be time-varying but are second-
order differentiable with respect to 𝑡. Then, the objective of
this paper is to design 𝑢𝑖 for (3) to achieve robust attitude
synchronization; that is, 𝑦𝑖(𝑡) → 𝑦𝑑(𝑡) for each 𝑖 ∈ I as𝑡 → +∞.

3. Design of Distributed Controllers without
Velocity Measurements

3.1. Controller Design. Noting that 𝑢𝛼𝑖 and 𝑢𝛽𝑖 for (3) can
be designed in the same way, we thus introduce new unified
variable 𝜌 ∈ {𝛼, 𝛽} and define

𝜌̃𝑖 = 𝜌𝑖 − 𝜌𝑑, 𝑖 ∈ I, (5a)

𝜌̃ = [𝜌̃1, . . . , 𝜌̃𝑛]𝑇 ∈ 𝑅𝑛, (5b)

𝜌̃𝑖𝑗 = 𝜌𝑖 − 𝜌𝑗, 𝑖, 𝑗 ∈ I, (5c)

𝑒𝜌𝑖 = 𝑏𝑖𝜌̃𝑖 + ∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗𝜌̃𝑖𝑗. (5d)

In [8, 22], error 𝑒𝜌𝑖 is called local neighborhood synchroniza-
tion error (LNSE).

For the considered helicopter, only angular position
sensors (encoders) are equipped. Besides, we assume that
the desired velocity is not accessible to any helicopter. To
deal with this problem, we consider the following distributed
controllers:

𝑢𝜌𝑖 (𝑡) = 1𝑘𝑖 (∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗𝑢𝜌𝑗 (𝑡) + 𝑏𝑖 ̂̈𝜌𝑑 (𝑡) − 𝑘𝑃𝜌𝑖𝑒𝜌𝑖 (𝑡)
− 𝑘𝐷𝜌𝑖̂̇𝑒𝜌𝑖 (𝑡) − 𝑘𝐼𝜌𝑖 ∫𝑡

0
𝑒𝜌𝑖 (𝜏) 𝑑𝜏) ,

(6)

where 𝑘𝑃𝜌𝑖, 𝑘𝐼𝜌𝑖, and 𝑘𝐷𝜌𝑖 are positive control gains, 𝑘𝑖 = 𝑏𝑖 +∑𝑗∈𝑁𝑖 𝑎𝑖𝑗, ̂̈𝜌𝑑(𝑡), and ̂̇𝑒𝜌𝑖(𝑡) denote the estimates of 𝜌̈𝑑(𝑡) anḋ𝑒𝜌𝑖(𝑡), respectively. We construct the following systems to
generate ̂̈𝜌𝑑(𝑡) and ̂̇𝑒𝜌𝑖(𝑡). Specifically, the third-order FTC
estimators

̇̂𝜌𝑑 = −𝜆2𝐿1/3𝜌𝑑 󵄨󵄨󵄨󵄨𝜌̂𝑑 − 𝜌𝑑󵄨󵄨󵄨󵄨2/3 sign (𝜌̂𝑑 − 𝜌𝑑)
− 𝜇2 (𝜌̂𝑑 − 𝜌𝑑) + ̂̇𝜌𝑑,̇̂𝜌̇𝑑 = −𝜆1𝐿1/2𝜌𝑑 󵄨󵄨󵄨󵄨󵄨̂̇𝜌𝑑 − ̇̂𝜌𝑑󵄨󵄨󵄨󵄨󵄨1/2 sign (̂̇𝜌𝑑 − ̇̂𝜌𝑑)
− 𝜇1 (̂̇𝜌𝑑 − ̇̂𝜌𝑑) + ̂̈𝜌𝑑,̇̂𝜌̈𝑑 = −𝜆0𝐿𝜌𝑑 sign (̂̈𝜌𝑑 − ̇̂𝜌̇𝑑) − 𝜇0 (̂̈𝜌𝑑 − ̇̂𝜌̇𝑑) ,

(7)

are for ̂̈𝜌𝑑(𝑡), and the following second-order FTC estimators
are for ̂̇𝑒(𝑡):

̇̂𝑒𝜌𝑖 = −𝜆1𝐿1/2𝑒 󵄨󵄨󵄨󵄨󵄨𝑒̂𝜌𝑖 − 𝑒𝜌𝑖󵄨󵄨󵄨󵄨󵄨1/2 sign (𝑒̂𝜌𝑖 − 𝑒𝜌𝑖)
− 𝜇1 (𝑒̂𝜌𝑖 − 𝑒𝜌𝑖) + ̂̇𝑒𝜌𝑖,

̇̂̇𝑒𝜌𝑖 = −𝜆0𝐿𝑒 sign (̂̇𝑒𝜌𝑖 − ̇̂𝑒𝜌𝑖) − 𝜇0 (̂̇𝑒𝜌𝑖 − ̇̂𝑒𝜌𝑖) , 𝑖 ∈ I,
(8)

where 𝜌̂𝑑, ̂̇𝜌𝑑, and 𝑒̂𝜌𝑖 are the estimates of 𝜌𝑑, 𝜌̇𝑑, and 𝑒𝜌𝑖,
respectively; 𝜌𝑑 and 𝑒𝜌𝑖 are consisting of a locally bounded
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Third-order FTC estimator

Second-order FTC estimator

𝜌d(t)

e𝜌i(t)

̂
̈𝜌d(t)

̂
̇e𝜌i(t)

Figure 3: The way to obtain ̂̈𝜌𝑑(𝑡) and ̂̇𝑒(𝑡).
Lebesgue-measurable noise with unknown features and an
unknown base signal 𝜌𝑑0(𝑡) and 𝑒𝜌𝑖0 whose second and first
derivative have an known Lipschitz constant 𝐿𝜌𝑑 > 0 and𝐿𝑒 > 0, respectively; 𝜆𝑖 and 𝜇𝑖 > 0, 𝑖 = 0, 1, 2, are the design
parameters of the FTC estimators.

This estimation scheme is illustrated in Figure 3.
We have the following result for the above two FTC

estimators [14, Theorem 1].

Lemma2. Let {𝜆𝑖} and {𝜇𝑖} in (7) and (8) be recursively chosen
as in Theorem 1 of [13, 14]. Then, the estimation errors achieve
zero in the absence of input noises after finite time 𝑡𝑐 of transient
process. The convergence of the estimation errors is uniform
in the sense that the convergence time is uniformly bounded
by finite time 𝑡𝑐 which is a locally bounded function of initial
estimation errors.

Remark 3. According to Lemma 2, in the absence of input
noises, after finite time 𝑡𝑐𝑖 (𝑖 ∈ I), the following equalities
hold: ̂̇𝜌𝑑 − 𝜌̇𝑑 = 0,̂̈𝜌𝑑 − 𝜌̈𝑑 = 0,

̇𝑒𝜌𝑖 − ̂̇𝑒𝜌𝑖 = 0, 𝑖 ∈ I.
(9)

Remark 4. Note that the neighbors’ control signals 𝑢𝜌𝑗(𝑡) (𝑗 ∈𝑁𝑖) are used in (6) and then a possible implementation loop
issue arises in practical applications. As discussed inwork [5],
if the sample frequency is high enough, this problem can be
resolved with using the neighbors’ control signals obtained
during the previous sampling period, that is, 𝑢𝜌𝑗(𝑡−𝜏), where𝜏 denotes the fixed sampling step and 𝜏 = 0.001 sec in the
following numerical simulations and experiments.

3.2. Analysis of the Closed-Loop Stability. Before the closed-
loop stability analysis, we need to establish and analyse the
relationship between tracking errors 𝜌̃𝑖 andLNSEs 𝑒𝜌𝑖, 𝑖 ∈ I.
Define

E𝜌 = [𝑒𝜌1, . . . , 𝑒𝜌𝑛]𝑇 ∈ 𝑅𝑛, 𝜌 ∈ {𝛼, 𝛽} . (10)

From (5c), 𝜌̃𝑖𝑗 = 𝜌𝑖 − 𝜌𝑗 = 𝜌̃𝑖 − 𝜌̃𝑗; then from (5d), 𝑒𝜌𝑖 =𝑏𝑖𝜌̃𝑖+∑𝑗∈𝑁𝑖 𝑎𝑖𝑗(𝜌̃𝑖−𝜌̃𝑗) for each 𝜌 ∈ {𝛼, 𝛽}.Then, with 𝐿 and 𝐵
as defined in Section 2.1, the following relationship equation
between the tracking errors and LNSEs is derived:

E𝜌 (𝑡) = (𝐿 + 𝐵) 𝜌̃ (𝑡) , 𝜌 ∈ {𝛼, 𝛽} , (11)

where rank(𝐿 + 𝐵) is determined by the communication
topology which satisfies the following condition in this paper.

Assumption 5. The desired trajectory information 𝜌𝑑, 𝜌 ∈{𝛼, 𝛽}, has directed paths to all helicopters.

According to [23, Lemma 1.6], all eigenvalues of𝐿+𝐵have
positive real parts under Assumption 5. Then, the following
lemma is obtained directly.

Lemma6 (see [23, Lemma 1.6]). UnderAssumption 5,matrix𝐿 + 𝐵 is full rank, that is, rank(𝐿 + 𝐵) = 𝑛.
Thus, the relationship equation (11) implies that, under

Assumption 5, the objective 𝜌̃(𝑡) → 0𝑛 and ̇̃𝜌(𝑡) → 0𝑛 as𝑡 → +∞, 𝜌 ∈ {𝛼, 𝛽}, can be achieved by driving E𝜌(𝑡) and
Ė𝜌(𝑡) to zero as 𝑡 → +∞, respectively.

Applying (6) to (3) gives

𝑘𝑖𝜌̈𝑖 (𝑡) = ∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗 (𝜌̈𝑗 (𝑡) − 𝑑𝜌𝑗 (𝑡)) (𝑡) + 𝑏𝑖 ̂̈𝜌𝑑 (𝑡)
− 𝑘𝑃𝜌𝑖𝑒𝜌𝑖 (𝑡) − 𝑘𝐷𝜌𝑖̂̇𝑒𝜌𝑖 (𝑡) − 𝑘𝐼𝜌𝑖 ∫𝑡

0
𝑒𝜌𝑖 (𝜏) 𝑑𝜏

+ 𝑘𝑖𝑑𝜌𝑖.
(12)

With (5d) and (12), we can further get...𝑒𝜌𝑖 + 𝑘𝐷𝜌𝑖 ̈𝑒𝜌𝑖 + 𝑘𝑃𝜌𝑖 ̇𝑒𝜌𝑖 + 𝑘𝐼𝜌𝑖𝑒𝜌𝑖 = 𝛿̇𝜌𝑖,
𝜌 ∈ {𝛼, 𝛽} , 𝑖 ∈ I, (13)

where 𝛿𝜌𝑖 = 𝑏𝑖(̂̈𝜌𝑑−𝜌̈𝑑)+𝑘𝐷𝜌𝑖( ̇𝑒𝜌𝑖−̂̇𝑒𝜌𝑖)+Δ 𝜌𝑖 andΔ 𝜌𝑖 is defined
as

Δ 𝜌𝑖 = 𝑘𝑖𝑑𝜌𝑖 − ∑
𝑗∈𝑁𝑖

𝑎𝑖𝑗𝑑𝜌𝑗. (14)

Define

𝛿𝜌 = [𝛿𝜌1, . . . , 𝛿𝜌𝑛]𝑇 ∈ 𝑅𝑛, 𝜌 ∈ {𝛼, 𝛽} , (15)

Δ𝜌 = [Δ 𝜌1, . . . , Δ 𝜌𝑛]𝑇 ∈ 𝑅𝑛, 𝜌 ∈ {𝛼, 𝛽} , (16)

d𝜌 = [𝑑𝜌1, . . . , 𝑑𝜌𝑛]𝑇 ∈ 𝑅𝑛, 𝜌 ∈ {𝛼, 𝛽} , (17)

t𝑐 = [𝑡𝑐1, . . . , 𝑡𝑐𝑛]𝑇 ∈ 𝑅𝑛. (18)

Then, the following result is clear based on Lemma 2.

Lemma7. There exists 𝑡𝑐𝑚𝑎𝑥 = ‖t𝑐‖∞ such that, in the absence
of input noises,

𝛿𝜌 = Δ𝜌, ∀𝑡 ≥ 𝑡𝑐𝑚𝑎𝑥, 𝜌 ∈ {𝛼, 𝛽} . (19)

Therefore, after finite time 𝑡𝑐max, (13) is the same as
follows:...𝑒𝜌𝑖 + 𝑘𝐷𝜌𝑖 ̈𝑒𝜌𝑖 + 𝑘𝑃𝜌𝑖 ̇𝑒𝜌𝑖 + 𝑘𝐼𝜌𝑖𝑒𝜌𝑖 = Δ̇𝜌𝑖,

𝜌 ∈ {𝛼, 𝛽} , 𝑖 ∈ I. (20)
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Define

𝐴𝜌𝑖 = [[[[
0 1 00 0 1

−𝑘𝐼𝜌𝑖 −𝑘𝑃𝜌𝑖 −𝑘𝐷𝜌𝑖
]]]]
∈ 𝑅3×3, 𝜌 ∈ 𝛼, 𝛽, 𝑖 ∈ I, (21)

𝐵𝜌𝑖 = [0 0 1]𝑇 ∈ 𝑅3×1, 𝜌 ∈ 𝛼, 𝛽, 𝑖 ∈ I. (22)

Then, (20) can be written as

[ ̇𝑒𝜌𝑖, ̈𝑒𝜌𝑖, ...𝑒𝜌𝑖]𝑇 = 𝐴𝜌𝑖 [𝑒𝜌𝑖, ̇𝑒𝜌𝑖, ̈𝑒𝜌𝑖]𝑇 + 𝐵𝜌𝑖Δ̇𝜌𝑖,
𝜌 ∈ 𝛼, 𝛽, 𝑖 ∈ I. (23)

Furthermore, based onLemma7, by applyingRouth-Hurwitz
stability criterion and Lemma A.1 in Appendix to forced
systems (13) with 𝛿̇𝜌𝑖 as inputs, the following theorem is
obtained.

Theorem 8. Consider systems (13) under Assumptions 1 and 5
and the following parameter condition:

𝑘𝐷𝜌𝑖, 𝑘𝑃𝜌𝑖, 𝑘𝐼𝜌𝑖 > 0,
𝑘𝐷𝜌𝑖𝑘𝑃𝜌𝑖 > 𝑘𝐼𝜌𝑖. (24)

Then, for each 𝜌 ∈ {𝛼, 𝛽}, in the absence of noise,

(1) the system trajectories E𝜌, Ė𝜌, 𝜌̃, and ̇̃𝜌 are globally
bounded;

(2) E𝜌 → 0, Ė𝜌 → 0, 𝜌̃ → 0, and ̇̃𝜌 → 0 as 𝑡 → +∞ if
ḋ𝜌(𝑡) → 0 as 𝑡 → +∞;

(3) for the general cases with nonvanishing ḋ𝜌(𝑡), there
exists 𝑡𝜌 > 𝑡𝑐𝑚𝑎𝑥 such that, under any initial condition,󵄩󵄩󵄩󵄩󵄩E𝜌 (𝑡)󵄩󵄩󵄩󵄩󵄩2 ≤ 𝑏𝜌, ∀𝑡 ≥ 𝑡𝜌, (25)

󵄩󵄩󵄩󵄩𝜌̃ (𝑡)󵄩󵄩󵄩󵄩2 ≤ 󵄩󵄩󵄩󵄩󵄩󵄩(𝐿 + 𝐵)−1󵄩󵄩󵄩󵄩󵄩󵄩2 𝑏𝜌, ∀𝑡 ≥ 𝑡𝜌, (26)

where

𝑏𝜌 = 2√𝑛 󵄩󵄩󵄩󵄩󵄩𝐿 + 𝐵󵄩󵄩󵄩󵄩󵄩∞ 𝑑𝑑𝜌𝜃
⋅max
1≤𝑖≤𝑛

(𝜆𝑚𝑎𝑥 (𝑃𝜌𝑖)√ 𝜆𝑚𝑎𝑥 (𝑃𝜌𝑖)𝜆𝑚𝑖𝑛 (𝑃𝜌𝑖) ) ,
(27)

and 0 < 𝜃 < 1, 𝑃𝜌𝑖 are the solutions of the Lyapunov equations
𝑃𝜌𝑖𝐴𝜌𝑖 + 𝐴𝑇𝜌𝑖𝑃𝜌𝑖 = −𝐼3, 𝜌 ∈ {𝛼, 𝛽} , (28)

with 𝐴𝜌𝑖 defined by (21).
Proof. Using (14), (16), and (17), the relationships between Δ̇𝜌𝑖
and 𝑑̇𝜌𝑖 can be written in a compact form as

Δ̇𝜌 = (𝐿 + 𝐵) ḋ𝜌, 𝜌 ∈ {𝛼, 𝛽} . (29)

Then, with (4), it follows that󵄩󵄩󵄩󵄩󵄩Δ̇𝜌 (𝑡)󵄩󵄩󵄩󵄩󵄩∞ ≤ 󵄩󵄩󵄩󵄩󵄩𝐿 + 𝐵󵄩󵄩󵄩󵄩󵄩∞ 󵄩󵄩󵄩󵄩󵄩ḋ𝜌 (𝑡)󵄩󵄩󵄩󵄩󵄩∞ ≤ 󵄩󵄩󵄩󵄩󵄩𝐿 + 𝐵󵄩󵄩󵄩󵄩󵄩∞ 𝑑𝑑𝜌,
∀𝑡 ≥ 0, 𝜌 ∈ {𝛼, 𝛽} . (30)

Moreover, for 𝜌 ∈ {𝛼, 𝛽}, based on Lemma 6, under
Assumption 5, Δ̇𝜌 → 0𝑛 as 𝑡 → +∞ if and only if ḋ𝜌 → 0𝑛
as 𝑡 → +∞. Thus, under Assumptions 1 and 5 and parameter
conditions (24), it is straightforward to derive the points (1)-
(2) with these results and Lemmas 6 and 7.

The detailed proof of point (3) is the same as [5,Theorem2] and hence omitted.

Remark 9. As shown in Theorem 8, by FTC differentia-
tors (7) and (8) in the absence of input noises, for the
case without angular velocity measurements, if condition
lim𝑡→+∞𝑑̇𝜌𝑖(𝑡) = 0 is satisfied, the distributed controllers
(6) are capable of achieving zero-error attitude-trajectory
tracking for each helicopter in the group of helicopters.
Thus, the distributed consensus attitude-trajectory zero-error
tracking for the group of helicopters is achieved under
this condition (lim𝑡→+∞𝑑̇𝜌𝑖(𝑡) = 0). If this condition
is not satisfied, the ultimate bounds of attitude-trajectory
tracking errors 𝜌̃𝑖 resulting from controllers (6) are globally
bounded for 𝑖 ∈ I and ultimately bounded with ulti-
mate bounds depending on parameters 𝑘𝑃𝜌𝑖, 𝑘𝐷𝜌𝑖, 𝑘𝐼𝜌𝑖 which
can make the termmax1≤𝑖≤𝑛(𝜆max(𝑃𝜌𝑖)√𝜆max(𝑃𝜌𝑖)/𝜆min(𝑃𝜌𝑖))
small enough. Future efforts will be devoted to the optimiza-
tion problem of the three parameters such that the term is
minimized.

Remark 10. If delay 𝜏 in neighbors’ control inputs 𝑢𝜌𝑗(𝑡 − 𝜏)
is systematically considered, the obtained error equations (13)
are disturbed neutral delay systems as in [24]. For these kinds
of delayed systems, [25, Lemma 1] can be used to examine
the stability of the associated nominal delayed systems, where
three easily testable conditions are included.We also note that
these conditions ensure that the considered systems are delay-
independent stable. However, the delay-independent stability
is not the general case. Despite this fact, since the case with𝜏 = 0 is exponentially stable, we readily derive that the system
with an enough small time-delay is also exponentially stable,
which ensure that the correspondingly disturbed equations
are input-to-state stable provided that the delay is sufficiently
small. In our future work, we will investigate these problems
and systematically assess the effect of the introduced delay
on the system stability as well as the convergence speed of
tracking errors (as in the work [26]).

4. Numerical Simulation and
Experimental Results

In this section, to demonstrate the effectiveness of the
proposed scheme for robust motion synchronization, the
numerical simulation results and experimental results of
the attitude-trajectory consensus tracking of three 3-DOF
helicopters which are labeled as H1 to H3 are presented.
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Table 1: Nominal parameters of the helicopters (𝑖 = 0, 1, 2, 3).
Parameter Value𝐾𝑓𝑖 0.1188N/V𝑙𝑎𝑖 0.660m𝑙ℎ𝑖 0.178m𝑚𝑖 0.094 kg𝐽𝑒𝑖 1.034 kg⋅m2𝐽𝑝𝑖 0.045 kg⋅m2𝑔 9.81m/s2

H0

H1 H3

H2

𝛼d

b1
=
1 b

3 =
1

a
21 =

1

a 23
=
a 32

=
1

Figure 4: The considered communication topology.

Note that we focus on the analysis of the results of elevation-
trajectory consensus tracking hereafter. The results of pitch
channel are similar to that of elevation channel and hence
omitted.

The nominal parameters of the four helicopters (includ-
ing virtual helicopter H0) are the same, which are presented
in Table 1. Their initial states are specified as follows:

(𝛼0 (0) , 𝛼̇0 (0)) = (−20.0 deg, 0 deg/s) ,
(𝛼1 (0) , 𝛼̇1 (0)) = (−21.5 deg, 0 deg/s) ,
(𝛼2 (0) , 𝛼̇2 (0)) = (−27.0 deg, 0 deg/s) ,
(𝛼3 (0) , 𝛼̇3 (0)) = (−16.9 deg, 0 deg/s) .

(31)

All the results are obtained on the directed communi-
cation graph shown in Figure 4. In this graph, helicopters 1
and 3 have access to desired trajectories 𝛼𝑑(𝑡) which are the
responses of H0 to desired signal 𝛼𝑑(𝑡), and Assumption 5
holds with 𝑏1 = 𝑏3 = 𝑎21 = 𝑎23 = 𝑎32 = 1 and all other entries
of 𝐵 and 𝐴𝑛 being 0. Then,

𝐿 = [[[
0 0 0−1 2 −10 −1 1

]]]
,

Table 2: Design parameters of the FTC estimators.

Parameter Equation (7) Equation (8)𝜆0 1.1 5𝜆1 1.5 8𝜆2 2 N/A𝜇0 3 8𝜇1 6 12𝜇2 8 N/A𝐿𝜌𝑑 1 N/A𝐿𝑒 N/A 1

𝐵 = [[[
1 0 00 0 00 0 1

]]]
,

𝐿 + 𝐵 = [[[
1 0 0−1 2 −10 −1 2

]]]
.

(32)

Without loss of generality, the following nonstep desired
trajectories provided to H0 are adopted for numerical simu-
lations and experiments:

𝛼𝑑 (𝑡) = 10 sin (0.04𝜋𝑡) − 5,
𝛼̇𝑑 (𝑡) = 0.4𝜋 cos (0.04𝜋𝑡) ,
𝛼̈𝑑 (𝑡) = −0.016𝜋2 sin (0.04𝜋𝑡) ,

(33)

where all the angles are given in degrees. For the parameters
of control signal 𝑢𝛼0 which is determined by (6) with 𝑏0 = 1,𝑎0𝑗 = 0, 𝑗 ∈ I, ̂̈𝛼𝑑(𝑡) = 𝛼̈𝑑(𝑡), and ̂̇𝑒𝛼0(𝑡) = ̇𝑒𝛼0(𝑡), choose

𝑘𝑃𝛼0 = 1.5,
𝑘𝐷𝛽0 = 2,
𝑘𝐼𝛼0 = 0,

(34)

where H0 is a virtual helicopter without the acting of LUDs;
hence the integral term in the control law (6) is not adopted
by H0 (i.e., 𝑘𝐼𝛼0 = 0) for simplicity.

The design parameters chosen for the FTC estimators (7)
and (8) are shown in Table 2. The initial state values of the
differentiators in (7) and (8) are set to zero; that is, 𝜌̂𝑑(0) =̂̇𝜌𝑑(0) = ̂̈𝜌𝑑(0) = 0 and 𝑒̂𝜌𝑖(0) = ̂̇𝑒𝜌𝑖(0) = 0, 𝑖 ∈ I.

In the following, for comparison purposes, six cases
(Cases 1–6) are considered. In each case, 𝑢𝛼𝑖 are determined
by (6). In order to theoretically verify the results of Theo-
rem 8, Cases 1–3 are designed for the numerical simulations.
Specifically, to demonstrate that both tracking and synchro-
nization performance without IC are not acceptable, IC is not
adopted in Case 1; points (1)-(2) ofTheorem 8 are verified by
Case 2, where the helicopters with IC are subject to different
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constant disturbances; the helicopters with IC are subject to
different time-varying disturbances in Case 3 to show the
validity of points (1) and (3) of Theorem 8. The results of
Theorem 8 are experimentally verified by Cases 4–6 on the
experiment platform shown in Figure 1. IC is adopted in
Cases 5-6while, in Case 4, it is not.The ADSs of helicopters 2
and 3 are activated in Case 6 while in Cases 4-5 are not. Note
that, since the disturbances are unknown in the experiments,
the control parameters of 𝑢𝛼𝑖 in experiments are not the same
as those in numerical simulations, where the disturbances are
specified and used to choose the control parameters.

The detailed differences among Cases 1–6 are as follows:
(1) For Case 1, the numerical example with constant

disturbance (𝑑𝛼1 = 5 deg/s2, 𝑑𝛼2 = 10 deg/s2, 𝑑𝛼3 =15 deg/s2, 𝑑̇𝛼𝑖 = 0, 𝑖 = 1, 2, 3) is simulated. The parameters
of 𝑢𝛼𝑖 are chosen as 𝑘𝑃𝛼𝑖 = 3.2, 𝑘𝐷𝛼𝑖 = 1.3, 𝑘𝐼𝛼𝑖 = 0 (𝑖 = 1, 2, 3),
which corresponds to the situation without IC.

(2) Case 2 is the same as Case 1, except for 𝑘𝐼𝛼𝑖 = 1 (𝑖 =1, 2, 3). That is, IC is applied for the numerical example with
constant disturbance.

(3) Case 3 is the same as Case 2, except for time-varying𝑑𝛼𝑖 that are given as follows:

𝑑𝛼𝑖 = 5 sin (0.05𝑖𝜋𝑡) + 5𝑖 (deg/s2) , 𝑖 = 1, 2, 3. (35)

Note the three points: (a) as shown in (35), the three
helicopters are subject to different disturbances; (b) initial
disturbances 𝑑𝛼𝑖(0) = 5𝑖 deg/s2, 𝑖 = 1, 2, 3; (c) to verify the
results of Theorem 8, the disturbances used in Case 2 satisfy
conditions lim𝑡→+∞𝑑̇𝛼𝑖 = 0 for each 𝑖 = 1, 2, 3, while those
used in Case 3 do not.

(4) For Case 4, 𝑢𝛼𝑖 without IC are applied to the experi-
ment platform shown in Figure 1. The parameters of 𝑢𝛼𝑖 are
chosen as 𝑘𝑃𝛼𝑖 = 5, 𝑘𝐷𝛼𝑖 = 8, 𝑘𝐼𝛼𝑖 = 0 (𝑖 = 1, 2, 3).

(5) Case 5 is the same as Case 4, except for 𝑘𝐼𝛼𝑖 = 3 (𝑖 =1, 2, 3). That is, IC is applied to the experiment platform.
(6) For Case 6, in the experiments, the ADSs of heli-

copters 2 and 3 are activated and the same control laws as for
Case 5 are applied.

It is worthwhile noting that ADS has a dramatic effect on
the motion of helicopter body, whether it is static or moving.
This point is easily seen from the mechanical structure of
helicopter as shown in Figure 2 and is also verified by the
following experiments.

4.1. Case 1: Numerical SimulationwithoutUsing IC. Thenum-
erical simulation results for this case are presented in Figure 5.
As shown in subfigures (a) and (b) therein, because IC is not
adopted in control design to attenuate constant disturbances,
neither tracking error nor synchronization error converges to
a small neighborhood of zero. More specifically,

(1) for the elevation axis, the magnitude of tracking
error (of each helicopter) is greater than 5.5 deg
when 𝑡 ≥ 20 sec and is steady as 𝑡 increases. The
synchronization error between any pair of the three
helicopters is of a magnitude greater than 1 deg when𝑡 ≥ 20 sec and is steady as 𝑡 increases. The reason

is that the constant disturbance of the helicopter is
different from each other and is not attenuated by IC.

(2) as shown in subfigures (c) and (d) of Figure 5, the
voltage applied to either front motor or back motor,
with a value equal to themaximum acceptable voltage24V at the beginning (𝑡 ≤ 0.8 sec), has a magnitude
smaller than 24V for all 𝑡 > 0.8 sec (smaller than 3V
for all 𝑡 > 2 sec).

(3) as shown in subfigures (e) and (f), the attained
accuracies of the FTC estimators are |𝛼̈𝑑 − ̂̈𝛼𝑑| ≤0.0074 deg/s2 and max1≤𝑖≤3| ̇𝑒𝛼𝑖 − ̂̇𝑒𝛼𝑖| ≤ 0.003 deg/s
that corresponds to Lemma 2 for FTC estimators (7)
and (8) with finite time 𝑡𝑐 (in this case, 𝑡𝑐 ≤ 7 sec and
max1≤𝑖≤3𝑡𝑐𝑖 ≤ 2.5 sec for (7) and (8), resp.).

4.2. Case 2: Numerical Simulation with Using IC for Constant
Disturbances. In this case, IC is adopted in control design to
attenuate constant disturbances. The corresponding simula-
tion results are presented in Figure 6, demonstrating that both
tracking and synchronization performance are dramatically
improved, compared with that achieved in Case 1. A detailed
analysis of the results is given as follows:

(1) For the elevation axis, when 𝑡 ≥ 20 sec, the magni-
tude of tracking error (of each helicopter) is smaller
than 0.03 deg and the synchronization error between
any two helicopters has a magnitude smaller than0.01 deg. Points (1) and (2) of Theorem 8 are verified
by these results.

(2) The voltage applied to either front motor or back
motor, with a value equal to the maximum acceptable
voltage 24V at the beginning (𝑡 ≤ 0.8 sec), is of a
magnitude less than 3V for all 𝑡 > 2 sec.

(3) The result of FTC estimator (7) is the same as that in
Case 1 and hence omitted. The attained accuracies of
FTC estimator (8) aremax1≤𝑖≤3| ̇𝑒𝛼𝑖−̂̇𝑒𝛼𝑖| ≤ 0.009 deg/s
and the finite convergence time satisfies max1≤𝑖≤3𝑡𝑐𝑖 ≤15 sec.

4.3. Case 3: Numerical Simulation with Using IC for Time-
Varying Disturbances. In this case, IC is adopted in control
design to attenuate time-varying disturbances. The cor-
responding simulation results are presented in Figure 7.
Although subject to the time-varying disturbances shown
in (35), both tracking and synchronization performance are
improved compared with that achieved in Case 1, where
the disturbances are constants. However, compared with that
achieved in Case 2, where the disturbances are constants
and also attenuated by IC, both tracking and synchronization
performance are degraded observably. A detailed analysis of
the results is given as follows:

(1) For the elevation axis, when 𝑡 ≥ 20 sec, the magnitude
of tracking error (of each helicopter) is smaller than 1.0 deg;
that is,

󵄨󵄨󵄨󵄨𝛼̃𝑖 (𝑡)󵄨󵄨󵄨󵄨 < 1.0 deg, ∀𝑡 > 20 sec, 𝑖 = 1, 2, 3, (36)
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Figure 5: Numerical simulations results for Case 1 (𝛼𝑑-cyan, H0-black, H1-red, H2-blue, and H3-green): (a) elevation angular position
trajectory, (b) elevation angle tracking error, (c) voltage of the front motor, (d) voltage of the back motor, (e) estimation error of the elevation
angular acceleration of H0, and (f) estimation errors of the first-order derivative of LNSE of H1–H3.

and the synchronization error between any two helicopters
has a magnitude smaller than 1.51 deg.

With parameters 𝑘𝑃𝛼𝑖 = 3.2, 𝑘𝐷𝛼𝑖 = 1.3, 𝑘𝐼𝛼𝑖 = 1 (𝑖 =1, 2, 3) and (21), the following matrix 𝑃𝛼𝑖 can be obtained by
resolving the Lyapunov equations (28):

𝑃𝛼𝑖 = [[[
2.23 1.52 0.501.52 3.10 0.630.50 0.63 0.87

]]]
,

𝜆max (𝑃𝛼𝑖) = 4.43,
𝜆min (𝑃𝛼𝑖) = 0.68.

(37)

With (4) and (35), we have 𝑑𝑑𝛼 = 0.041 deg/s3; then, along
with (32) and (37), we get 𝑏𝛼 in (27) that satisfies 𝑏𝛼 ≤ 6.41 deg
and the ultimate bound of the tracking errors in (26) satisfies‖𝛼̃(𝑡)‖2 ≤ 9.16 deg. Then, points (1) and (3) of Theorem 8 are
verified by (36).

(2) The voltage applied to either front motor or back
motor, with a value equal to the maximum acceptable voltage24Vat the beginning (𝑡 ≤ 0.8 sec), is of amagnitude less than3.8V for all 𝑡 > 2 sec.

(3) The result of the FTC estimators is the same as that in
Case 2 and hence omitted here.

4.4. Case 4: Experiment without Using IC. The experimental
results for this case are presented in Figure 8. It is seen that
the tracking error (of each helicopter) does not converge
to a small neighborhood of zero and the synchronization
performance is better than tracking performance. A detailed
analysis of the results is given as follows:

(1) For the elevation axis, themagnitude of tracking error
(of each helicopter) is greater than 3 deg for all 𝑡 >10 sec; the synchronization error (between any two
helicopters) is |𝛼1 − 𝛼2| ≤ 1.11 deg, |𝛼1 − 𝛼3| ≤0.76 deg, and |𝛼2 − 𝛼3| ≤ 0.69 deg for all 𝑡 > 10 sec;
the synchronization error between H2 and H3 has a
smaller magnitude than that between H1 and H2 (or
H1 and H3), which is an immediate consequence of
the fact that H2 and H3 can obtain information from
each other and both of them are equipped with ADSs,
whereas H1 is not.

(2) The voltage applied to either the front or back motor,
with a value equal to themaximum acceptable voltage24V at the beginning (𝑡 ≤ 6 sec), has a magnitude
smaller than 21V for all 𝑡 > 6 sec.

4.5. Case 5: Experiment with Using IC. The experimental
results for this case are presented in Figure 9. It is observed
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Figure 6: Numerical simulation results for Case 2 (𝛼𝑑-cyan, H0-black, H1-red, H2-blue, and H3-green): (a) elevation angular position
trajectory, (b) elevation angle tracking error, (c) voltage of the front motor, (d) voltage of the back motor, (e) estimation error of the elevation
angular acceleration of H0, and (f) estimation errors of the first-order derivative of LNSE of H1–H3.

that, compared with Case 4, both tracking and synchroniza-
tion performance are improved because the disturbances are
attenuated by IC in this case. More specifically,

(1) for the elevation axis, the magnitude of tracking error
(of each helicopter) is smaller than 1.02 deg for all𝑡 > 10 sec (𝛼̃1 = 1.01 deg, 𝛼̃2 = 0.78 deg, and 𝛼̃3 =0.66 deg); the synchronization error (between any two
helicopters) is |𝛼1−𝛼2| ≤ 0.58 deg, |𝛼1−𝛼3| ≤ 0.67 deg,
and |𝛼2 − 𝛼3| ≤ 0.45 deg for all 𝑡 > 10 sec;

(2) the voltage applied to either the front or back motor,
with a value equal to themaximum acceptable voltage24V at the beginning (𝑡 ≤ 5 sec), has a magnitude
smaller than 22V for all 𝑡 > 5 sec.

4.6. Case 6: With Activated ADS and the Same Controller
as for Case 5. The ADSs equipped on helicopters 2 and 3
are activated in this case, whose dynamic positions along
the arms of helicopters are shown in Figure 10, with the
same initial position −0.14m (−0.14m is the farthest possible
position from propellers). This is different from the previous
Case 4 and Case 5 where they are both fixed at −0.14m. The
experimental results for this case are presented in Figure 11.
It is seen that motion of ADSs does not lead to dramatic

performance degradation in the steady state of tracking
and synchronization errors, compared with the performance
achieved in Case 5. A detailed comparative analysis of the
results is given as follows:

(1) For the elevation axis, the ultimate bound of either
tracking error or synchronization error is nearly the
same with that achieved in Case 5; the transient
performance is degraded a little (this degradation is
relatively obvious for helicopter 2 because the effect
of the moving ADS on helicopter 4 is delivered
to helicopter 2 which has no access to the desired
trajectory as shown in Figure 4).

(2) The voltage applied to either the front or back motor,
with a value equal to themaximum acceptable voltage24V at the beginning (𝑡 ≤ 6 sec), has a magnitude
smaller than 23.5V for all 𝑡 > 5 sec.

To demonstrate the different steady-state tracking perfor-
mance clearly, the maximum magnitudes of tracking errors
that appeared in each case during time interval 𝑡 ∈ [20, 30]
are shown in Table 3 (Cases 1–3) and Table 4 (Cases 4–6). As
shown in these tables, the tracking accuracy is improved in
numerical simulations and experiments by IC.
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Figure 7: Numerical simulation results for Case 3 (𝛼𝑑-cyan, H0-black, H1-red, H2-blue, and H3-green): (a) elevation angular position
trajectory, (b) elevation angle tracking error, (c) voltage of the front motor, (d) voltage of the back motor, (e) estimation error of the elevation
angular acceleration of H0, and (f) estimation errors of the first-order derivative of LNSE of H1–H3.

Table 3: Maximum magnitudes of 𝛼̃𝑖, 𝑖 = 1, 2, 3, in simulations for𝑡 > 20 s (deg).
Case H1 H2 H3
1 5.58 6.59 7.59
2 0.027 0.027 0.027
3 0.28 0.62 0.95

Table 4: Maximummagnitudes of 𝛼̃𝑖, 𝑖 = 1, 2, 3, in experiments for𝑡 > 20 s (deg).
Case H1 H2 H3
4 2.99 3.40 3.12
5 1.0 0.78 0.66
6 0.89 0.69 0.94

5. Concluding Remarks

The robust distributed consensus tracking controllers with
integral action for multiple 3-DOF experimental helicopters
without velocity measurements have been studied under the

condition that only the desired angular position measure-
ments are accessible to a small subset of the helicopters.
Motivated by the effectiveness of the tracking controller with
integral action in disturbances rejection for the single vehicle,
the distributed controllers have been proposed by combining
FTC estimators with distributed integral controllers. With
using the FTC estimators, great accuracy and finite-time
convergence have been achieved for the estimation of the
lacking information. Meanwhile, the distributed controllers
with integral action stabilized the tracking errors and rejected
the input disturbances. Through analysing the closed-loop
stability, the conditions ensuring zero-error tracking and
the ultimate bound of errors for the general cases with
nonzero error have been derived. It has been verified through
the results of numerical simulations and experiments on
platform of “three 3-DOF helicopters” that the tracking
and synchronization accuracy have been improved by the
proposed controllers with proper parameters.

Future work will focus on the design and experimental
verification of bounded distributed controller for the plat-
form under the directed communication graph with time-
delay.The control parameters in (6) also need to be optimized
to get the minimized ultimate bound of tracking errors.
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Figure 8: Experimental results for Case 4 (𝛼𝑑-cyan, H0-black, H1-red, H2-blue, and H3-green): (a) elevation angular position trajectory, (b)
elevation angle tracking error, (c) voltage of the front motor, and (d) voltage of the back motor.
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Figure 9: Experimental results for Case 5 (𝛼𝑑-cyan, H0-black, H1-red, H2-blue, and H3-green): (a) elevation angular position trajectory, (b)
elevation angle tracking error, (c) voltage of the front motor, and (d) voltage of the back motor.
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Figure 11: Experimental results for Case 6 (𝛼𝑑-cyan, H0-black, H1-red, H2-blue, and H3-green): (a) elevation angular position trajectory, (b)
elevation angle tracking error, (c) voltage of the front motor, and (d) voltage of the back motor.

Appendix

A useful lemma used to show boundedness and ultimate
bound of the solutions of some disturbed state equations is
given as follows.

Lemma A.1 (see [5, Lemma 2]). Consider state solution 𝑥(𝑡)
of the linear time-invariant equation:

𝑥̇ = 𝐴𝑥 + 𝐵𝑢, (A.1)
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where 𝑥 ∈ 𝑅𝑚 is the state, 𝑢 ∈ 𝑅 is the continuously
differentiable input, and matrices 𝐴 ∈ 𝑅𝑚×𝑚 and 𝐵 ∈ 𝑅𝑚×1.
If 𝐴 is Hurwitz, then

(1) system (A.1) is globally input-to-state stable (GISS);
that is, if 𝑢 is bounded for all 𝑡, then𝑥(𝑡)with any initial
state 𝑥(𝑡0) is also bounded for all 𝑡;

(2) there exist class KI function 𝛾 and time 𝑇 ≥ 0
(dependent on 𝑥(𝑡0) and ‖𝑢‖L∞ š sup𝑡≥0|𝑢(𝑡)| < ∞)
such that 𝑥(𝑡) with any 𝑥(𝑡0) satisfies

‖𝑥 (𝑡)‖2 ≤ 𝛾 (‖𝑥 (0)‖2 , 𝑡) , ∀𝑡0 ≤ 𝑡 ≤ 𝑡0 + 𝑇,
‖𝑥 (𝑡)‖2 ≤ 2𝜆𝑚𝑎𝑥 (𝑃) ‖𝐵‖2 ‖𝑢‖L∞𝜃 √𝜆𝑚𝑎𝑥 (𝑃)𝜆𝑚𝑖𝑛 (𝑃) ,

∀𝑡 ≥ 𝑡0 + 𝑇,
(A.2)

where 0 < 𝜃 < 1, 𝜆𝑚𝑎𝑥(𝑃), and 𝜆𝑚𝑖𝑛(𝑃) are the maximum and
minimum eigenvalues of the symmetric positive-definitematrix𝑃 ∈ 𝑅𝑚×𝑚 which is the solution of the Lyapunov equation:

𝑃𝐴 + 𝐴𝑇𝑃 = −𝐼𝑚. (A.3)

Notations

𝛼𝑖, 𝛽𝑖: The elevation angle and pitch angle,
respectively (rad)𝛼̇𝑖, 𝛽̇𝑖: The elevation angle rate and pitch angle
rate, respectively (rad/s)𝐽𝑒𝑖, 𝐽𝑝𝑖: The moments of inertia about elevation
axis and pitch axis, respectively (kg⋅m2)𝐾𝑓𝑖: The force constant of motor-propeller
combination (N/V)𝑙𝑎𝑖: The distance from travel axis and elevation
axis to the center of helicopter body (m)𝑙ℎ𝑖: The distance from pitch axis to either
motor (m)𝑚𝑖: The effective mass of helicopter body (kg)𝑔: The gravitational acceleration constant,
(9.81m/s2)𝑓𝛼𝑖, 𝑓𝛽𝑖: The lumped uncertainties and
disturbances (LUDs) acting on elevation
and pitch channels, respectively (N⋅m)𝑉𝑓𝑖, 𝑉𝑏𝑖: The voltages applied to the front motor
and back motor, respectively; the voltage
limit for the motors is 24V (i.e.,|𝑉𝑓𝑖| ≤ 24V,|𝑉𝑏𝑖| ≤ 24V) (V)𝑉𝑠𝑖, 𝑉𝑑𝑖: The sum and the difference of 𝑉𝑓𝑖 and 𝑉𝑏𝑖,
respectively (V).
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