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Discovering systems with hidden attractors is a challenging topic which has received considerable interest of the scientific
community recently. This work introduces a new chaotic system having hidden chaotic attractors with an infinite number of
equilibrium points. We have studied dynamical properties of such special system via equilibrium analysis, bifurcation diagram,
and maximal Lyapunov exponents. In order to confirm the system’s chaotic behavior, the findings of topological horseshoes for
the system are presented. In addition, the possibility of synchronization of two new chaotic systems with infinite equilibria is
investigated by using adaptive control.

1. Introduction

Nonlinear systems with chaotic behavior have been exploited
since the 1960s [1–4]. Their applications have been witnessed
in numerous areas, for example, secure digital communica-
tion systems [5], multiple input multiple output radar [6],
image encryption with random bit sequence [7], or optimiza-
tion algorithms [8]. Although almost normal chaotic systems
have a countable number of equilibrium points, few unusual
systems with infinite number of equilibria have been inves-
tigated in the last five years [9]. Chaotic system with line
equilibrium was reported in [9–11]. A new class of chaotic
systems with circle and square equilibriumwas discovered by
using predefined general forms [12, 13]. In addition, hyper-
chaotic behavior was observed in a four-dimensional system
with a curve of equilibria [14] or four-dimensional systems
with a line of equilibria [15–17].

Remarkably, systems with an infinite number of equilib-
rium points are considered as systems with “hidden attrac-
tors” based on the view point of computation [18–21]. Hidden

attractors cause unexpected effects for engineering systems
[22–25]. However, the characteristics of hidden attractors are
not well understood [26]. The community has raised some
concerns about discovering hidden attractors in known sys-
tems [27, 28], finding new systems with hidden attractors
[29, 30], studying synchronization schemes for systems with
hidden attractors [31], or verifying chaotic dynamics in sys-
tems with hidden attractors with topological horseshoes [32,
33].

Motivated by special features of systems with hidden
attractors, we introduce a new system with an open curve of
equilibriumpoints in thiswork. In the next section, themodel
of the new system is described and its dynamics are discov-
ered through different nonlinear tools. Chaotic dynamics of
the proposed system are studied through topological horse-
shoes in Section 3. A possible synchronization of two new
identical systems is discussed in Section 4. Finally, Section 5
concludes our work.
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2. New System with an Infinite Number of
Equilibrium Points and Its Properties

The new system proposed in the present work is a three-
dimensional continuous system described as

𝑥̇ = −𝑧,
𝑦̇ = 𝑥𝑧2,
𝑧̇ = 𝑥 − 𝑦 tanh (𝑦) + 𝑧 (𝑎𝑦2 − 𝑧2) ,

(1)

inwhich three state variables are𝑥,𝑦, and 𝑧. It is worth noting
that there is only one positive parameter (𝑎) in system (1).

It is straightforward to find the equilibrium points of the
proposed system by setting the right hand side of (1) to equal
zero, that is,

−𝑧 = 0, (2)

𝑥𝑧2 = 0, (3)

𝑥 − 𝑦 tanh (𝑦) + 𝑧 (𝑎𝑦2 − 𝑧2) = 0. (4)

Equation (2) reveals that 𝑧 = 0. By substituting 𝑧 = 0 into (3)
and (4) we have

𝑥 − 𝑦 tanh (𝑦) = 0. (5)

In other words, system (1) has an infinite number of equilib-
rium points:

𝐸 = {(𝑥, 𝑦, 𝑧) ∈ 𝑅3 | 𝑥 = 𝑦∗ tanh (𝑦∗) , 𝑦 = 𝑦∗, 𝑧
= 0} .

(6)

For the equilibrium 𝐸, the Jacobian matrix of system (1)
is given by

J𝐸

= [[[
[

0 0 −1
0 0 0
1 − tanh (𝑦∗) − 𝑦∗ (1 − tanh2 (𝑦∗)) 𝑎 (𝑦∗)2

]]]
]
. (7)

On combining this result with det (J𝐸 − 𝜆I) = 0, we obtain its
characteristic equation

𝜆 (𝜆2 − 𝑎 (𝑦∗)2 𝜆 + 1) = 0. (8)

It is easy to verify that the characteristic equation (8) has one
zero eigenvalue (𝜆1 = 0) and two nonzero eigenvalues (𝜆2,3)
which depend on the sign of the discriminant:

Δ = 𝑎2 (𝑦∗)4 − 4. (9)

For Δ = 0, we get positive eigenvalues 𝜆2,3 = 𝑎(𝑦∗)2/2.
Two nonzero eigenvalues are 𝜆2,3 = (𝑎(𝑦∗)2 ± √Δ)/2 for the
positive discriminant. When the discriminant (9) is negative,

a pair of complex conjugate eigenvalues is 𝜆2,3 = (𝑎(𝑦∗)2 ±
𝑖√Δ)/2. These eigenvalues state that the equilibrium point 𝐸
is unstable for 𝑎 > 0 and 𝑦∗ ̸= 0.

It is interesting that system (1) with uncountable equi-
libria is chaotic for 𝑎 = 2.9 and the initial condition
(𝑥(0), 𝑦(0), 𝑧(0)) = (0, 0.1, 0.2). Chaotic attractors of system
(1) are presented in Figure 1. Its Lyapunov exponents and
Kaplan–Yorke dimension are 𝐿1 = 0.0727, 𝐿2 = 0, 𝐿3 =−0.3122, and 𝐷KY = 2.2329, respectively. The well-known
Wolf ’s method [34] has been applied to calculate the Lya-
punov exponents in our work. The time of computation is
10,000. It is worth noted that, in general, in numerical exper-
iments one cannot expect to get the same values of the finite-
time local Lyapunov exponents and the Lyapunov dimension
for different points [35–37]. Therefore, the maximum of the
finite-time local Lyapunov dimensions on the grid of points
has to be considered [35–37].

The value of parameter 𝑎 has been changed to get detailed
dynamics of system (1) with infinite equilibria. By decreasing
the value of the parameter 𝑎 from 3.4 to 2.8, the bifurcation
diagram andmaximal Lyapunov exponents (MLEs) of system
(1) are shown in Figures 2 and 3, respectively. It is possible to
observe a route from period-doubling limit cycles to chaos
when decreasing the value of the parameter 𝑎. When 𝑎 >
3.048, system (1) remains at periodical states, for example,
periodical states for 𝑎 = 3.35 are illustrated in Figure 4.
System (1) can generate chaotic attractors for 𝑎 ≤ 3.048.

3. Horseshoe in the Chaotic System with
Infinite Equilibria

Topological horseshoe is a different effective approach to
investigate chaos in dynamical systems [38–44]. There is
significant attention about seeking topological horseshoe in
chaotic systems with hidden attractors [32, 33]. Therefore, in
this section we will discover topological horseshoes in the
proposed system with infinite equilibria (1).

In order to support the verification of chaos in system
with infinite equilibria (1), themost important results of topo-
logical horseshoe [45–47] are reviewed briefly. We define 𝑋
and𝐷 as ametric space and a compact subset while𝑓 is amap
𝑓 : 𝐷 → 𝑋. We assume that there are 𝑚 mutually disjoint
compact subsets of𝐷 (i.e.,𝐷1, 𝐷2, . . . , 𝐷𝑚) and the restriction
of 𝑓 to each 𝐷𝑖 is continuous. A compact subset 𝑑 of 𝐷
satisfies 𝑑𝑖 = 𝑑 ∩ 𝐷𝑖 for 1 ≤ 𝑖 ≤ 𝑚. In this case, 𝑑 is a con-
nection with respect to 𝑚 mutually disjoint compact subsets
of 𝐷. We denote 𝐹 as a family of connections with respect
to 𝑚 mutually disjoint compact subsets of 𝐷. The family 𝐹
is an 𝑓-connected family with respect to𝑚mutually disjoint
compact subsets of𝐷 when

𝑑 ∈ 𝐹 󳨐⇒
𝑓 (𝑑𝑖) ∈ 𝐹.

(10)

Horseshoe Lemma (see [48]). If there is an 𝑓-connected
family 𝐹with respect to𝑚mutually disjoint compact subsets of
𝐷, then there is the presence of a compact invariant set 𝐾 ⊂ 𝐷
and semiconjugate to𝑚-shift dynamics is 𝑓 | 𝐾.
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Figure 1: Chaotic attractor of the system with infinite equilibria (1) in (a) 𝑥-𝑦 plane, (b) 𝑥-𝑧 plane, and (c) 𝑦-𝑧 plane.
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Figure 2: Bifurcation diagram of the system with infinite equilibria
(1) when varying 𝑎.
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Figure 3: Maximal Lyapunov exponents of system (1) with respect
to the bifurcation parameter 𝑎.
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Figure 4: Limit cycle of the system with infinite equilibria (1) in (a) 𝑥-𝑦 plane, (b) 𝑥-𝑧 plane, and (c) 𝑦-𝑧 plane for 𝑎 = 3.35.

In order to find the topology horseshoe, we select two
polygon subsets 𝐷1, 𝐷2 in the Poincaré map Γ of the system
with infinite equilibria (1):

Γ = {(𝑥, 𝑦, 𝑧) ∈ 𝑅3 | 𝑧 = 0} . (11)

The corresponding Poincaré map𝐻 is defined as
𝐻 : Γ 󳨀→ Γ. (12)

Here𝐻(𝑝) is the image of the initial 𝑝 that returns back to Γ
at the first time [48].The same definition can be applied to the
corresponding Poincaré map 𝐻𝑛. In this work, four vertices
of the first polygon subset 𝐷1 are selected as

(0.822470322, 0.438565370) ,
(0.823776275, 0.435278699) ,
(0.815679371, 0.429691358) ,
(0.813328658, 0.432978029) ,

(13)

while four vertices of the second polygon subset 𝐷2 are
chosen as

(0.796873661, 0.424104017) ,
(0.798701994, 0.421146013) ,
(0.794261757, 0.418188009) ,
(0.792694615, 0.420160011) .

(14)

Two selected polygon subsets and their images are dis-
played in Figures 5 and 6. As shown in Figure 5, it is trivial
to verify that𝐻6(𝐷1) goes through both two polygon subsets
𝐷1 and𝐷2. Similarly,𝐻6(𝐷2) crosses two polygon subsets𝐷1
and𝐷2 as illustrated in Figure 6. According to the Horseshoe
lemma, chaos of the system with infinite equilibria (1) is
determined [45–47].



Advances in Mathematical Physics 5

0.76 0.77 0.78 0.79 0.8 0.81 0.82 0.83 0.840.75
x

0.38

0.39

0.4

0.41
y

0.42

0.43

0.44

0.45

D1

D2

D1
1

D2
1

D1
2

D2
2

H6(D1
1)

H6(D2
1)

H6(D1)
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4. Synchronization of the Identical Systems
with Infinite Equilibria

After the study of Pecora and Carroll about synchronization
in chaotic systems [49], various synchronization techniques
and related works were presented extensively [50–54]. Crit-
ically, the possibility of synchronization of two identical
chaotic systems plays a vital role in practical applications [55–
58]. In this section, we discover the synchronization of two
new systems with infinite equilibria, called the master system
and the slave system, by using an adaptive controller.

We consider the following master system with the
unknown system parameter 𝑎:

𝑥̇1 = −𝑧1,
𝑦̇1 = 𝑥1𝑧21 ,
𝑧̇1 = 𝑥1 − 𝑦1 tanh (𝑦1) + 𝑎𝑦21𝑧1 − 𝑧31 .

(15)

The slave system with adaptive control u = [𝑢𝑥, 𝑢𝑦, 𝑢𝑧]𝑇 is
given as

𝑥̇2 = −𝑧2 + 𝑢𝑥,
𝑦̇2 = 𝑥2𝑧22 + 𝑢𝑦,
𝑧̇2 = 𝑥2 − 𝑦2 tanh (𝑦2) + 𝑎𝑦22𝑧2 − 𝑧32 + 𝑢𝑧.

(16)

The state errors between the slave system and the master
system are calculated by

𝑒𝑥 = 𝑥2 − 𝑥1,
𝑒𝑦 = 𝑦2 − 𝑦1,
𝑒𝑧 = 𝑧2 − 𝑧1.

(17)

The parameter estimation error is defined as follows

𝑒𝑎 = 𝑎 − 𝑎̂, (18)

in which 𝑎̂ is the estimation of the unknown parameter 𝑎.
In order to synchronize the slave system and the master

system, the adaptive control is constructed in the following
form:

𝑢𝑥 = 𝑒𝑧 − 𝑘𝑥𝑒𝑥,
𝑢𝑦 = −𝑥2𝑧22 + 𝑥1𝑧21 − 𝑘𝑦𝑒𝑦,
𝑢𝑧 = −𝑒𝑥 + 𝑦2 tanh (𝑦2) − 𝑦1 tanh (𝑦1)

− 𝑎̂ (𝑦22𝑧2 − 𝑦21𝑧1) + 𝑧32 − 𝑧31 − 𝑘𝑧𝑒𝑧,

(19)

in which 𝑘𝑥, 𝑘𝑦, and 𝑘𝑧 are three positive gain constants and
the parameter update law is described by

̇̂𝑎 = 𝑒𝑧 (𝑦22𝑧2 − 𝑦21𝑧1) . (20)

By applying Lyapunov stability theory, we will prove
that the master system (15) and the slave system (16) are
synchronized when using the adaptive control (19).

In this work, the Lyapunov function is selected as

𝑉(𝑒𝑥, 𝑒𝑦, 𝑒𝑧, 𝑒𝑎) = 12 (𝑒
2
𝑥 + 𝑒2𝑦 + 𝑒2𝑧 + 𝑒2𝑎) . (21)

Therefore, the differentiation of 𝑉 is

𝑉̇ = 𝑒𝑥 ̇𝑒𝑥 + 𝑒𝑦 ̇𝑒𝑦 + 𝑒𝑧 ̇𝑒𝑧 + 𝑒𝑎 ̇𝑒𝑎. (22)

From (17) and (18), we have

̇𝑒𝑥 = −𝑘𝑥𝑒𝑥,
̇𝑒𝑦 = −𝑘𝑦𝑒𝑦,
̇𝑒𝑧 = 𝑒𝑎 (𝑦22𝑧2 − 𝑦21𝑧1) − 𝑘𝑧𝑒𝑧,
̇𝑒𝑎 = − ̇̂𝑎.

(23)
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By substituting (23) into (22), the differentiation of 𝑉 can be
expressed as

𝑉̇ = −𝑘𝑥𝑒2𝑥 − 𝑘𝑦𝑒2𝑦 − 𝑘𝑧𝑒2𝑧. (24)

Because 𝑉̇ is a negative semidefinite function, it is simply
verified that 𝑒𝑥 → 0, 𝑒𝑦 → 0, and 𝑒𝑧 → 0 exponentially as𝑡 → ∞ according to Barbalat’s lemma [59]. In other words,
we obtain the complete synchronization between the master
system and the slave system.

We take an example to illustrate the calculation of the
synchronization scheme. The parameter values of the master
system and the slave system are fixed as

𝑎 = 2.9. (25)

We assume that the initial states of the master system are

𝑥1 (0) = 0,
𝑦1 (0) = 0.1,
𝑧1 (0) = 0.2,

(26)

while the initial states of the slave system are

𝑥2 (0) = −0.7,
𝑦2 (0) = 0.4,
𝑧2 (0) = −0.1.

(27)

The positive gain constants are chosen as follows: 𝑘𝑥 = 4, 𝑘𝑦 =4, and 𝑘𝑧 = 4. We take the initial condition of the parameter
estimate as

𝑎̂ (0) = 3. (28)

The time-history of the synchronization errors 𝑒𝑥, 𝑒𝑦, 𝑒𝑧 is
shown in Figure 7. It is straightforward to verify that Figure 7
depicts the synchronization of the master and slave systems.

5. Conclusions

A new chaotic system with a curve of equilibria has been
introduced in this work. Interestingly, because of having an
infinite number of equilibrium points, the system is a special
system with hidden attractors, which is rarely reported in
the literature. Basic dynamical characters of the system with
infinite equilibria are investigated via phase portraits, equilib-
rium analysis, Kaplan–Yorke dimension, maximal Lyapunov
exponents, and bifurcation diagram. Although it is great
challenge for researchers to find a topological horseshoe in
systems with hidden attractor, horseshoe in such new system
with infinite equilibria has been discovered in our work.
After studying the possibility of synchronization of two novel
chaotic systems, we believe that potential applications of such
a system should be considered further in future works.
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