
Digital Object Identifier (DOI) https://doi.org/10.1007/s00205-018-1233-5
Arch. Rational Mech. Anal. 229 (2018) 601–625

Three-Scale Singular Limits of Evolutionary
PDEs

Bin Cheng, Qiangchang Ju, Steve Schochet

Communicated by P.-L. Lions

Abstract

Singular limits of a class of evolutionary systems of partial differential equations
having two small parameters and hence three time scales are considered. Under
appropriate conditions solutions are shown to exist and remain uniformly bounded
for a fixed time as the two parameters tend to zero at different rates. A simple
example shows the necessity of those conditions in order for uniform bounds to
hold. Under further conditions the solutions of the original system tend to solutions
of a limit equation as the parameters tend to zero.

1. Introduction

Many physical systems contain several small parameters, such as the Mach
number, Alfvén number, Froude number, Rossby number, etc.. When these pa-
rameters are considered to have fixed ratios to one another then the system has two
time scales: one induced by the terms containing the small parameters and the other
coming from the order-one terms in the equation. The classical theory of singular
limits for evolutionary partial differential equations (PDEs) ([1,4,5,7,9,12,13] and
numerous papers on particular systems, for example [11]) was developed to treat
this case. In order to determine the behavior of solutions when two physical pa-
rameters tend to zero in a different manner it is necessary to develop an analogous
theory for systems with three time scales. The systems to be considered here have
the form

A0(εu)ut +
d∑

j=1

A j (u)ux j + 1
δ
L u + 1

ε
M u = F(t, x, u), (1.1)

where ε and δ are small parameters. As in the theory of two-scale singular limits,
the system without the large terms is assumed to be symmetric hyperbolic, and
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L and M are assumed to be antisymmetric constant-coefficient differential or
pseudodifferential operators of order at most one. As for two-scale singular limits
[4,7], parabolic terms of size O(1) could be added to the right side of (1.1), although
the complications such terms induce would be greater in the three-scale case.

The fundamental discovery of Klainerman and Majda [7,8] for two-scale sin-
gular limits was that the presence of the small parameter in the matrix A0, which
occurs naturally in the normalized equations for low Mach number fluid flow, in-
duces a delicate balance. As they showed, this ensures that solutions of (1.1) with
δ = 1, having fixed initial data belonging to a Sobolev space of sufficiently high
index, exist for a time independent of the small parameter ε and satisfy bounds
independent of that parameter, without the need for additional conditions on the
large terms or the initial data, such as those assumed in [1,12] to treat the case when
A0 depends on u rather than εu. Whenever the small parameter δ in (1.1) is not
asymptotically smaller than ε, that is, when δ � cε for some arbitrarily small pos-
itive constant c, then the Klainerman–Majda balance is essentially preserved and
their uniform existence result remains valid and requires only cosmetic changes to
the proof. Similarly, when A0 is a constant matrix, as in the rotating shallow wa-
ter equations ([10, Equation (2.2)]) then the Klainerman–Majda uniform existence
result remains valid for arbitrary δ and ε.

Hence we will be concerned here with the case when A0 does depend nontriv-
ially on εu, and

0 < δ � ε � 1. (1.2)

Our first main result is a uniform existence theorem under two additional assump-
tions. The first condition is that

δ � c ε
1+ 1

s0 (1.3)

for some positive constant c, where

s0 := ⌊ d2
⌋+ 1 (1.4)

is the Sobolev embedding exponent in dimension d. The second condition is that
the initial data u0(x, ε, δ) are uniformly bounded in the Sobolev space Hs0+1(D)

and are “well-prepared” in the usual sense that the initial time derivative

ut (0, x) := A0(εu0)
−1

⎡

⎣F(0, x, u0) −
d∑

j=1

A j (u0)(u0)x j − 1
δ
L u0 − 1

ε
M u0

⎤

⎦

(1.5)

is uniformly bounded in Hs0(D), with the domain D being either the whole space
R
d or the torus T

d . Examples of initial data satisfying this condition are given
in (3.10) below. For convenience, we shall henceforth omit the spatial domain
in integrals and function spaces throughout the paper. Although (1.3) limits how
small δ can be compared to ε, it is consistent with the scaling (1.2) that violates the
Klainerman–Majda balance. Moreover, both conditions are necessary, at least for
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obtaining uniform bounds on solutions of general systems without Klainerman–
Majda balance, as will be shown via a simple explicit example.

Our othermain result is a convergence theoremshowing, under the additional as-
sumptions described below, that as ε and δ both tend to zero solutions of (1.1)whose
initial data converge in Hs0+1 tend to the solution of a certain limiting equation. The
framework of the convergence theorem is the same as for two-scale singular limits;
the bounds of the existence result yield compactness, which implies that every se-
quence of ε and δ tending to zero while obeying (1.3) has a subsequence for which
the solution converges, and convergence without restricting to such subsequences
is obtained by showing that the limit satisfies a limit equation for which solutions
of initial-value problems are unique. However, both the form and the derivation
of the limit equation are more complicated for three-scale singular limits. For the
two-scale singular limit obtained when δ ≡ 1, the limit equation is obtained by
decomposing (1.1) into the projections onto the null space of M and onto its or-
thogonal complement, multiplying the latter by ε and taking the limits of the results.
However, in order to obtain the limit equation for the three-scale singular limit in
which (1.2), (1.3) holds it is necessary to use perturbation theory to compute some
number of terms of the power series in the small parameter μ = δ

ε
for the eigenval-

ues and eigenspaces ofL+μM in Fourier space. The number of terms required and
the resulting limit equation depend on the relationship between δ and ε as they both
tend to zero. In order to obtain convergence without restricting to subsequences it is
necessary to restrict the relationship between δ and ε so as to obtain a specific limit
equation. This requires the additional assumption that for some integer s � s0 either

δ

ε1+ 1
s

→ C > 0 as ε and δ tend to zero (1.6)

or

δ

ε1+ 1
s

→ ∞ and
δ

ε1+
1

s+1

→ 0 as ε and δ tend to zero, (1.7)

either ofwhich implies (1.2), (1.3) hold.Note that if δ

ε1+ 1
r

→ C > 0 for some r > s0

that is not an integer then (1.7) holdswith s = �r�. The limit equation is different for
different values of s and even for different values ofC in (1.6), but is the same for all r
in (s, s+1). The reason that the limit equation depends onC is that when (1.6) holds
then the limit equation contains a term Tlim arising from the power series expansion
in δ of 1

δ
(L+μM ).Moreover, althoughbothL andM are both boundedoperators

from H1 to L2 it turns out that Tlim may not be, as will be explained inDefinition 4.4
and Remark 4.5 below. Such terms do not occur in two-scale singular limits. As
a result, the second time derivative of the limit solution may not belong to L2,
although the limit process ensures that its first time derivative does belong to L2.

After presenting the example showing the necessity of our conditions for obtain-
ing uniform bounds in Section 2, the uniform existence theorem will be formulated
precisely and proven in Section 3, and the convergence theorem will be formulated
precisely and proven in Section 4. Some simple examples of the perturbation pro-
cedure and the limit equations will also be presented in that section. In forthcoming
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work the results here will be applied to the problem that motivated this research,
namely the simultaneous zero Alfvén number and zero Mach number limit of the
scaled compressible inviscid MHD equations

a(1 + εMr)
(
∂t r + u·∇r) + R(r, εM)∇·u + ε−1

M ∇·u = 0, (1.8a)

(1 + εMr)
(
∂tu + u·∇u

)+ R(r, εM)∇r + ε−1
M ∇r

+ ∇ |b|2
2

− b·∇b = δ−1
A (∂zb − ∇b3), (1.8b)

∂tb + u·∇b + (∇·u)b − b·∇u = δ−1
A (∂zu − ez ∇·u), ∇·b = 0, (1.8c)

where the small parameters εM and δA are respectively theMach number and Alfvén
number, the fluid density is 1+ εMr , its velocity is u, the magnetic field is ez + δAb
with ez being the unit vector in the z-direction, and the coefficient functions a and
R depend on the constitutive relation giving the fluid pressure as a function of its
density.

2. Example

Consider the system

a(εw)ut − 1
δ
v = 0, a(εw)vt + 1

δ
u = 0, wt = 0, (2.1)

which has the form (1.1), together with the initial data

u(0, x) = u0 := δ, v(0, x) = v0 := 0, w(0, x) = w0(x) (2.2)

that satisfy the condition that the initial time derivative be uniformly bounded.
Arguments that we will make regarding this simpler system could be adapted to
more complex versions. For example, the system could be turned into one in which
the large terms involve derivatives with respect to an additional spatial variable y
by replacing the terms − 1

δ
v and 1

δ
u by 1

δ
vy and 1

δ
uy , respectively, and changing u0

to δ cos y. A term containing 1
ε
could also be added.

It will be convenient to write the solution to (2.1), (2.2) in terms of

z := u + iv, (2.3)

which satisfies

zt = − i z

δa(εw0(x))
, z(0, x) = δ, (2.4)

since w(t, x) = w0(x). The solution to (2.4) is

z(t, x) = δe
− i t

δa(εw0(x)) . (2.5)

Differentiating (2.5) or its derivatives with respect to t produces a term containing
a factor 1

δ
, while differentiating with respect to x produces a term containing a

factor ε
δ
since the x-dependence in the exponent of (2.5) lies inside a(ε·). Taking
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into account the factor of δ in (2.5) that comes from the initial condition, this shows
that

∂�
x∂

k
t z = ε�

δk+�−1 (zk,�(t, x) + o(1)) (2.6)

for some function zk,� that is not identically zero provided that both a and w0
genuinely depend on their argument.

The standard existence theory for symmetric hyperbolic systems in spatial di-
mension d requires obtaining a bound on the Hs0+1 norm of solutions. The sys-
tem (2.1) can be considered to be a system in any dimension, and estimate (2.6)
implies that the solution of (2.1), (2.2) will be uniformly bounded in Hs0+1 only
when εs0+1

δs0
is bounded, which requires that (1.3) must hold.

Moreover, if the condition that the initial data must be well prepared is dropped
then the initial value of u in (2.2) can be 1 rather than δ, which makes (2.6) more
singular by one power of δ. The condition that the Hs0+1 norm of the solution be
uniformly bounded then requires that εs0+1

δs0+1 be bounded, that is, that δ � cε, so no
general result beyond the Klainerman–Majda balance is then possible.

3. Uniform Existence Result

3.1. Scaling

Estimate (2.6) implies that the derivatives of solutions (u, v, w) of (2.1) satisfy
corresponding estimates, except that (u, v, w) itself and its pure spatial derivatives
are no smaller than O(1) because that is the size of the component w. These
estimates suggest that the appropriate norm of solutions of (1.1) to estimate would
be

‖u‖Hs0+1 +
s0+1∑

k=1

∑

0�|α|�s0+1−k

δk+|α|−1

ε|α| ‖Dα∂kt u‖L2 , (3.1)

where as usual Dα denotes the spatial derivative
∏d

j=1 ∂
α j
x j of order |α| :=∑d

j=1 α j .
Although our method indeed allows us to estimate the weighted norm (3.1) of solu-
tions, doing so requires keeping an exact count of the spatial derivatives appearing
in instances of the Gagliardo–Nirenberg inequalities (3.16) below. In order to avoid
the need to count spatial derivatives we will instead perform a simplified estimate
by using weights that depend only on the number of time derivatives, with the
weight of the term ∂kt u and its spatial derivatives equal to εk . These weights equal
their counterparts in (3.1) for the highest spatial derivative of ∂kt u, under the as-
sumption that equality holds in (1.3). For lower-order spatial derivatives when that
equality holds, or for all cases when strict inequality holds in (1.3), the weights we
use are smaller than their counterparts in (3.1). Hence the simplified estimate will
be somewhat weaker than the estimate that would be obtained using (3.1). With
one exception this difference is of little importance, because estimates of norms
of time derivatives of solutions weighted by small constants are simply a means
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of obtaining an unweighted estimate for the spatial norms of solutions. The one
exception is that the L2 norm of ut in (3.1) has weight one and so yields a uniform
bound, while the L2 norm of ut in the simplified scheme has weight ε and so does
not yield a uniform bound. Obtaining a uniform bound for some norm of ut is
important for the convergence theory, and it will turn out that the time evolution of
the unweighted L2 norm of ut can be estimated in terms of the norms appearing in
the simplified estimates, so we will simply adjoin the unweighted L2 norm of ut to
the simplified scheme of estimates.

However, as is common in the theory of hyperbolic systems, we must modify
the standard L2 and Hs norms to include the coefficient matrix A0(εu) of the time-
derivative term in the PDE (1.1), with the argument εu of A0 taken from some
solution to (1.1). We therefore define

〈v,w〉A0 :=
∫

vTA0(εu)w dx,

‖v‖0,A0 :=
√

〈v, v〉A0 ,

‖v‖�,A0 :=
√ ∑

0�|α|��

‖Dαv‖20,A0
,

|||u|||s,ε,A0 :=
√√√√

s∑

k=0

ε2k‖∂kt u(t, ·)‖2s−k,A0
,

||||u||||s,ε,A0 :=
√

|||u|||2s,ε,A0
+ ‖ut‖20,A0

.

(3.2)

The corresponding quantities with the subscript A0 omittedwill denote the standard
inner product and norms in which A0 is replaced by the identity matrix. Assump-
tion 3.3 together with the estimates to be obtained will ensure that the two are
equivalent for the time intervals considered here. The definitions in (3.2) are a
slight abuse of notation, both since the argument of A0 is usually not given explic-
itly but must be understood from the context, and because the value of |||u|||s,ε,A0

and ||||u||||s,ε,A0 at a given time does not depend solely on the value of u at that time
on account of the inclusion of time derivatives.

Remark 3.1. The standard existence theorem for symmetric hyperbolic systems ([9,
Ch. 2, Theorem 2.1]) shows that there exists a unique solution, for some time that
may depend on δ and ε, to the initial-value problem consisting of (1.1) together
with an initial conditionu(0, x) = u0(x, δ, ε) ∈ Hs0+1, and,moreover that solution
continues to exist as long as its Hs0+1 norm remains finite ([9, Ch. 2, Theorem 2.2]).
Hence in order to prove that the time of existence can be taken to be independent of
δ and ε it suffices to obtain a uniform bound on the Hs0+1 norm of the solution. The
proof of the existence theorem uses estimates in which the function u appearing
inside A0 in the norm ‖ ‖�,A0 from (3.2) differs from the solution being estimated.
However, since in this paper the solutions being estimated are already known to
exist the function u appearing inside A0 in the norms (3.2) will simply be the
solution that is being estimated.
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Remark 3.2. The standard energy estimates for both symmetric hyperbolic systems
without large terms and for singular limits obeying Klainerman–Majda balance
involve only spatial derivatives of the solution. The reasons that time derivatives
are also needed here and why an unweighted estimate for the time derivative is only
obtained in the L2 norm will be explained after the proof of Theorem 3.6.

3.2. Assumptions and Initial Data

The following standard conditions on the terms appearing in system (1.1) will
be assumed, where s0 is defined in (1.4):

Assumption 3.3. 1. The matrices A0 and the A j are symmetric and are Cs0+1

functions of their arguments.
2. The matrix A0 is positive definite; more specifically there are positive con-

stants c0 and b0 such that

A0(v) � c0 I for |v| � b0. (3.3)

3. The function G(t, x) := F(t, x, 0) is bounded in Hs0+1 uniformly in t , and
for 1 � k � s0 + 1 the Hs0+1−k norm of ∂kt G is bounded uniformly in t . In

addition, the function H(t, x, u) := ∫ 10 ∂F
∂u (t, x, αu) dα belongs to Cs0+1.

4. The operators L and M are anti-symmetric constant-coefficient differential
or pseudodifferential operators of order at most one.

Remark 3.4. The identity

F(t, x, u) − F(t, x, 0) =
∫ 1

0

d

dα
F(t, x, αu) dα =

[∫ 1

0

∂F

∂u
(t, x, αu) dα

]
u

together with the definitions in Assumption 3.3 show that

F(t, x, u) ≡ G(t, x) + H(t, x, u)u. (3.4)

As noted in the introduction, the initial data will be required to be chosen so
that ut (0, x) from (1.5) is uniformly bounded in Hs0 . From the PDE (1.1) we see
that this well-preparedness condition is equivalent to the condition that

( 1
δ
L + 1

ε
M )u(0, x, δ, ε) be uniformly bounded in Hs0 . (3.5)

Under the above conditions Lemma 3.5 below shows that the |||| ||||s0+1,ε,A0

norm of u will be uniformly bounded at time zero. In the statements of both this
result and the main theorem we will use the Sobolev embedding constant, that is,
the constant K such that

sup
x

|v(x)| � K‖v‖s0 . (3.6)
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Lemma 3.5. Assume that initial data satisfy

‖u0(x, δ, ε)‖s0+1 � m1 and ‖( 1
δ
L + 1

ε
M )u0(x, δ, ε)‖s0 � m2 (3.7)

for all

0 < ε � ε0 and 0 < c1ε
1+ 1

s0 � δ � 1, (3.8)

that Assumption 3.3 holds, and that ε0Km1 � b0
2 , where b0 is defined in Assump-

tion 3.3. Let u be any function such that u(0, x, δ, ε) = u0(x, δ, ε), ut (0, x, δ, ε)
equals the right side of (1.5) obtained by solving (1.1) for ut and setting t equal
to zero, and the higher time derivatives of u at time zero through order s0 + 1 are
determined recursively in similar fashion by solving ∂

j
t of the PDE (1.1) for ∂

j+1
t u,

setting t equal to zero, and substituting in the values of lower time derivatives of u
at time zero already so determined.

Then there is a constant M depending only on the spatial dimension d, the
constants c0 from (3.3), m1 and m2 from (3.7), and ε0 and c1 from (3.8), the norms
ofL andM as operators from H1 to L2, the Cs0+1 norms of A0, A j , and H over
the domain {|u| � 2Km1}, and the Hs0+1 norm of G, such that at time zero

(||||u||||s0+1,ε,A0)
∣∣
t=0 � M (3.9)

for all δ and ε satisfying the above conditions.

Proof. Roughly speaking, the result of the lemma follows from the fact that when
ut (0, x) is O(1) then using the PDE (1.1) plus induction shows that at time zero

εk∂kt u is O( εk

δk−1 ) for 2 � k � s0 + 1, which is O(1) on account of the assumption

that δ � c1ε
1+ 1

s0 , and hence yields the uniform boundedness of the |||| ||||s0+1,ε,A0

norm of u at time zero.
More specifically, by repeated applications of the PDE (1.1) to express higher

time derivatives in terms of u, ut and their spatial derivatives, and applications ofL
andM to them, we obtain that, for 2 � k � s0 + 1, the leading-order term of ∂kt u

is ( 1
δ
L + 1

ε
M )k−1∂t u

∣∣
t=0, which yields the estimate εk‖∂kt u

∣∣
t=0‖s0+1−k � c εk

δk−1 .
To see this note first that the assumptions on the initial data ensure that A0 � c0 I .
Applying ∂k−1

t to (1.1), using the invertibility of A0 to solve the result for ∂kt u,
taking up to s0 + 1− k spatial derivatives of the result, and summing the L2 norms
of the results yields a formula for the Hs0+1−k norm of ∂kt u in terms of L2 norms
of products of spatial derivatives of lower-order time derivatives of u. Note that
coefficients such as A j (u) can be estimated in the maximum norm in terms of
‖u‖s0 and so may be pulled out of those L2 norms.

For the case k = 2 this yields an estimate of ‖utt‖s0−1 in terms of L2 norms
of products of the factors u, ux ut , G and Gt and their spatial derivatives of order
at most s0, with coefficients of size at most O( 1

δ
) coming from the presence of 1

δ
in the time derivative of (1.1). Since all those factors are bounded in Hs0 at time
zero, and Hs0 is an algebra, this yields the estimate ‖utt

∣∣
t=0‖s0−1 � c

δ
.

The analogous expressions for ‖∂kt u‖s0+1−k with k > 2 include factors of utt
and possibly higher time derivatives, plus their spatial derivatives. Although utt and
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higher-order time derivatives of u do not belong to Hs0 at time zero, the resulting
expressions could be estimated by the method used in the proof of Theorem 3.6 to
estimate similar expressions. However, it is simpler to use finite induction to express
higher-order time derivatives in terms of u and ut . Since the time derivative in (1.1)
is expressed in terms of expressions involving at most one spatial derivative, this
again yields an estimate in terms of L2 norms of products of the factors u, ux , ut
and their spatial derivatives of order at most s0, plus time and spatial derivatives
of G of order at most s0, this time with coefficients of size at most O( 1

δk−1 ) since
equation (1.1) is used at most k−1 times to express k −1 time derivatives in terms
of spatial derivatives. Note that wherever ut and its spatial derivatives occur the
time derivative is left unaltered rather than using (1.1) to express ut in terms of u,
because ut is O(1) at time zero but the individual terms on the right side of (1.1)
may not be. This yields the estimates ‖∂kt u

∣∣
t=0‖s0+1−k � c

δk−1 . As indicated at the
beginning of the proof, these estimates together with assumption (3.8) show that
the |||| ||||s0+1,ε,A0 norm of u is uniformly bounded at time zero. 
�

The well-preparedness condition (3.5) can be achieved, for example, by using
initial data of the form

u(0, x, δ, ε) = u0(x, δ, ε) :=
m∑

j=0

(
δ
ε

) j
ũ j (x) + δU0(x, δ, ε) (3.10)

for some nonnegative integer m, with the ũ j belonging to Hs0+1 and U0 bounded
in that space uniformly in δ and ε. In fact, since

( 1
δ
L + 1

ε
M
)
u0(x, δ, ε) = 1

δ
L ũ0 +

m∑

j=1

δ j−1

ε j (L ũ j

+M ũ j−1) + δm

εm+1M ũm + O(1),

in view of the scaling assumption (1.2), condition (3.5) will hold provided that

L ũ0 = 0, L ũ j = −M ũ j−1 for j = 1, . . . ,m,

and either M ũm = 0 or δm � cεm+1.

For example, the well-preparedness condition holds when m = 0 andL ũ0 = 0 =
M ũ0, or when m = s0, equality holds in (1.3), L ũ0 = 0, and

L ũ j = −M ũ j−1 for j = 1, . . . , s0. (3.11)

When the ranges of L and M overlap, the condition (3.11) allows more general
initial data than would be obtained by requiring that each side of those equations
vanish separately.
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3.3. Theorem and Proof

Theorem 3.6. Under the assumptions of Lemma 3.5, there exists a constant T
depending only on the quantities that M in that lemma depends on, such that for all
ε and δ satisfying (3.8) the solution of the initial-value problem (1.1), u(0, x, δ, ε) =
u0(x, δ, ε) exists on [0, T ] and satisfies max0�t�T ||||u||||s0+1,ε,A0 � 2M.

Proof. The local existence and continuation theorems ([9, Ch 2., Theorems 2.1–
2.2]) mentioned in Remark 3.1 ensure that the solution of the initial-value problem
exists on some time interval that might depend on δ and ε, and will continue to
exist for a time independent of those small parameters provided that it satisfies an
Hs0+1 estimate independent of them. Hence it suffices to prove such an estimate.
Moreover, although the norm |||| ||||s0+1,ε,A0 used in the estimates below depends on
the solution u being estimated, condition (3.3) ensures that the resulting estimate
will indeed be uniform. The estimates that will be derived are similar to standard
energy estimates for solutions of symmetric hyperbolic systems but require keeping
track of the powers of δ and ε that appear in those estimates for the system (1.1).

Applying Dα∂kt with 0 � k � s0 + 1 and 0 � |α| ≤ s0 + 1− k to (1.1), taking
the inner product with 2Dα∂kt u, integrating over the spatial variables, integrating by
parts in the terms that involve A j undifferentiated, noting that the terms involving
L or M drop out on account of the anti-symmetry of those operators, summing
over all α satisfying the above-mentioned condition, and multiplying the result by
the weight ε2k yields

d
dt

[
ε2k‖∂kt u‖2s0+1−k,A0

] = d
dt

⎡

⎣ε2k
∑

0�|α|�s0+1−k

∫
(Dα∂kt u) · A0(εu)(Dα∂kt u) dx

⎤

⎦

= ε2k
∑

0�|α|�s0+1−k

∫
(Dα∂kt u) ·

[
εut · ∇u A0 +

∑

j

ux j · ∇u A j

]
(Dα∂kt u) dx

+ 2ε2k ·
∑

0�|α|�s0+1−k

∫
(Dα∂kt u) ·

{
Dα∂kt (G+Hu) − [Dα∂kt , A0]ut −

∑

j

[Dα∂kt , A j ]ux j
}
dx

� ‖εut · ∇u A0 +
∑

j

ux j · ∇u A j‖L∞ε2k‖∂kt u‖2s0+1−k

+ cεk‖∂kt u‖s0+1−k ·
(
εk‖∂kt G‖s0+1−k + εk‖H‖L∞‖∂kt u‖s0+1−k + εk

[ ∑

0�|α|�s0+1−k

‖[Dα∂kt , A0]ut‖2L2

]1/2

+ εk
[ ∑

0�|α|�s0+1−k

(‖Dα∂kt , H ]u‖2L2 +
∑

j

‖[Dα∂kt , A j ]ux j ‖2L2

)]1/2)
, (3.12)

where the inequality is obtained by pulling out εut · ∇u A0 +∑ j ux j · ∇u A j from
the first integral in maximum norm, and breaking the second integral into several
parts and using the Cauchy–Schwartz inequality in each of them.

Since A0 = A0(εu) will be differentiated at least once when it appears in any
commutator term on the right side of the inequality in (3.12), which yields at least
one power of ε, the power of ε in every term appearing on the right side of the
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inequality in (3.12) is at least as large as the total number of time derivatives in that
term. By the definition of the ||| |||s0+1,ε,A0 norm plus the smoothness assumption
on A0, this implies that in order to bound the right side of the inequality in (3.12)
by a continuous function of |||u|||s0+1,ε,A0 it suffices to bound all the terms there by
a continuous function of |||u|||s0+1,1 after replacing ε by 1 and replacing A0 by the
identity matrix.

The condition on s0 ensures that ‖ut‖L∞ and ‖∇u‖L∞ are bounded by a con-
stant times ‖ut‖s0 and ‖u‖s0+1, respectively, and those norms are each bounded
by |||u|||s0+1,1. By the smoothness of the A j ,

∑d
j=0 ‖∇u A j‖L∞ � c(‖u‖s0) �

c̃(|||u|||s0+1,1) for some continuous function c̃. This yields the desired estimate for
the entire first term on the right side of the inequality in (3.12). The terms on the
right side of the inequality in (3.12) in which G and the L∞ norm of H appear are
also so bounded in view of the assumptions of those functions.

There remains to estimate only the terms on the right side of the inequality
in (3.12) that involve commutators. Since the factor ‖∂kt u‖s0+1−k multiplying the
norms of the commutators is one of the terms in |||u|||s0+1,1, only the norms of the
commutator terms themselves must be estimated. We can pull out in the L∞ norm
any factor such as ∇u H that depends only on t, x and u without derivatives, and
the assumptions on the various coefficients ensure that each factor so pulled out is
bounded by a continuous function of ‖u‖s0 and hence by a continuous function of|||u|||s0+1,1. Since the presence of the commutator ensures that at least one derivative
will be applied to the function appearing in the commutator, the terms arising from
the commutators that remain inside the L2 norms all take the form

[ ∫ L∏

�=1

|Dα�∂
k�
t u|2 dx

]1/2
, (3.13)

where L � 2, 1 � |α�|+k� � s0+1, and
∑

�(|α�|+k�) � s0+2. If |α�|+k� = s0+
1 for some � then only one derivative is applied to the other factor, so that factor can
be pulled out in L∞ norm and estimated by ‖u‖s0+1 or ‖ut‖s0 , both of which appear
in |||u|||s0+1,1. After pulling out that factor the integral becomes

∫ |Dα�∂
k�
t u|2 dx ,

which is bounded by ‖∂k�
t u‖2s0+1−k�

, which also appears in |||u|||s0+1,1. Otherwise
|α�| + k� � s0 for all �, and by using the multiple-factor version of Hölder’s
inequality we will bound the integral in (3.13) by

L∏

�=1

(∫ ∣∣∣Dα�∂
k�
t u
∣∣∣
2p�

dx

) 1
p�

, (3.14)

where the exponents p�, which will be chosen later, must satisfy

1 � p� � ∞ and
∑

�

1

p�

= 1. (3.15)

The integrals in (3.14)will then be bounded via theGagliardo–Nirenberg inequality
(for example, [3, p. 24])

‖v‖L p � c‖v‖ar ‖v‖1−a
L2 , (3.16)
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in which the parameters must satisfy 1
p = 1

2 − ar
d , r � 1, and 0 � a < 1, where

as usual d is the spatial dimension. Although a is actually allowed to equal the
endpoint value 1 for many values of the other parameters, we will avoid that value
in order to obtain a unified proof. The inequality constraint on a will hold provided
that 1

2 � 1
p > 1

2 − r
d . In order to estimate the integrals in (3.14) we apply (3.16)

with v := Dα�∂
k�
t u, so we will let r = s0 + 1 − (|α�| + k�), since that is the

highest Sobolev norm of Dα�∂
k�
t u that is bounded by |||u|||s0+1,1. Since we only use

(3.14) when |α�| + k� � s0 for all �, the condition r � 1 will indeed hold. Since
the norm of Dα�∂

k�
t u appearing in (3.14) is the L2p� norm, p in (3.16) equals 2p�.

Substituting in these values andmultiplying everywhere by two turns the inequality
constraint on p into the inequality constraint

1 � 1

p�

> 1 − 2(s0 + 1 − (|α�| + k�))

d
(3.17)

on p�. We now show that it is possible to choose the p� such that both (3.15) and
(3.17) hold.

Since |α�|+k� � s0, the interval towhich 1
2p�

is restricted by (3.17) is nonempty.

Since |α�| + k� � 1 and d
2 � s0 � d

2 + 1, the lower limit in (3.17) is negative iff
|α�| + k� = 1. The inequality in (3.15) is equivalent to

1 � 1

p�

� 0. (3.18)

Combining (3.18) with (3.17) yields

1 � 1

p�

> max

(
0, 1 − 2(s0 + 1 − (|α�| + k�))

d

)
, (3.19)

where for simplicity we ignore the possibility p� = ∞, which will not be needed.
Every value of p� satisfying (3.19) is allowed by both (3.17) and (3.18), so it suffices
to show that we can choose values in the intervals in (3.19) that sum to one. That
is possible iff the sum of the lower values there is less than one and the sum of the
upper values is at least one. The latter condition holds trivially, and as noted above
the second expression inside the max in (3.19) is negative iff |α�| + k� = 1, so it
suffices to show that

1 >
∑

1���L
|α�|+k��2

[
1 − 2(s0 + 1 − (|α�| + k�))

d

]
. (3.20)

Let L2 denote the number of values of � for which |α�| + k� � 2. If L2 = 0 then
the sum on the right side of (3.20) vanishes, so that condition indeed holds. When
L2 � 1 then (3.20) can be written more explicitly as

1 > L2(1 − 2
d (s0 + 1)) + 2

d

[(
L∑

�=1

(|α�| + k�)

)
− (L − L2)

]
. (3.21)
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Condition (3.21) can be rewritten as

(L2 − 1)(s0 − d
2 ) > (2 − L) +

( L∑

�=1

(|α�| + k�) − (s0 + 2)
)
. (3.22)

Since L2 � 1 by assumption, s0 > d
2 , L � 2 and

∑L
�=1(|α�|+k�) � s0+2, the left

side of (3.22) is non-negative, and the right side there is non-positive. Moreover,
since L � 2, if L2 = 1 then exists an � for which |α�|+k� = 1, and in that case the
fact that |α�|+ k� � s0 implies that either either L > 2 or

∑
�(|α�|+ k�) < s0 + 2.

This shows that either the left side of (3.22) is strictly positive or the right side there
is strictly negative, and hence that inequality indeed holds.

Summing over 0 � k � s0 + 1 the estimates that we have obtained shows that

d

dt
|||u|||2s0+1,ε,A0

� c(|||u|||s0+1,ε,A0) (3.23)

for some continuous function c.
Finally, differentiating (1.1) with respect to t , taking the inner product of the

result with 2ut , integrating over the spatial variables, integrating by parts in the
terms that involve A j undifferentiated, and noting that the terms involving L or
M drop out on account of the anti-symmetry of those operators yields

d
dt

[‖ut‖20,A0

] = d
dt

[∫
ut · A0(εu)ut dx

]

=
∫

∂t u ·
[
εut · ∇u A0 +

∑

j

ux j · ∇u A j

]
ut dx

+ 2
∫

ut ·
{
∂t (G+Hu)−(εut · ∇u A0)ut −

∑

j

(ut · ∇u A j )ux j

}
dx

� ‖εut · ∇u A0 +
∑

j

ux j · ∇u A j‖L∞‖∂t u‖20

+ c‖∂t u‖0
(
‖∂t G‖0 + ‖H‖L∞‖∂t u‖0 + ‖ ∂H

∂t ‖L∞‖u‖0 + ‖ut‖0‖∇u H‖L∞‖u‖L∞

+ ε‖ut‖L∞‖∇u A0‖L∞‖ut‖0 + ‖ut‖0
∑

j

‖∇u A j‖L∞‖ux j ‖L∞
)
,

� c(|||u|||s0+1,ε,A0 )
[
‖ut‖20 + ‖ut‖0

]
(3.24)

where the first inequality follows in similar fashion to (3.12) and the second from
Assumption 3.3 plus the definition of the ||| ||| norm. Adding (3.24) to (3.23) yields
the uniform estimate

d

dt
||||u||||2s0+1,ε,A0

� c(||||u||||s0+1,ε,A0) (3.25)

for some continuous function c. By Lemma 3.5, ||||u||||s0+1,ε,A0 is bounded uni-
formly in δ and ε by M at time zero, so the differential inequality (3.24) shows that
there is a fixed positive constant T such that max0�t�T ||||u||||s0+1,ε,A0 � 2M . 
�
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Remark 3.7. 1. In the standard energy estimates for spatial derivatives of solutions
of systems without large terms and of systems satisfying Klainerman–Majda
balance, integrals of the form (3.14) not containing time derivatives are esti-
mated using the Gagliardo–Nirenberg inequality

‖Dαv‖L p � c‖v‖as ‖v‖1−a
L∞ (3.26)

with p = 2s
|α| , a = |α|

s , s � s0, and s > |α| instead of (3.16). However, it is not
possible to use (3.26) to estimate integrals involving second and higher time
derivatives, because the boundedness of |||u|||s0+1,ε,A0 does not imply even an
ε-dependent bound for ‖∂kt u‖L∞ when k � 2.

2. The special case of (3.14) and (3.16) in which p� = 2, |α�| + k� = 2, p =
4, r = 1, a = d

4 , and d is either two or three so that s0 = 2 was used previously
in [2, §4.1 and Appendix].

3. The expression εut appears in the estimates for a purely spatial derivative Dα

of u, arising from the commutator term [Dα, A0]ut .When the spatial derivative
terms in the PDE are atmost O( 1

ε
) then substituting for εut from the PDEyields

a spatial derivative term of order one. Making this substitution allows spatial
derivatives to be estimated without requiring estimates of time derivatives, both
for systemswithout large terms and in theKlainerman–Majda theory. However,
for the PDE (1.1) with the scaling (1.2) this procedure cannot be used because
it yields terms of order ε

δ
, which is large. It is therefore necessary to leave the

term εut on the right side of the energy estimates for spatial derivatives of u,
and this necessitates estimating time derivatives as well. Similarly, two-scale
systems for which A0 depends on u rather than εu also require estimates of
time derivatives [1,12].

4. In a similar fashion, a term containing εutt appears in estimates for a spatial
derivative of ut on account of the commutator term [Dα∂t , A0]ut . Assuming
that ut is bounded initially but εutt is large at time zero, this prevents us from
obtaining an unweighted estimate for spatial derivatives of ut . The reason we
do obtain an unweighted estimate for ut itself is that the commutator term
[∂t , A0]ut does not yield any second time derivative.

5. The bound (3.8) on how fast δ can tend to zero compared to ε is only needed
to ensure that the |||| ||||s0+1,ε,A0 norm of the solution is uniformly bounded at
time zero. The proof of Theorem 3.6 therefore also yields uniform bounds for
a uniform time in the case when the time derivatives of the solution through
order s0 + 1 are uniformly bounded at time zero, without the need for as-
sumption (3.8) and without using weights of powers of ε in the norms. In
particular, taking ε ≡ 1 and letting δ → 0 yields a proof for arbitrary di-
mensions of the uniform existence theorem stated in [1] but only proven
there in the case d = 1, for which no Gagliardo–Nirenberg estimates are
needed.
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4. Convergence

4.1. A Finite-Dimensional Perturbation Result

We begin with a result on perturbations of self-adjoint matrices T (μ) :=
1

μp (T (0,0) +μT (0,1)), whereμ is a small parameter, and p is a positive integer. The
result will be used in the proof of the convergence theorem in Section 4.2, where
T (0,0) and T (0,1) will stand for the Fourier symbols of operatorsL andM respec-
tively. The result says that there is an orthogonal projection P(μ) that commutes
withT (μ), on whose rangeT (μ) is bounded uniformly and has a limit asμ → 0,
and on whose null space T (μ) is bounded from below by a constant times 1

μ
and

has a finite expansion in inverse powers of μ.

Lemma 4.1. Define T (μ) := 1
μp T (0)(μ) := 1

μp (T (0,0) + μT (0,1)), where T (0,0)

and T (0,1) are operators on a finite dimensional inner-product space X that are
either both self-adjoint or both skew-adjoint, μ is a small parameter, and p is a
positive integer. Then

1. There exists an orthogonal projection operator P(μ) that commutes with
T (μ) for μ �= 0, is analytic in μ for real μ, and satisfies

‖P(μ)T (μ)P(μ) f ‖X � c1‖ f ‖X (4.1)

‖(I − P(μ))T (μ)(I − P(μ)) f ‖X � c2
μ

‖(I − P(μ)) f ‖X (4.2)

for 0 < μ < μ0, where ‖ ‖X is the norm on the space X and μ0 and the c j are
positive constants.

2. For 0 � j � p−1 there exist commuting orthogonal projection operators P( j)

such that the ranges of the complementary projections I − P( j) are mutually
orthogonal subspaces, and

P(0) =
p−1∏

j=0

P( j) = I −
p−1∑

j=0

(I − P( j)). (4.3)

3. The P( j) are the orthogonal projection operators onto the null spaces of oper-
ators T ( j, j), which are are determined from T (0)(μ) := T (0,0) + μT (0,1) via
the reduction process of [6, §II.2.3]: Specifically, after modifying the notation
to facilitate repeated reductions, the T ( j, j) are the first terms in the expansions

T ( j+1)(μ) := 1

μ
P̃( j)(μ)T ( j)(μ)P̃( j)(μ) =

∞∑

k=0

μkT ( j+1, j+1+k). (4.4)

Here P̃( j)(μ) = P̃( j−1)(μ)P( j)(μ)P̃( j−1)(μ) for j � 0, P( j)(μ) is the or-
thogonal projection onto the direct sum of the eigenspaces of T ( j)(μ) of all
eigenvalues of order o(1), and P̃(−1)(μ) := I . The T ( j,k) are all self-adjoint
when T (0,0) and T (0,1) are self-adjoint, and are all skew-adjoint when T (0,0)

and T (0,1) are skew-adjoint.
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4.

lim
μ→0

P(μ)T (μ) = T (p,p). (4.5)

5. The operator T (0,0) is given, and for 1 � j � 2,

T (1,1) = P(0)T (0,1)P(0) (4.6)

T (2,2) = −P̃(1)T (0,1)
(
T (0,0)
)−1

ψ
T (0,1) P̃(1) (4.7)

where P̃( j) := ∏ j
�=0 P

( j), and (M)−1
ψ denotes the pseudo-inverse of the ma-

trix M, defined by
(
C−1
(
M11 0
0 0

)
C
)−1
ψ

:= C−1
(

M−1
11 0
0 0

)
C.

Proof. If both T (0,0) and T (0,1) are skew-adjoint then multiplying both of them
by i makes them self-adjoint without affecting the projections, so we may assume
that they are self-adjoint. Moreover, as noted in [6, §II.6.1], the reduction process
preserves self-adjointness and so may be continued without limitation, since the
nilpotent factors of the general case are absent. In particular, by [6, Theorem 6.1
in §II.6.1] the eigenvalues of T ( j)(μ) and the projection operators P( j)(μ) are all
analytic for real μ. As in [6, §II.1.3] let R(z, μ) denote the resolvent (T (0)(μ) −
z)−1 wherever z is not an eigenvalue of T (0)(μ). In view of the analyticity of the
eigenvalues, [6, (1.16) in §II.1.4] shows that for μ sufficiently small the operator

P(μ) = − 1
2π i

∫

|z|=μ
p− 1

2
R(z, μ) dz

is the orthogonal projection onto the direct sumof the eigenspaces of the eigenvalues
of T (μ) of size at most O(1), and I − P(μ) is the orthogonal projection onto
the direct sum of the eigenspaces of the eigenvalues of T (μ) of size at least
O(μ−1) � 1. These estimates show that (4.1), (4.2) hold.

We carry out the reduction process of [6, §II.2.3] while choosing the unper-
turbed eigenvalue zero at every stage. However, we do not want to include the
range of I − P( j−1) when considering the zero eigenspace of T ( j, j) since that sub-
space has already been accounted for at previous stages of the reduction process.
For this reason we replace the factor P( j)(μ), which would appear in (4.4) if the
corresponding formula [6, (2.37) in §II.2.3] were simply rewritten in our notation,
with P̃( j)(μ). This corresponds to the suggestion in [6, §II.2.3] to add a constant
multiple of I − P( j−1) to T ( j, j) but without the need to modify that operator. This
procedure yields (4.4).

Since T (μ), after multiplication by i if necessary, is self-adjoint for all μ,
formula (4.4) implies that all the T ( j,k) are then also self-adjoint after that multipli-
cation has been done if necessary. If at any stage of the reduction process the new
unperturbed operator T ( j+1, j+1) does not have any zero eigenspace except for the
range of (I − P( j)), then P( j+1) and hence also P(0) is identically zero, and if
j + 1 < p − 1 then T (k)(μ) is simply the zero operator for j + 1 < k � p − 1.

By the construction of the reduction process, I − P( j)(μ) is the orthogonal pro-
jection onto the direct sum of the eigenspaces of T (μ) whose eigenvalues are of
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size O(μ j−p). Since the eigenvalues for different values of j are distinct for small
enough μ, and T (μ) is self-adjoint, the ranges of I − P( j)(μ) for different values
of j are orthogonal to each other. This implies that the I − P( j)(μ) for different j
commute with each other, and hence so do the P( j)(μ). Since I −P(μ) is the or-
thogonal projection onto the union over 0 � j � p−1 of the eigenspaces ofT (μ)

whose eigenvalues are of size O(μ j−p), and those eigenspaces are orthogonal for
distinct j ,

I − P(μ) =
p−1∑

j=0

(I − P( j)(μ)). (4.8)

In addition, since the (I − P( j)(μ)) project onto mutually orthogonal subspaces,
(I − P( j1)(μ))(I − P( j2)(μ)) = 0 for j1 �= j2, which implies that

p−1∏

j=0

P( j)(μ) =
p−1∏

j=0

(I − (I − P( j)(μ))

= I −
p−1∑

j=0

(I − P( j)(μ))

+ terms with at least two distinct factors (I − P( jk )(μ))

= I −
p−1∑

j=0

(I − P( j)(μ)).

(4.9)

Since the eigenvalues of size O(1) of T ( j)(μ) are the perturbations of the nonzero
eigenvalues of T ( j, j), the continuity of the projections P( j)(μ) shows that as μ

tends to zero the orthogonal projection I − P( j)(μ) onto the direct sum of the
eigenspaces of eigenvalues of T ( j)(μ) that are O(1) tends to the orthogonal pro-
jection I − P( j) onto the direct sum of the eigenspaces of eigenvalues of T ( j, j)

that are nonzero. This shows that

P( j)(μ) → P( j) as μ → 0 (4.10)

in the strong (finite-dimensional) operator topology, which is isometric to a suit-
ably normedmatrix space. Therefore, taking the limit of (4.8), (4.9) and rearranging
yields (4.3). Taking the limit of the identities P( j)(μ)P(k)(μ) = P(k)(μ)P( j)(μ)

yields P( j)P(k) = P(k)P( j), and the orthogonality of the ranges of I − P( j)(μ)

imply the orthogonality of the ranges of I − P( j). This also shows that P( j) is the
orthogonal projection onto the null space of T ( j, j), where the T ( j, j) are the first
terms in the expansions (4.4).

SinceP(μ) is the orthogonal projection onto the direct sum of the eigenspaces
of T (μ) that are O(1) or o(1), continuing the reduction process one more step
yields (4.5).

The formulas for the T ( j, j) are obtained by using recursively formula [6, (2.18)
in §II.2.2], which in our notation becomes, for the case here in which there are no
nilpotents,
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T ( j+1, j+n) = −
n∑

r=1

(−1)r
∑

∑r
�=1 ν�=n∑r+1

�=1 k�=r−1
ν��1,k��0

S( j,k1)T ( j, j+ν1)S( j,k2) · · · S( j,kr )T ( j, j+νr )S( j,kr+1), (4.11)

S( j,0) := −P( j), S( j,�) :=
((

T ( j, j)
)−1

ψ

)�

for � � 1. (4.12)

In particular, for j = 0 and n = 1 only the term with r = 1 is present in the outer
sum in (4.11), and the inner sum then contains only the case where ν1 = 1 and
k1 = 0 = k2. Using (4.12), this yields (4.6). An analogous but longer calculation
yields (4.7). 
�
Remark 4.2. 1. Although T (0,k) ≡ 0 for k � 2, T ( j,k) may be nonzero for arbi-

trarily large values of k when j � 1.
2. Formula (4.11) shows that in order to calculate T (2,2) it is necessary to first cal-

culate T (1,1) and T (1,2), while in order to calculate T (3,3) it would be necessary
to first calculate T (1, j) for 1 � j � 3 and then T (2, j) for 2 � j � 3.

Example 4.3. 1. In the application of Lemma 4.1 to the convergence theorem the
operators T (0,0) and T (0,1) will be individual Fourier modes of the operators

L and M from (1.1). For example, if L = ( ∂x 0
0 0

)
and M =

(
0 ∂y
∂y 0

)
then

T (0,0) = ( ik 0
0 0

)
and T (0,1) = ( 0 i�

i� 0

)
for some fixed values of k and �. When

k �= 0 the projection onto the null space of T (0,0) is P(0) = ( 0 0
0 1

)
, and formulas

(4.6) and (4.7) yield T (1,1) = P(0)T (0,1)P(0) = 0 and T (2,2) =
(
0 0

0 −i�2
k

)
since

P(1) = I so P̃(1) = P(0)P(1) = P(0). If � �= 0 then T (0,0) and T (2,2) each have
one nonzero eigenvalue so the fact that thematrices are of size 2×2 implies that
T ( j, j) = 0 for j > 2, while if � = 0 then T ( j, j) = 0 for j � 2. When k = 0
but � is nonzero then T (0,0) = 0, P(0) = I, T (1,1) = T (0,1), P(1) = 0, and
T ( j, j) = 0 for j > 1, while when both k and � vanish then, for all j, T ( j, j) = 0
and P( j) = I .

2. The operators L and M in (1.1) are allowed to have order zero, that is, to be
simply multiplication by fixed matrices, and then the operators in the lemma
are simply the same operators. For example,

T (0,0) = L =

⎛

⎜⎜⎜⎜⎝

0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎠
,

T (0,1) = M =

⎛

⎜⎜⎜⎜⎝

0 0 0 a b
0 0 0 c d
0 0 im 0 0

−a −c 0 0 0
−b −d 0 0 0

⎞

⎟⎟⎟⎟⎠
. (4.13)
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For these operators,

T (1,1) =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 im 0 0
0 0 0 0 0
0 0 0 0 0

⎞

⎟⎟⎟⎟⎠
and

T (2,2) =

⎛

⎜⎜⎜⎜⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 bc − ad
0 0 0 ad − bc 0

⎞

⎟⎟⎟⎟⎠
.

When ad−bc �= 0 then all eigenvalues of T (0,0)+μT (0,1) have been accounted
for, so T ( j, j) = 0 for j > 2. On the other hand, when ad − bc = 0 then zero
is an eigenvalue of T (0,0) + μT (0,1) with multiplicity two for all μ (with the
eigenvectors being ( 0 0 0 −b a )T and ( −cμ aμ 0 −(1+b) a )T when a �= 0), so
T ( j, j) = 0 for j > 1.

4.2. Theorem and Proof

The following projections and operator will appear in the statement and proof
of the convergence theorem. We assume that either (1.6) or (1.7) holds for some
integer s � s0.

Let L and M be operators satisfying the conditions of Assumption 3.3. Let
f̂ (k) denote the Fourier transform of f on R

d or T
d and let (g(k))∨ denote the

corresponding inverse Fourier transform of g(k). Since L and M are constant-
coefficient operators there exist functions L̂ (k) and M̂ (k) such that L̂ f = L̂ f̂

and M̂ f = M̂ f̂ .

Definition 4.4. For any k, let P̂(k) and P̂(μ)(k) denote the projections P(0) and
P(μ), respectively, from Lemma 4.1, where p = s + 1 when (1.6) holds or p =
s+2 when (1.7) holds, T (0,0) := L̂ (k), and T (0,1) := M̂ (k). Define the projection
P by P f = (̂P(k) f̂ (k))∨, and the projection P(μ) by P(μ) f = (P̂(μ)(k) f̂ (k))∨.
In addition, when (1.6) holds then let T̂lim(k) = CsT (p,p), where C is the constant
from (1.6) and T (p,p) is from Lemma 4.1 with T (0,0), T (0,1), and p as mentioned
above, and define the operator Tlim by Tlim f = (̂Tlim(k) f̂ (k))∨. However, when
(1.7) holds then define Tlim = 0.

Remark 4.5. Since P̂(k) is an orthogonal projection for each k and hence bounded
by one, P is an orthogonal projection on L2 and a bounded operator on Hs for all
s. In contrast, although T̂lim(k) is a bounded operator for each k the operator Tlim
may be unbounded. By Lemma 4.1, T̂lim(k) is skew-adjoint for each k so Tlim is
anti-symmetric.
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Theorem 4.6. Assume that the conditions of Theorem 3.6 hold, that δ and ε tend to
zero while obeying either (1.6) or (1.7) for some integer s � s0, and that u0(x, δ, ε)
converges in Hs0+1 to u0,0(x) in that limit.

Then the solution u(t, x, δ, ε) of the initial-value problem (1.1), u(0, x, δ, ε) =
u0(x, δ, ε) converges to the unique solution U (t, x) belonging to L∞([0, T ];
Hs0+1) ∩ Lip([0, T ]; L2) of

P
[
A0(0)Ut +

d∑

j=1

A j (U )Ux j + TlimU − F(t, x,U )
] = 0, (4.14)

(I − P)U = 0 (4.15)

U (0, x) = u0,0(x), (4.16)

where P is the orthogonal projection operator from Definition 4.4 and Tlim is the
operator defined there.

Proof. The uniform bound for the |||| ||||s0+1,ε,A0 norm of the solution of (1.1),
proven in Theorem 3.6 shows that max0�t�T [‖u(t, ·)‖2s0+1 + ‖ut‖20]1/2 � 2M ,
where T and M are as in Theorem 3.6. By Ascoli’s theorem plus the weak-∗
compactness of L∞([0, T ]; Hs0+1), for every sequence of values of δ and ε tend-
ing to zero while satisfying (3.8) there is a subsequence converging weak-∗ in
L∞([0, T ]; Hs0+1) and strongly inC0([0, T ]; L2) to a limitU (t, x) in L∞([0, T ];
Hs0+1)∩Lip([0, T ]; L2). In particular, this convergence together with the assump-
tion on the convergence of the initial data show that (4.16) holds.

By interpolation between Sobolev spaces, the convergence and bounds obtained
so far imply that the subsequence also converges to U in C0([0, T ]; Hs0+1−μ) for
anyμ > 0, and hence also inC0([0, T ];C1). This yields the convergence in at least
L2 of A0(εu)ut +∑d

j=1 A j (u)ux j − F(t, x, u) to A0(0)Ut +∑ j A j (U )Ux j −
F(t, x,U ).

Nowapply the projectionP(μ) fromDefinition 4.4withμ = δ
ε
to the PDE (1.1),

which yields

1
δ
P
(

δ
ε

)
(L + δ

ε
M )u

= −P
(

δ
ε

)
⎡

⎣A0(εu)ut +
∑

j

A j (u)ux j − F(t, x, u)

⎤

⎦ . (4.17)

As noted above, the expression in brackets on the right side of (4.17) converges
in C0([0, T ]; L2) as δ and ε tends to zero in the manner stated in the theorem.
Sinceμ := δ

ε
tends to zero in that limit, the projection P( δ

ε
) converges in the strong

operator topology to P in that limit since the Fourier transform of the former is
uniformly bounded and converges pointwise to the Fourier transform of the latter,
so for any f ∈ L2, ‖[P(μ) − P] f ‖2

L2 = ∫ |[P̂(μ)(k) − P̂(k)] f̂ (k)|2 dk (or that
expressionwith the integral replaced by a sum if the spatial domain is periodic) tends
to zero by (4.10), the Dominated Convergence Theorem and the fact that orthogonal
projection operators do not increase vector length. Hence the entire right side of
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(4.17) converges in the above limit toP

[
A0(0)Ut −∑ j A j (U )Ux j − F(t, x,U )

]
.

This implies that the left side of (4.17) also converges.
When (1.6) holds then that relation plus the definition p = s + 1 from Defini-

tion 4.4 imply that μp

δ
= C p−1(1 + o(1)). Hence Lemma 4.1 shows that

[P(μ)( 1
δ
(L + μM ) f ]∧ = C p−1T (p,p) f̂ + o(1) = T̂lim f̂ + o(1). (4.18)

Although the Fourier transform of Tlim may be unbounded as a function of the
Fourier transform variable, (4.18) together with the convergence of u to U shows
that the Fourier transform of the left side of (4.17) converges pointwise to the
Fourier transform of TlimU . The fact that that left side is known to converge in L2

implies that its Fourier transform also converges in L2. Since the pointwise and
L2 limits of a sequence of functions must coincide when both exist, the Fourier
transform of the left side of (4.17) tends in L2 to the Fourier transform of TlimU ,
and hence that left side tends to TlimU . The reduction process also shows that the
Fourier transform of Tlim is in the image of P̂(k) for each k, so rearranging the limit
of (4.17) yields (4.14). When (1.7) holds instead of (1.6) then that relation plus the
definition p = s + 2 from Definition 4.4 imply that μp

δ
= o(1), so (4.18) holds

with C replaced by zero, and again leads to (4.14) but with Tlim = 0.
Now define T̂ (δ, ε)(k) := 1

δ
(L̂ (k) + δ

ε
M̂ (k)). From the Fourier transform of

(1.1), (1.6) or (1.7), and Lemma 4.1,
∣∣∣∣

(
I − ̂

P( δ
ε
)

)
û(k)

∣∣∣∣ � cz(δ, ε)

∣∣∣∣

(
I − ̂

P( δ
ε
)

)
T̂ (δ, ε)(k)

(
I − ̂

P( δ
ε
)

)
û(k)

∣∣∣∣ ,

(4.19)

where z(δ, ε) = μ = ε
1
s by (4.2) when (1.6) holds, and z(δ, ε) = δ

μp · μ =(
ε1+ 1

s

δ

)s
by the definition of T̂ (δ, ε) plus (4.2) and the definition of p in terms of

s when (1.7) holds. In the former case ε
1
s clearly tends to zero with ε, and in the

latter case

(
ε1+ 1

s

δ

)s
tends to zero by (1.7), that is, in either case z(δ, ε) → 0 as δ

and ε tend to zero. Since
∣∣∣∣

(
I − ̂

P( δ
ε
)

)
T̂ (μ)(k)

(
I − ̂

P( δ
ε
)

)
û(k)

∣∣∣∣ =
∣∣∣∣

(
I − ̂

P( δ
ε
)

)
T̂ (μ)(k )̂u(k)

∣∣∣∣

�
∣∣∣T̂ (μ)(k )̂u(k)

∣∣∣

=
∣∣∣
(
A0(εu)ut +

d∑

j=1

A j (u)ux j

− F(t, x, u)
)∧

(k)
∣∣∣

= O(1),

taking the limit of (4.19) as δ and ε tend to zero while satisfying (1.6) or (1.7)
shows that

(
I − P̂(k)

)
Û (k) = 0, which implies (4.15).
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To show that a solution of the given smoothness of (4.14), (4.16) is unique, let
QR be the projection onto the Fourier modes for which T̂lim(k) is bounded by R.
Since T̂lim(k) is finite for each k, the limit as R → ∞ ofQR is the identity operator.
Since QR is a projection onto Fourier modes it commutes with Tlim, and P. Hence,
for any R,

〈QRU, PTlimU 〉 = 〈QRPU, TlimU 〉 = 〈QRU, TlimU 〉 = 〈QRU, TlimQRU 〉 = 0

by (4.15) plus the antisymmetry of Tlim. Taking the difference of (4.14) for two
solutions U (1) and U (2), defining U := U (1) − U (2), taking the L2 inner product
of the result with QRU and letting R tend to infinity therefore yields

0 = lim
R→∞

〈
QRU, P

(
A0(0)Ut

+
∑

j

A j (U
(1))Ux j +

∑

j

{
A j (U

(2) +U ) − A j (U
(2))
}
U (2)
x j

+ TlimU −
[
F(t, x,U (2) +U ) − F(t, x,U (2))

] )〉

=
〈
U, P(A0(0)Ut +

∑

j

A j (U
(1))Ux j + M(t, x,U (2),∇xU

(2))U )

〉

=
〈
PU, A0(0)Ut +

∑

j

A j (U
(1))Ux j + M(t, x,U (2),∇xU

(2))U

〉

=
〈
U, A0(0)Ut +

∑

j

A j (U
(1))Ux j + M(t, x,U (2),∇xU

(2))U

〉
,

(4.20)

where

∑

j

{
A j (U

(2) +U ) − A j (U
(2))
}
U (2)
x j

−
[
F(t, x,U (2) +U ) − F(t, x,U (2))

]

=
∫ 1

0

d

ds

∑

j

A j (U
(2) + sU )U (2)

x j − F(t, x,U (2) + sU ) ds

=
⎧
⎨

⎩

∫ 1

0

∑

j

∇v

[
A j (v)U (2)

x j − F(t, x, v)
}

v=U (2)+sU
ds

⎫
⎬

⎭U

:= M(t, x,U (2),∇xU
(2))U.
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Since the final expression in (4.20) looks like the L2 estimate for a symmetric
hyperbolic system, we obtain

0 = d
dt

( 1
2 〈U, A0(0)U 〉)

−
〈
U,

⎧
⎨

⎩
∑

j

∂x j A j (U
(1)) + M(t, x,U (2),∇xU

(2))

⎫
⎬

⎭U
〉

� d
dt

( 1
2 〈U, A0(0)U 〉)− K1 〈U,U 〉

� d
dt

( 1
2 〈U, A0(0)U 〉)− K2

( 1
2 〈U, A0(0)U 〉)

(4.21)

for some K1 and K2 depending on the ‖ ‖Hs0+1 norms of U (1) and U (2) and the
constant c0 from (3.3). Estimate (4.21) plus the initial condition (4.16) imply that

1
2 〈U, A0(0)U 〉 � ( 12 〈U (0), A0(0)U (0)〉)ekt = 0,

which implies that U ≡ 0, that is, U (1) ≡ U (2), yielding uniqueness.
As usual, the uniqueness of the limit implies that convergence holds as δ and

ε tend to zero while satisfying (1.6) or (1.7) without restricting to a subsequence.

�
Example 4.7. 1. Consider the PDE

(
u
v

)

t
+ 1

ε2

(
1 0
0 0

)(
u
v

)

x
+ 1

ε

(
0 1
1 0

)(
u
v

)

y
= 0. (4.22)

The relationship δ = ε2 does not satisfy (1.3) in dimension two. Nevertheless,
as noted in the introduction, the fact that the coefficient matrix of the time
derivatives does not depend on u or v implies that solutions of (4.22) satisfy
uniform bounds. Let f (x, y) be a function whose gradient belongs to H3, and
take the initial data to be u(0, x, y) = u0(x, y) := −ε fy and v(0, x, y) =
v0(x, y) := fx . Then ut (0, x, y) = 0 and vt (0, x, y) = fyy , that is, the initial
time derivative is bounded. Since the PDE is linear with constant coefficients,
it is convenient to express the limit equation in Fourier space. By part 1 of
Example 4.3, when k �= 0 then the limit is Û (t, k, �) = 0, V̂t − i�2

k V̂ = 0,
while for k = 0 but � �= 0 the limit is Û (t, 0, �) = 0 = V̂ (t, 0, �) and for
k = 0 = � the limit is Ût (t, 0, 0) = 0 = V̂t (t, 0, 0). The initial data for the
limit are Û (0, k, �) = 0 and V̂ (0, k, �) = ik f̂ (k, �). When k and � are both
nonzero the solution of the limit equation is Û (t, k, �) = 0 and

V̂ (t, k, �) = ikei
�2
k t f̂ (k, �), (4.23)

while when k = 0 then the limit is Û = 0 = V̂ . When the spatial domain
is R

2 then T̂lim(k) = −i�2
k is unbounded but when the domain is T

2 then it is
bounded since |k| � c on the set where it is nonzero. Even when the spatial
domain is R

2, the fact that V̂ (t, k, �) contains a factor of k ensures that V̂t is
bounded, but V̂tt will be unbounded if f̂ (0, 0) �= 0. The limit solution (4.23),
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which implies the limit equation satisfied by V , can be verified by solving the
equation for Û and V̂ exactly for k �= 0. This yields

V̂ = ik f̂ (k, �) e
i (−k+

√
k2+4ε2�2)

2ε2
t
(k+√

k2+4ε2�2)−e
i (−k−

√
k2+4ε2�2)

2ε2
t
(k−√

k2+4ε2�2)
2
√
k2+4ε2�2

+O(ε),

whose limit as ε → 0 indeed yields (4.23).
2. Adding the term −α

(
1 0
0 1

)
( uv )y to (4.22) changes the limit equation for V to

V̂t − i�2
k−α�

V̂ = 0. If α is irrational but well-approximated by rationals then the

term T̂lim(k) = −i�2
k−α�

maynot be bounded by (|k|+|�|)3 as that expression tends
to infinity, even in the periodic case, so Tlim may not be a bounded operator
from H3 to L2.

3. Consider the PDE ut + ux + 1
δ
L u + 1

ε
M u = 0, where δ = ε3/2 and L

and M are the matrices discussed in Part 2 of Example 4.3. Since the choice
of the relationship between δ and ε makes s in (1.6) equal two and hence
p in Definition 4.4 equal three, the projection P is orthogonal to the non-zero
eigenspace of T (2,2) as well as those of T (0,0) and T (1,1). The formula for T (2,2)

in Part 2 of Example 4.3 therefore shows thatwhenm �= 0 and ad−bc �= 0 then
the limit equation is simply U = 0 while when m �= 0 but ad − bc = 0 then
the limit equation is that the first three components of U vanish and ∂t + ∂x
of its last two components equal zero. This shows that even the number of
nonzero components of the limit cannot be determined simply by looking at
the number of components that do not contain large terms nor even by first
eliminating all components having terms of order 1

δ
and then eliminating those

remaining components having terms of order 1
ε
not coming from components

already eliminated, which works for the system (4.22).
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