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To help the newcomers understand a software system better during its development, the key classes are in general given priority to
be focused on as soon as possible. There are numerous measures that have been proposed to identify key nodes in a network. As
a metric successfully applied to evaluate the productivity of a scholar, little is known about whether h-index is suitable to identify
the key classes in weighted software network. In this paper, we introduced four h-index variants to identify key classes on three
open-source software projects (i.e., Tomcat, Ant, and JUNG) and validated the feasibility of proposed measures by comparing them
with existing centrality measures. The results show that the measures proposed not only are able to identify the key classes but also
perform better than some commonly used centrality measures (the improvement is at least 0.215). In addition, the finding suggests

that mE-Weight defined by the weight of a node’s top k edges performs best as a whole.

1. Introduction

With the increment development of open-source software
(OSS), the overall scale and complexity of software system
become more and more great. For a newcomer in this context,
it he or she wants to obtain a general understanding of
the software system as soon as possible, the key classes are
in general recommended to the newcomer to master some
basic concepts better [1]. Software can be characterized as
a dependency network in terms of relationship between
various elements (class, package, feature, and so on), labeled
as software dependency network (SDN). The nodes in SDN
present classes or interfaces while the links present different
dependencies between the nodes. The frequency of depen-
dency between two nodes is viewed as edge weight. Therefore,
we can understand software in terms of weighted software
network. In other words, the problems of identifying key
classes of the software system converted into measuring key
nodes in SDN.

The key nodes refer to a number of nodes which are
more likely to affect the structure and function in a network.
Although the proportion of such node usually is not high,
they can rapidly influence most of the remaining nodes. In
complex networks, node importance represents the node’s
influence, transmission capacity, and robustness. At present,
numerous measures have been proposed to identify the
important node in a network; for example, both Jian-Guo
et al. [2] and Ren and Lii [3] made a comparison between
several commonly used methods to analyze their differences
and the specific application scenarios. Sun and Luo [4] also
reviewed the approaches to measuring important nodes from
the perspective of the global network topology structure and
node attributes. According to node degree and clustering
coefficient, Ren et al. [5] proposed a new method for mea-
suring node importance. Kitsak et al. [6] proposed a k-shell
based method to resolve the issue.

In social network analysis, except for centrality, h-index
has been widely applied to evaluate the location or influence



of actors [7]. For coauthorship network, h-index is useful for
reflecting the scholars’ performance based on their position
and influence within their collaboration network. The main
advantage of h-index is the consideration of the quantity and
quality of the papers published by a scholar.

As mentioned above, there are lots of methods for
measuring node importance in a network, but few people
attempt to use h-index or its variants to identify key classes
in context of software engineering. To compensate the lack
and verify the feasibility of h-index, this paper proposes new
measures based on h-index to identify key classes in SDN.

Our contributions are summarized as follows:

(1) We proposed four new measures based on h-index to
study class importance in SDN, respectively, accord-
ing to the degree of neighbors and the edge weights.

(2) Compared with several existing centrality measures,
we validated the feasibility of proposed measures to
identify important nodes.

The rest of this paper is organized as follows. Section 2 is a
review of related work. In Section 3, the preliminary theories
and approaches are introduced. Section 4 shows the results of
our experiments in detail. After that, a conclusion and future
work are made in Section 5.

2. Related Work

There are many indicators measuring a node importance
defined in complex networks and social network analysis,
such as node centrality [8]; one of the simplest is the node
degree centrality, and we could understand it as the number
of other nodes connected to the target node, representing
the potential impact that a node made on the surrounding
nodes, which is the local properties of nodes in a network. To
reflect the node’s global properties, this paper puts forward
betweenness centrality, closeness centrality, and eigenvector
centrality and so forth. Both betweenness centrality and
closeness centrality are involved in topological distance
between nodes in network.

Wang and Pan [9] used the betweenness centrality,
closeness centrality, and eigenvector centrality to measure the
importance of classes in the software network and analyzed
differences of these indexes in identifying key classes. In the
process of prediction, we could focus attention on different
contents according to the importance of entities in software
systems. Zimmermann and Nagappan [10] take Windows
Server 2003 as the experimental object, built software net-
work according to the dependence relationship between
classes, and contrastively analyzed the effect that network
indexes such as the node degrees, betweenness centrality,
closeness centrality, and source code metrics have on defect
prediction. The results showed that the prediction results
of network indexes were verified to be more effective than
source code metrics.

Meneely et al. [11] built the developer cooperation net-
work according to the code change information for the
file level, and then network centricity indexes were used
to measure contribution of developers and predicted the
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system fault condition after the release. The authors found
that centricity index and the fault occurring after release have
obvious correlation in the developer cooperation network; it
confirmed that the network indexes have advantages to earlier
found faults during the development phase. Under the use of
centricity indexes, the difference of the role of developers in
the community was measured by Crowston et al. [12], and
then the core-edge hierarchy between developers was iden-
tified. According to the contribution relationship between
developers and the modules, Pinzger et al. [13] used network
centricity indexed metric to measure the contribution of
developers and, combined with the relationship between the
developer’s contribution and the number of defects after
release, found module in the center more likely to break
down than the edge. Shin and others [14] used centricity
indexes and fragile code snippet forecasted system and found
that the use of these indicators could well distinguish fragile
and neutral file of the system and build file vulnerability
forecasting model.

Zimmerman et al. [15] identified the core program unit
by using centricity indexes to analyze software network. Bhat-
tacharya et al. [16], respectively, built code level and module
level network and used network indicators to assess the seri-
ousness of bug and optimization of refactoring and predict
defects. Steidl and others [17] used centricity, PageRank, and
node degrees to determine the core classes in software system
and confirmed that the results found agree well with the
results of practical experience developers. Zanetti and others
[18] also used centricity indexes to measure the ability level of
defect reporters and then direct the distribution flaw based on
the index values.

Besides using centricity indexes, Perin et al. [19] order
classes according to the dependency between them by using
PageRank algorithm. HITS algorithm was used by Zaidman
and Demeyer to calculate importance of classes to determine
the system’s key classes [20]. Pan et al. [21] put forward a
kind of weighted PageRank algorithm to identify the key
package of software system. Zhou and Xu [22] compared the
differences in identifying important classes under the use of
PageRank and HITS and betweenness centrality indexes at
the class level in software network. Meyer et al. [23] model
software as a network and apply k-core decomposition to
identify a core subset of potentially important classes. Jiang
etal. [24] proposed a technique to measure the importance of
each class based on unique input/output sequence to identify
the key class. Kamran et al. [25] propose an efficient technique
that pinpoints the core architecture classes of the system. Sora
[26] models the static dependencies structure of the system
as a graph and applies a graph ranking algorithm to identify
key classes in software systems. Pan et al. [27] put forward a
kind of weighted k-core decomposition to identify important
packages of object-oriented software. Sora [28] proposed a
tool to automatically extract some summary to identify the
most important classes of a system.

As one of the important indexes for evaluating research
level of scholars, few people applied h-index to measure the
importance of classes in software system. Wang et al. [29]
used the h-index and its variant identified the key classes in
the class-level software network, and it was also compared
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TaBLE 1: Centrality measures for node 1 mentioned in Figure 1.
k Node (degree) aN-Degree mN-Degree Edge (weight) aE-Weight mE-Weight
1 2(6) 1<6 I’<6 1-4 (8) 1<8 1’<8
2 3(5) 2<5 2 <11 1-3 (6) 2<6 2 <14
3 4 (3) 3=3 3? <14 1-5 (5) 3<5 32 <19
4 5(3) 4>3 4 <17 1-2 (3) 4>3 42 <22
5 6(2) 52 >19 1-7 (3) 52 =25
6 7 (1) 1-6 (2) 6> >27
Value 14/3 4 19/3 5

with the code index in the identification accuracy. They
found that if they take the top 15% of the class based on the
indicators the recall rate could achieve 70%. In their work,
however, the calculation for h-index only considered the node
degrees and did not consider the weight of edge. Compared
to Wang et al,, although this article did not consider other
variants of the h-index, when calculating the h-index of
nodes, we, in turn, considered the number of node edges (the
node degrees) and the influence of edge weight.

3. Research Approach

3.1. Software Dependency Network (SDN). Considering that
the direction and weight of the dependencies between classes
have practical significance, so, in this paper, reverse engineer-
ing method was used to construct SDN model. We adopt
G = (V, E,W) to represent a weighted network, V' = {v;} is all
nodes in this network, that is, the set of all classes in a system,
and E = {e;;} is all edge sets. Note that if there is a dependency
between node i and node j, then ¢;; = 1, otherwise it is 0;
W = {w,;} is a weight set corresponding to the edge set E,
where w;; is the number of dependencies between node i and
node j, and is the weight of e;;.

During building of SDN, a directed edge e;; mainly
considers the following five kinds of dependencies:

(1) Class v; inherited or realized the class or interface vj
(inheritance dependence).

(2) Class v; contained the type field of class vj (field
dependence).

(3) Class v; called the method of class vj (method depen-
dency).

(4) Class v; returned an object of class v; (return depen-
dency).

(5) Method of class v; took the object of the class vjasa
parameter (parameter dependency).

Figure 1 gives a simple undirected weighted dependency
graph between 21 classes of the Tomcat project; classes 2, 3,
4,5, 6, and 7 have a direct dependency with class 1, and the
corresponding edge weights were 3.0, 6.0, 8.0, 5.0, 2.0, and 3.0.

3.2. Centrality Measures. The definition of h-index given by
Hirsh is as follows: “Suppose that the number of papers
published by a scholar is N, (descending order according to
the number of references), if the references of top h articles

FIGURE 1: A simple weighted software dependency network.

are not less than A, the scholar is considered have index h.”
Using this concept proposed by Hirsh, we apply h-index to
SDN and define four new centrality measures.

aN-Degree: aN-Degree of a node is the average
degrees of its top k neighbors such that the degree of
each is not less than k.

mN-Degree: mN-Degree of a node is the max k such
that the degree of its top k neighbors together is at
least k*.

aE-Weight: aE-Weight of a node is the average weights
of its top k edges that have at least a weight of k.

mE-Weight: mE-Weight of a node is the max k such
that its top k edges together have minimum weight of
K.

The aN-Degree of node 1is 14/3 as its top 3 neighbors have
degree of at least 3. The mN-Degree is 4 as sum of the top
4 neighbors’ degrees is greater than 4°. The aE-Weight is the
average of the top 3 edges’ weights (8 + 6+ 5 divided by 3). The
mE-Weight is 5 as the sum of the weights of the top 5 edges is
not less than 5 (see Table 1).

4. Experiments

4.1. Data. Three open-source projects are chosen as the
research objects in this paper. Table 2 lists the statistical infor-
mation. Tomcat (http://tomcat.apache.org/) is a free Web
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FIGURE 2: The framework of our experiment.

TaBLE 2: The information of projects used in our experiment.

Projects Version  Line of code Number of Number of
classes edges
Tomcat 6.0.14 159,749 2152 10,765
Ant 1.9.0 129,240 1228 4848
JUNG 15.0 28,465 404 1737

application developed by Java, from Apache. Ant (http://ant
.apache.org/) is also from Apache, a known well open-source
project which serves to compiling, testing, and deployment.
JUNG (http://sourceforge.net/projects/jung/, Java Universal
Network/Graph Framework) is a common framework for
modeling, analyzing, and development.

4.2. Research Problems. In this paper, the research mainly
focuses on the following two questions:

(1) Do the Proposed Centrality Measures Work Well? As
mentioned above, in complex network and social network
analysis, various measures used to identify the important
nodes have been proposed. Thus, it is worth analyzing the
correlation between the proposed centrality measures and
existing centrality measures.

(2) Do the Proposed Centrality Measures Identify More Key
Classes in SDN? To further investigate the usefulness of
the proposed centrality measures, we compared them with
several existing centrality measures by analyzing the ability
of identifying key classes in the actual maintenance, in the
context of weighted software networks.

4.3. Experiment Design. In this paper, we first present the
framework of our work (see Figure 2). It mainly consists of
three parts. First, we used Dependency Finder and SNAT—
a kind of network analysis tool which is developed by
us to parse source codes and to extract classes and their

dependencies. Then, we built SDN at the class level. Second,
we calculated the centrality of all nodes in SDN and analyzed
the correlation between four existing centrality measures
and the proposed ones. Finally, according to the version
control log derived by TortoiseSVN, we further validated the
feasibility of the proposed centrality measures.

4.4. Results. We organize our results according to the two
research questions proposed in Section 4.2.

(1) Do the Proposed Centrality Measures Work Well? The pur-
pose of various centrality measures is to sort the importance
of classes in software system. The greater the measure values,
the more important the class is. For the proposed measures,
in order to test their feasibility, we first need to quantify their
relationship with other commonly used centrality measures.
In other words, we should ensure the results are significantly
related as a whole. Note that, in this paper, we introduce
four typical centrality measures: node degree, betweenness
centrality (BC), closeness centrality (CC), and eigenvector
centrality (EC).

Considering our purpose is to compute the correlation of
two groups of results, Kendall rank correlation coefficient can
be used for analysis (using tau-b (k) in SPSS). 7, = 1 represents
that the results are completely positively correlated; 7, =
—1 represents the results are not relevant. Table 3 shows
that there is a strong correlation between two groups of
centrality measures, except for EC. For example, for JUNG
the correlation coefficient is up to 0.9 between aN-Degree
and node degree and up to 0.6 between aN-Degree and CC.
Furthermore, although the correlation coefficients between
the proposed centrality and EC are small, the statistical results
show that they are significant. Figure 3 gives the relationship
among aN-Degree and four typical centrality measures in
three software projects, respectively.

Therefore, on the one hand, there is a significant cor-
relation between the proposed centrality measure and four
benchmark measures. On the other hand, the consistency
within mE-Weight and other centrality measures is more
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TABLE 3: The correlative coefficient 7.

Project Degree EC BC CC
Tomcat 0.861 0.125*" 0.629 0.626
aN-Degree Ant 0.889 0.230"" 0.439 0.615
JUNG 0.943 0.223"" 0.578 0.628
Tomcat 0.878 0.262" 0.628 0.710
mN-Degree Ant 0.862 0.384"" 0.720 0.912
JUNG 0.933 0.244™" 0.665 0.647
Tomcat 0.921 0.151"" 0.682 0.451
aE-Weight Ant 0.994 0.144™" 0.791 0.568
JUNG 0.938 0.407*" 0.661 0.618
Tomcat 0.981 0.311"" 0.564  0.675
mE-Weight Ant 0.980 0.342" 0.570 0.650
JUNG 0.987 0.305"" 0.587 0.676

Note: * * represents the significant correlation.

obvious. In a word, the results show that the proposed
centrality measures work as well as four benchmark centrality
measures.

(2) Do the Proposed Centrality Measures Identify More Key
Classes in SDN? In the previous question, we learnt that the
proposed centrality measures show a remarkable consistency
in measuring the key classes with existing network centrality
measures. However, whether the important nodes identified
by these proposed measures are key classes in the actual
system is still unknown, especially the important nodes
identified by mN-Degree and mE-Weight. A key class might
be more complex because it is associated with other classes
and might be highly reused because it relies on more classes.
In the process of software maintenance, the chance to change
this kind of class often is greater.

Therefore, we export the corresponding revision informa-
tion from version control log for each software system and
have access to the number of revisions of these classes during
the period of change. Figure 4 shows that the changed times of
a class are positive to its centrality measure value as a whole.
For example, the value of R* (determinate coefficient) is up
to 0.864 between the average values on mE-Weight measure
and the changed times of classes. That is, the classes with
greater centrality are changed more frequently. On the other
hand, the results validated that centrality measures are useful
to identify the key classes in software systems.

Given that the results in the other two projects have
similar tendency to that of the Tomcat project, only the
case obtained in Tomcat was given. Figure 4 also shows that
the trends from our proposed centrality measures are more
obvious than CC because of the greater values of R*. Note
that, except for mE-Weight, BC measure performs better
than the proposed measures. The results further validated the
advantage of BC measure as mentioned in [6, 30]. Meanwhile,
it is clear that mE-Weight measure performs best, which
indicated that computing the centrality on the weighted edge
of nodes has an advantage compared to that based on the
node degree and even prior to other frequently used centrality
measures.

TABLE 4: The proportion of actual modified classes in top k key
classes returned by different centrality measures (Tomcat).

Top k 5 10 30 50 100 150 200
aN-Degree 0.00 0.200 0.300 0.500 0.450 0.660 0.630
mN-Degree 0.20 0.200 0.367 0.520 0.550 0.700 0.740
aE-Weight 0.000 0.100 0.333 0.520 0.600 0.733 0.685
mE-Weight 0.000 0.300 0.600 0.580 0.660 0.793 0.875
Degree 0.000 0.100 0.300 0.400 0.500 0.673 0.610
EC 0.000 0.100 0.267 0.400 0.440 0.527 0.560
BC 0.200 0.200 0.367 0.480 0.590 0.727 0.660
CC 0.000 0.100 0.333 0.480 0.470 0.653 0.625

Besides, the proportion of the classes that have actually
been modified in the top k key classes returned by different
centrality measures were reported. Table 4 shows that the
proportion becomes larger with the increase of k value.
When k is 5, the most important five classes have not
been modified, except for the case of mN-Degree and BC.
A possible explanation is that the core framework should
keep stable and in general is less likely to modify during
the process of maintenance of software system. When k is
set to 200, the proportion (7 out of 8) is more than 60%,
especially for the mN-Degree and mE-Weight. For instance,
when using mE-Weight measure, 87.5% of the top 200 classes
were successfully recognized that they needed to be changed.
In addition, in Table 4 the proportion from mE-Weight
is larger than other measures as a whole. Compared to
BC, the improvement is up to 0.215. It further verified the
advantage of mE-Weight to identify key classes in software
engineering.

In a word, compared to existing network centrality mea-
sures, the proposed measures do identify more key classes in
software network, especially for the mE-Weight measure.

5. Conclusion

This paper puts forward four centrality measures based on h-
index to compute the importance of a class in software system
from two aspects: the degree of its neighbors and the weight of
the edges that connected the current class and its neighbors.
Taking three open-source software projects as the research
objects, the results indicate that the proposed measures not
only are able to identify the key classes as some commonly
used centrality measures (correlative coefficient 0.987) but
also perform better than some commonly used centrality
measures (the improvement is at least 0.215). In addition, the
finding suggests that mE-Weight defined by the weight of a
node’s top k edges performs best as a whole.

The work will help new developers understand the core
parts of a software system faster and provide a guideline for
the priority of class modification in software maintenance.
In future, we will further validate the measures proposed in
this paper with more open-source software applications and
apply these measures to software network from the other
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granularity levels, such as package and feature, to verify the
practicability of proposed centrality measures.
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