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Usually, loan transactions contracted in practice are nonrandom; that is to say, all amounts received (principal) and paid (period
instalments) by the borrower are previously agreedwith the lender, as well as their respective dates. In this paper, two new alternative
loan models are introduced, depending on whether the borrower survives or not to fulfil all repayment obligations. In this way,
either the initial or the final date of repayments can be subject to this contingency. Additionally, the different parameters of such
random transactions are determined, as well as several measures of profitability/cost for the lender/borrower, respectively. These
transactions can be attractive for both the lender and the borrower, which therefore make them worthy of consideration and
subsequent implementation for the benefit of both parties.

1. Introduction

It is well known that the current economic and financial sit-
uation brought about by the crisis in the construction sector
has favoured the design and availability of new banking pro-
ducts [1, pp. 53–60] and, more specifically, mortgage loans
[2]. In effect, on the one hand, there exists an increasing con-
cern about the purchasing power of future generations. This
means that those who contract a mortgage loan [3] are in
favour of any repayment agreement which is finalised in the
case of their premature death and does not transfer to their
descendants. Additionally, this situation can be of particular
interest to banking institutions because it can stimulate the
provision of certain mortgage loans (generally agreed to be
repaid over a long-term period) by persons of advanced age.
Thus, the first objective of this paper is to present a novel
kind of loanwhich can be attractive for elderly people because
the outstanding principal is cancelled when they die and
consequently it does not suppose an economic liability for
future generations. This takes into account the fact that the
current situation of an uncertain labourmarket in all modern
economies mainly affects young people.

On the other hand, the opposite scenario is also possible,
promoting the design of loans which adapt to the possible

financial difficulties of the contracting parties themselves.
This paper therefore gives consideration to two possible sit-
uations:

(1) Where premature death of the contract holder causes
the mortgage repayment obligations to pass to those
who inherit the mortgaged property (inverse mort-
gage). In this case, the property itself is a potential
guarantee that the outstanding amount of mortgage
repayment can be met.

(2) Where those who inherit a mortgaged property can-
not, or do not wish to, make an immediate sale to
pay off the outstandingmortgage but do not have suf-
ficient liquidity to face up to their inherited financial
obligations.

Observe that the first situation means that the initial pay-
ments are assured and the final payments are random, whilst
the second situation leads to random initial payments but
the final ones are assured [4]. Once we have explained the
reasons for introducing these two novel random transactions,
we then proceed, in the paragraphs which follow, to specify
their financial conditions and main characteristics.

In traditional loan transactions, the amounts repaid by
the borrower to amortize the principal and the corresponding
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periodicity of repayment are established at the beginning
of the loan [5]. However, some loans are possible in which
the dates for the initial and final instalment payments are
random, where the transaction duration would be subject to
the occurrence of an eventuality.There follows an example of
each one of these possible innovative transactions:

(I) Loans where the payment of the first instalment is
fixed and the payment of the last one is random. In
this case, the amounts which amortize the received
principal start to be repaid on an agreed date follow-
ing the granting of the mortgage loan. Nevertheless,
the duration depends on the survival period of the
borrower [6]. This would be the case of a person who
requests a loan to be amortized with the revenues
coming from a life insurance policy, for example.
Thus, if the borrower dies, the periodic payments
would terminate.More generally, this situation occurs
when a person of a certain age requests a loanwith the
intention of not leaving the debt to his/her heirs in a
will.
Nowadays and in practice, this is similar to mortgage
insurance [7] required by the financial institution in
case of death or total incapacity of the borrower.
In fact, they are two different financial transactions
where the risk is assumed by the insurance company.
Nevertheless, the transaction presented here differs in
that the risk is assumed by the lender.

(II) Loans where the date of the first payment is random
and the final one is fixed. In this case, the instalments
which amortize the received principal start to be paid
at an uncertain moment after the agreed instant at
which the principal is provided by the lender, but the
final instant is explicit in the mortgage contract. This
would be the case of a person who requests a loan
to be amortized by his/her heirs when he/she dies.
As the instant of death of the contract holder is not
previously known, although the probability factor can
be calculated, the date of the initial instalment will be
random.
In practice, this is similar to the so-called inverse
mortgage, in which the borrower offers his/her house
as a guarantee [8] and, as a consequence, he/she
receives a single amount (the loan principal). Starting
from the date of the borrower’s death, this amount
will be repaid, together with the accrued interest, by
his/her heirs. However, currently, in an inverse mort-
gage, in order to obtain a fiscal advantage from the
inheritance, the principal must be amortized with a
single payment, unless at this moment the heirs agree
with the lender on another loan transaction which
replaces the first one. What is proposed here consists
of a single loan transaction in which the lender
assumes the risk of a repayment by the heirs, depend-
ing on the moment of death of the contracting party.

All these innovative loan agreements are independent of the
principal repayment methods [9] which are common within
the loan amortization models (French method, constant

principal repaid method, American method, etc.). In effect,
the contracting party of a mortgage loan [10–12] can use any
of the traditionalmethods to repay the loan, amongwhich we
can cite the French method (equal payments for all periods)
which is the most usual, the constant principal repaid
method, and the American method [13]. Moreover, these
methods can be combined with other financial procedures,
such as interest-only periods and fixed or variable interest
rates [14].

Finally, observe that the issue considered in this paper
is included in a wide variety of mortgage loans labelled, in
general, “flexible loans” which the credit institutions have
recently started to offer (see [15, pp. 173–189] and [16, pp. 829–
853]). In addition to the wide range of offers described in the
previous paragraph, there exist other possibilities ofmortgage
loan amortizationwhich have not yet been defined andwhich
can prove very interesting, due to their flexibility, depending
on the economic situation of the borrower.

This paper is organized as follows. After describing in the
Introduction the context of our research, in Sections 2 and 3,
we will analyse the two innovative kinds of loan transaction
which have been proposed. Finally, Section 4 summarizes and
concludes the paper.

2. Amortization of a Loan Transaction Where
the First Repayment Instalment Is Fixed and
the Last Is Random

Let us consider a loan transaction in which the borrower
receives the principal 𝐶

0
at instant 0 to be repaid by means

of 𝑛 periodic amounts 𝑎
𝑠
, on specified dates 𝑠 (𝑠 = 1, 2, . . . , 𝑛).

If the last payment is subject to a possible contingency,
the borrower would have to pay a series of amounts 𝑎

𝑠

greater than those corresponding to a similar transaction
which is not subject to uncertainty. Thus, we propose the
following equation of financial random equivalence at instant
0, by using the exponential discount function with variable
discount rate according to the corresponding period:

𝐶
0
=

𝑛

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
⋅ (1 + 𝑟

ℎ
)
−1
, (1)

where 𝑟
ℎ
represents an additional payment to the lender to

cover the element of risk in the transaction.
When the contingency is the death of the borrower, obvi-

ously, 𝑟
ℎ
is the risk that the borrower dies and consequently

the debt payment disappears to the detriment of the lender.
Thus, by considering the survival of the borrower, one has
(see [17])

1 + 𝑟
ℎ
=

1

1
𝑝
ℎ−1

=
𝑙
ℎ−1

𝑙
ℎ

, (2)

1
𝑝
ℎ−1

being the probability that a person aged ℎ − 1 reaches
the age ℎ and 𝑙

𝑧
being the number of persons who survive

beyond the age 𝑧.
By considering (1) and (2) and defining 𝑙

𝑠
/𝑙
0
fl 𝑝
𝑠
, with

𝑝
𝑠
being the probability of survival at instant 𝑠, one has

𝐶
0
=

𝑛

∑

𝑠=1

𝑎
𝑠
⋅ 𝑝
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
, (3)
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which coincides with Gil Luezas and Gil Peláez [18] or Gil
Peláez [19], by considering the exponential discount function.

Observe that the subscript 𝑠 denotes the instant at which
the corresponding payment is due, calculated from the start
of the financial transaction. Therefore, 𝑙

0
is the number of

living persons of the same age as the borrower when he/she
contracted the loan. Thus, for instance, if the borrower is 60
at the formal contract date, 𝑙

0
is the number of persons of the

same generation who reach such age. Analogously, 𝑙
8
is the

number of persons of this generation who reach 68.
The outstanding principal at an intermediate instant 𝑘,

denoted by 𝐶
𝑘
, is the (outstanding) balance still to be repaid

by the borrower to pay off the loan. It can be calculated using
three different methods [20, pp. 249–256].

(I) ProspectiveMethod (according to the Future Periodic Instal-
ments to Be Paid, i.e., from Instant 𝑘 to the Last Payment Due
𝑛). One has

𝐶
𝑘
=

𝑛

∑

𝑠=𝑘+1

𝑎
𝑠
⋅

𝑠

∏

ℎ=𝑘+1

(1 + 𝑖
ℎ
)
−1
⋅ (1 + 𝑟

ℎ
)
−1
, (4)

from which simple algebra shows that

𝐶
𝑘
=

1

𝑝
𝑘

⋅

𝑛

∑

𝑠=𝑘+1

𝑎
𝑠
⋅ 𝑝
𝑠
⋅

𝑠

∏

ℎ=𝑘+1

(1 + 𝑖
ℎ
)
−1
. (5)

(II) Retrospective Method (according to the Periodic Amounts
Already Paid by the Borrower from the Commencement to
Instant 𝑘). Starting from (4), one has

𝐶
𝑘
=

𝑛

∑

𝑠=𝑘+1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
⋅ (1 + 𝑟

ℎ
)
−1
⋅

𝑘

∏

ℎ=1

(1 + 𝑖
ℎ
)

⋅ (1 + 𝑟
ℎ
) ;

(6)

that is to say,

𝐶
𝑘
=

𝑘

∏

ℎ=1

(1 + 𝑖
ℎ
) ⋅ (1 + 𝑟

ℎ
)

⋅ [𝐶
0
−

𝑘

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
⋅ (1 + 𝑟

ℎ
)
−1
] ,

(7)

which can be simplified to

𝐶
𝑘
=

1

𝑙
𝑘

⋅ [𝐶
0
⋅

𝑘

∏

ℎ=1

(1 + 𝑖
ℎ
) ⋅ 𝑙
0

− (

𝑘−1

∑

𝑠=1

𝑎
𝑠
⋅ 𝑙
𝑠
⋅

𝑘

∏

ℎ=𝑠+1

(1 + 𝑖
ℎ
))] − 𝑎

𝑘
,

(8)

and, multiplying and dividing by 𝑙
0
, finally one has

𝐶
𝑘

=
1

𝑝
𝑘

⋅ [𝐶
0
⋅

𝑘

∏

ℎ=1

(1 + 𝑖
ℎ
) − (

𝑘−1

∑

𝑠=1

𝑎
𝑠
⋅ 𝑝
𝑠
⋅

𝑘

∏

ℎ=𝑠+1

(1 + 𝑖
ℎ
))]

− 𝑎
𝑘
.

(9)

(III) RecursiveMethod (according to the Outstanding Principal
Calculated at a Former Date). Starting from (8) for period
𝑘 + 1, this can be simplified using standard mathematical
procedures, resulting in

𝐶
𝑘+1

= 𝐶
𝑘
⋅ (1 + 𝑖

𝑘+1
) ⋅

𝑝
𝑘

𝑝
𝑘+1

− 𝑎
𝑘+1

. (10)

As previously indicated, if the loan amortization is subject to
a contingency, the borrowerwould have to pay the amounts 𝑎

𝑠

involved in the equation of financial random equivalence (3).
However, if the transaction is not subject to this contingency,
the corresponding amounts, 𝑎󸀠󸀠

𝑠
, would verify the following

familiar equation of financial equivalence at the start of the
transaction:

𝐶
0
=

𝑛

∑

𝑠=1

𝑎
󸀠󸀠

𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
. (11)

By comparing (3) and (11), it can quite be simply observed that
𝑎
󸀠󸀠

𝑠
< 𝑎
𝑠
. Evidently, the difference between the two payments

is exclusively due to the risk whereby this difference will be
called the risk quota which will be denoted by 𝑎󸀠

𝑠
. Therefore,

𝑎
󸀠

𝑠
fl 𝑎
𝑠
− 𝑎
󸀠󸀠

𝑠
. (12)

By considering (10) and (12), the additional amount that the
borrower has to pay to the lender in each period due to
assumed risk can be simplified as follows:

𝑎
󸀠

𝑘+1
= 𝐶
𝑘
⋅ (1 + 𝑖

𝑘+1
) ⋅

𝑝
𝑘
− 𝑝
𝑘+1

𝑝
𝑘+1

. (13)

Observe that 𝑎
󸀠󸀠

𝑠
, called the saving quota, is the part of

the payment corresponding to a riskless transaction and,
consequently, it is allotted to pay the interest of period s (𝐼

𝑠
)

and the amortization of a part of the principal (𝐴
𝑠
):

𝑎
󸀠󸀠

𝑠
= 𝐼
𝑠
+ 𝐴
𝑠
= 𝑎
𝑠
− 𝑎
󸀠

𝑠
. (14)

These random transactions can be agreed with constant or
variable interest rates. Moreover, the amount of the periodic
payment (𝑎

𝑠
) can be chosen and then the problem is to

determine the principal (𝐶
0
). Alternatively, once the principal

𝐶
0
is fixed, one can determine the periodic instalments 𝑎

𝑠
;

finally, once 𝐶
0
and the saving quota (𝑎󸀠󸀠

𝑠
) derived from (11)

are fixed, the amount of the risk quota (𝑎󸀠
𝑠
) corresponding

to each period can be determined, giving rise to a variable
payment 𝑎

𝑠
.
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Example 1. Assume that, in 2013, a person aged 50 requests a
loan of €50,000. In order to determine the risk, the financial
entity applies the probability of survival corresponding to a
person with the same age and sex (male) as the borrower (see
tables PERM/F-2000P). According to this information, one
can determine the periodic payments and the amortization
schedule (observe that when the loan contract comes into
force, the probability of survival is 1 because we are dealing
with probabilities conditioned to the survival of the borrower
at that moment). By applying the aforementioned survival
tables, this person is expected to survive for a further 44 years,
that is to say, to the age of 94. By considering that the periodic
amounts 𝑎

𝑠
will be constant and that the transaction has been

agreedwith an annual variable interest rate of 9% for the first 5
years and that it will be updated every 5 years with an increase
of 0.2%, the different parameters of the loan transaction can
be observed in Table 1.

In this kind of transaction, it is usual to find some
periods in which the amortization “is not regular.” This
means that, in these periods, the outstanding principal does
not decrease as usual but increases since the corresponding
periodic payments are less than the interest plus the risk
quota for such periods. This situation can be observed in the
first period of our example. As a result, the repaid principal
is negative and consequently the outstanding principal is
greater than 𝐶

0
during the first two years of the loan.

The risk quota is variable during the entire transaction. At
the beginning of the loan, the risk is minimal but increases as
the borrower becomes older. This is reasonable because this
parametermust reflect the greater risk to the lender as the age
of the borrower increases.

If the entire periodic instalments 𝑎
𝑠
were allocated to

the traditional amortization of the principal, it would be
completely amortized before the expiration of the initially
agreed loan; in our example, this would occur during the
twenty-sixth year, since

25

∑

𝑠=1

1,028.41 ⋅
𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

= 9,957.38 < 10,000.00

< 10,056.32 =
26

∑

𝑠=1

1,028.41 ⋅
𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
.

(15)

In this case, the lender would make a greater profit which
could compensate for the losses generated by other trans-
actions in which the corresponding borrower dies earlier.
These profits alone serve tomake the implementation of these
transactions particularly attractive [21].

In this type of random loan, the following average interest
rates can be defined.

(1) Average Agreed Interest Rate. If the loan is agreed with
a variable interest rate, it is interesting to know the average
interest rate, 𝑖

𝑚
, resulting from the contract. By definition,

this average is the rate which, when applied to all periods,
makes the financial equivalence between the principal and
the periodic instalments which amortize it possible. Thus,
once the values of 𝐶

0
, 𝑎
𝑠
, and 𝑝

𝑠
satisfying (3) have been

determined, the average interest rate can be derived from the
following equation:

𝐶
0
=

𝑛

∑

𝑠=1

𝑎
𝑠
⋅ 𝑝
𝑠
⋅ (1 + 𝑖

𝑚
)
−𝑠
. (16)

In Example 1, by considering that

10,000.00 =
44

∑

𝑠=1

1,028.41 ⋅ 𝑝
𝑠
⋅ (1 + 𝑖

𝑚
)
−𝑠
, (17)

the average interest rate of the loan transaction is 9.2451%.

(2) True Net Interest Rate. Once the maturity of the financial
transaction is known and consequently the number of pay-
ments, 𝑘, the true net interest rate, denoted by 𝑖

𝑛,𝑘
, is the rate

satisfying the following equation:

𝑘

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

=

𝑘

∑

𝑠=1

𝑎
𝑠
⋅ (1 + 𝑖

𝑛,𝑘
)
−𝑠
. (18)

By considering the contract interest rate as the remuneration
for the lent amount, the result of the transaction (profit
or loss) measured in monetary units corresponding to the
commencement of the loan period and for a duration of 𝑘
periods, 𝑅

0,𝑘
, is given by the difference:

𝑅
0,𝑘

=

𝑘

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
− 𝐶
0
. (19)

By considering (18) and (19), one has

𝐶
0
+ 𝑅
0,𝑘

=

𝑘

∑

𝑠=1

𝑎
𝑠
⋅ (1 + 𝑖

𝑛,𝑘
)
−𝑠
, (20)

and this is the reason for labelling as net the value of 𝑖
𝑛,𝑘
.

This rate is variable according to when the final instal-
ment is paid. Thus, at the beginning of the transaction, one
can only determine its expected average value, taking into
account the fact that the probability of each duration 𝑘 and
consequently of each rate is

𝑝
𝑘
− 𝑝
𝑘+1

. (21)

Denoting by 𝑑
𝑘
the number of persons, born in the same year

as the borrower, who die between the ages of 𝑘 and 𝑘 + 1 [17,
p. 273], one has

𝑑
𝑘
= 𝑙
𝑘
− 𝑙
𝑘+1

. (22)

The probability of death between the ages of 𝑘 and 𝑘 + 1 will
be

1
𝑓
𝑘
=
𝑑
𝑘

𝑙
0

= 𝑝
𝑘
− 𝑝
𝑘+1

. (23)

Therefore,

𝑖
𝑛
= 𝐸 [𝑖

𝑛,𝑘
] =

𝑛

∑

𝑘=0

𝑖
𝑛,𝑘

⋅
1
𝑓
𝑘
. (24)



International Journal of Mathematics and Mathematical Sciences 5
Ta

bl
e
1

Ye
ar

𝑖
𝑎
𝑠

𝑝
𝑠

𝑎
󸀠 𝑠

𝑎
󸀠
󸀠

𝑠
𝐼
𝑠

𝐴
𝑠

𝐶
𝑠

𝑀
𝑠

1
𝑓
𝑘

𝑖 𝑛
,𝑘

𝑖 𝑏
,𝑘

𝑖 𝑎
,𝑘

0
—

—
1

—
—

—
—

10
,0
00
.0
0

—
0.
02
7

0.
00

00
00

00
−
1.0

00
0

−
1.0

00
00

00
0

1
0.
09
0

1,0
28
.4
1

0.
97
3

30
2.
43

72
5.
97

90
0.
00

−
17
4.
03

10
,17
4.
03

−
17
4.
03

0.
00
3

0.
09
00

03
00

−
0.
89
72

−
0.
90
56
51
01

2
0.
09
0

1,0
28
.4
1

0.
97
0

31
.7
2

99
6.
68

91
5.
66

81
.0
2

10
,0
93
.0
1

−
93
.0
1

0.
00
2

0.
09
00

00
82

−
0.
62
38

−
0.
65
48
58
53

3
0.
09
0

1,0
28
.4
1

0.
96
8

24
.7
3

1,0
03
.6
8

90
8.
37

95
.31

9,9
97
.7
0

2.
30

0.
00
6

0.
09
00
00
18

−
0.
41
75

−
0.
46
56
03
36

4
0.
09
0

1,0
28
.4
1

0.
96
2

63
.37

96
5.
03

89
9.
79

65
.2
4

9,9
32
.4
6

67
.5
4

0.
00
2

0.
09
00
00
02

−
0.
28
01

−
0.
33
95
80
92

5
0.
09
0

1,0
28
.4
1

0.
96
1

18
.8
5

1,0
09
.5
6

89
3.
92

11
5.
64

9,
81
6.
82

18
3.
18

0.
00
2

0.
09
00
00
39

−
0.
18
74

−
0.
25
44

78
06

6
0.
09
2

1,0
28
.4
1

0.
95
8

26
.2
6

1,0
02
.15

90
3.
15

99
.0
0

9,7
17.
82

28
2.
18

0.
00
2

0.
09
00
81
41

−
0.
12
27

−
0.
19
51
52
67

7
0.
09
2

1,0
28
.4
1

0.
95
6

23
.76

1,0
04
.6
5

89
4.
04

11
0.
61

9,6
07
.2
1

39
2.
79

0.
00
3

0.
09
01
83
38

−
0.
07
60

−
0.
15
24
41
66

8
0.
09
2

1,0
28
.4
1

0.
95
3

33
.6
9

99
4.
72

88
3.
86

11
0.
86

9,4
96
.35

50
3.
65

0.
00
3

0.
09
02
84
61

−
0.
04
14

−
0.
12
08
13
21

9
0.
09
2

1,0
28
.4
1

0.
95
0

36
.7
0

99
1.7

1
87
3.
66

11
8.
05

9,3
78
.31

62
1.6

9
0.
00
2

0.
09
03
78
39

−
0.
01
52

−
0.
09
68
24
51

10
0.
09
2

1,0
28
.4
1

0.
94
8

25
.2
7

1,0
03
.14

86
2.
80

14
0.
33

9,2
37
.9
7

76
2.
03

0.
00

6
0.
09
04

63
14

0.
00
51

−
0.
07
82
58
09

11
0.
09
4

1,0
28
.4
1

0.
94
2

61
.6
9

96
6.
72

86
8.
37

98
.35

9,1
39
.6
3

86
0.
37

0.
00
5

0.
09
05
60

98
0.
02
11

−
0.
06
36
57
77

12
0.
09
4

1,0
28
.4
1

0.
93
7

49
.8
6

97
8.
55

85
9.1

2
119

.4
2

9,0
20
.2
0

97
9.8

0
0.
00

4
0.
09
06

62
11

0.
03
39

−
0.
05
20
05
13

13
0.
09
4

1,0
28
.4
1

0.
93
3

42
.5
0

98
5.
90

84
7.9

0
13
8.
00

8,
88
2.
20

1,1
17.
80

0.
00

4
0.
09
07
61
40

0.
04

43
−
0.
04

25
85
61

14
0.
09
4

1,0
28
.4
1

0.
92
9

44
.9
0

98
3.
51

83
4.
93

14
8.
58

8,
73
3.
62

1,2
66
.3
8

0.
00
7

0.
09
08
56
26

0.
05
28

−
0.
03
48
86
42

15
0.
09
4

1,0
28
.4
1

0.
92
2

69
.18

95
9.2

2
82
0.
96

13
8.
26

8,
59
5.
36

1,4
04
.6
4

0.
00
8

0.
09
09
45
91

0.
05
98

−
0.
02
85
32
51

16
0.
09
6

1,0
28
.4
1

0.
91
4

79
.7
1

94
8.
70

82
5.
15

12
3.
54

8,
47
1.8

1
1,5

28
.19

0.
00
5

0.
09
10
38
27

0.
06
57

−
0.
02
32
51
59

17
0.
09
6

1,0
28
.4
1

0.
90
9

55
.5
5

97
2.
86

81
3.
29

15
9.5

7
8,
31
2.
25

1,6
87
.7
5

0.
00
7

0.
09
11
30
56

0.
07
06

−
0.
01
88
29
48

18
0.
09
6

1,0
28
.4
1

0.
90
2

74
.7
7

95
3.
64

79
7.9

8
15
5.
66

8,
15
6.
58

1,8
43
.4
2

0.
00
8

0.
09
12
20
69

0.
07
47

−
0.
01
51
01
48

19
0.
09
6

1,0
28
.4
1

0.
89
3

83
.7
2

94
4.
69

78
3.
03

16
1.6

6
7,9

94
.9
3

2,
00
5.
07

0.
00
8

0.
09
13
07
62

0.
07
83

−
0.
01
19
39
91

20
0.
09
6

1,0
28
.4
1

0.
88
5

76
.3
6

95
2.
05

76
7.5
1

18
4.
54

7,8
10
.39

2,
18
9.6

1
0.
00
7

0.
09
13
90
37

0.
08
13

−
0.
00

92
44

02
21

0.
09
8

1,0
28
.4
1

0.
87
8

70
.7
9

95
7.6

2
76
5.
42

19
2.
20

7,6
18
.19

2,
38
1.8

1
0.
01
0

0.
09
14
73
19

0.
08
39

−
0.
00

69
38
00

22
0.
09
8

1,0
28
.4
1

0.
86
8

94
.5
8

93
3.
83

74
6.
58

18
7.2

5
7,4

30
.9
5

2,
56
9.0

5
0.
01
3

0.
09
15
54
62

0.
08
61

−
0.
00

49
57
42

23
0.
09
8

1,0
28
.4
1

0.
85
5

12
4.
58

90
3.
82

72
8.
23

17
5.
59

7,2
55
.3
5

2,
74
4.
65

0.
01
4

0.
09
16
33
78

0.
08
81

−
0.
00
32
49
11

24
0.
09
8

1,0
28
.4
1

0.
84
2

12
9.9

3
89
8.
48

71
1.0

2
18
7.4

6
7,0

67
.9
0

2,
93
2.
10

0.
01
5

0.
09
17
10
07

0.
08
98

−
0.
00
17
70
52

25
0.
09
8

1,0
28
.4
1

0.
82
6

14
2.
00

88
6.
41

69
2.
65

19
3.
76

6,
87
4.
14

3,
12
5.
86

0.
01
6

0.
09
17
83
20

0.
09
13

−
0.
00

04
86
69

26
0.
10
0

1,0
28
.4
1

0.
81
1

14
6.
05

88
2.
36

68
7.4

1
19
4.
95

6,
67
9.2

0
3,
32
0.
80

0.
01
5

0.
09
18
55
09

0.
09
25

0.
00

06
29
37

27
0.
10
0

1,0
28
.4
1

0.
79
5

14
2.
36

88
6.
05

66
7.9

2
21
8.
13

6,
46
1.0

7
3,
53
8.
93

0.
01
6

0.
09
19
25
08

0.
09
37

0.
00
16
02
19

28
0.
10
0

1,0
28
.4
1

0.
77
9

14
8.
43

87
9.9

7
64

6.
11

23
3.
87

6,
22
7.2

0
3,
77
2.
80

0.
01
8

0.
09
19
92
82

0.
09
47

0.
00
24
52
16

29
0.
10
0

1,0
28
.4
1

0.
76
1

16
2.
41

86
6.
00

62
2.
72

24
3.
28

5,
98
3.
92

4,
01
6.
08

0.
02
1

0.
09
20
57
96

0.
09
55

0.
00
31
96

48
30

0.
10
0

1,0
28
.4
1

0.
74
0

18
7.4

6
84
0.
95

59
8.
39

24
2.
55

5,
74
1.3

7
4,
25
8.
63

0.
02
1

0.
09
21
20
48

0.
09
63

0.
00
38
49
45

31
0.
10
2

1,0
28
.4
1

0.
71
9

18
4.
06

84
4.
35

58
5.
62

25
8.
73

5,
48
2.
64

4,
51
7.3

6
0.
02
5

0.
09
21
81
21

0.
09
70

0.
00

44
22
46

32
0.
10
2

1,0
28
.4
1

0.
69
4

22
1.1
5

80
7.2

5
55
9.2

3
24
8.
02

5,
23
4.
62

4,
76
5.
38

0.
02
6

0.
09
22
40

12
0.
09
76

0.
00

49
25
90

33
0.
10
2

1,0
28
.4
1

0.
66

8
22
5.
53

80
2.
88

53
3.
93

26
8.
94

4,
96
5.
68

5,
03
4.
32

0.
02
3

0.
09
22
96
75

0.
09
82

0.
00
53
69
08

34
0.
10
2

1,0
28
.4
1

0.
64

5
19
4.
32

83
4.
09

50
6.
50

32
7.5
9

4,
63
8.
08

5,
36
1.9

2
0.
02
0

0.
09
23
51
14

0.
09
86

0.
00
57
59
61

35
0.
10
2

1,0
28
.4
1

0.
62
5

16
1.7

0
86
6.
70

47
3.
08

39
3.
62

4,
24
4.
47

5,
75
5.
53

0.
03
0

0.
09
24
03
11

0.
09
91

0.
00

61
04

25
36

0.
10
4

1,0
28
.4
1

0.
59
5

23
9.8

9
78
8.
51

44
1.4

2
34
7.0

9
3,
89
7.3

8
6,
10
2.
62

0.
03
5

0.
09
24
53
28

0.
09
95

0.
00

64
08
13

37
0.
10
4

1,0
28
.4
1

0.
55
9

27
2.
79

75
5.
61

40
5.
33

35
0.
29

3,
54
7.0

9
6,
45
2.
91

0.
02
8

0.
09
25
01
67

0.
09
98

0.
00

66
76
20

38
0.
10
4

1,0
28
.4
1

0.
53
1

20
7.3

0
82
1.1
1

36
8.
90

45
2.
21

3,
09
4.
88

6,
90
5.
12

0.
03
5

0.
09
25
47
93

0.
10
01

0.
00

69
13
09

39
0.
10
4

1,0
28
.4
1

0.
49
6

24
1.8

0
78
6.
60

32
1.8

7
46

4.
74

2,
63
0.
14

7,3
69
.8
6

0.
04

2
0.
09
25
92
23

0.
10
04

0.
00
71
22
42

40
0.
10
4

1,0
28
.4
1

0.
45
4

26
5.
68

76
2.
73

27
3.
53

48
9.2

0
2,
14
0.
95

7,8
59
.0
5

0.
04

4
0.
09
26
34
50

0.
10
06

0.
00
73
07
56

41
0.
10
6

1,0
28
.4
1

0.
41
0

25
4.
26

77
4.
15

22
6.
94

54
7.2

1
1,5

93
.74

8,
40

6.
26

0.
04
5

0.
09
26
75
01

0.
10
08

0.
00
74
71
14

42
0.
10
6

1,0
28
.4
1

0.
36
6

21
5.
33

81
3.
08

16
8.
94

64
4.
14

94
9.5

9
9,0

50
.4
1

0.
11
0

0.
09
27
13
90

0.
10
10

0.
00
76
15
59

43
0.
10
6

1,0
28
.4
1

0.
25
6

45
0.
99

57
7.4

2
10
0.
66

47
6.
76

47
2.
83

9,5
27
.17

0.
12
6

0.
09
27
50
98

0.
10
12

0.
00
77
43
31

44
0.
10
6

1,0
28
.4
1

0.
13
0

50
5.
46

52
2.
95

50
.12

47
2.
83

0.
00

10
,0
00
.0
0

0.
13
0

0.
09
27
86
23

0.
10
14

0.
00
78
56
31

To
ta
l

45
,2
49
.9
0

—
6,
21
3.
85

39
,0
36
.0
5

29
,0
36
.0
5

10
,0
00
.0
0

—
—

—
—

—
—



6 International Journal of Mathematics and Mathematical Sciences

The interest rates corresponding to Example 1 appear in
Table 1 and their expected average value is 8.9813%.

(3) True Average Gross Interest Rate. Once the financial trans-
action has finished and then its maturity is well known, 𝑖

𝑏,𝑘

is said to be the true average gross interest rate if it makes
the financial equivalence between the loan principal and the
exact number, 𝑘, of periodic amounts paid by the borrower
possible:

𝐶
0
=

𝑘

∑

𝑠=1

𝑎
𝑠
⋅ (1 + 𝑖

𝑏,𝑘
)
−𝑠
. (25)

Therefore, this rate is variable according to 𝑘 and a priori, that
is, at the beginning of the transaction, we can only estimate
itsmathematical expectation, taking into account the fact that
the probability of 𝑖

𝑏,𝑘
is
1
𝑓
𝑘
and then

𝑖
𝑏
= 𝐸 [𝑖

𝑏,𝑘
] =

𝑛

∑

𝑘=0

𝑖
𝑏,𝑘

⋅
1
𝑓
𝑘
. (26)

Observe that 𝑖
𝑏,𝑘

can have a negative value if the last instal-
ment of the loan repayment takes place before the amortiza-
tion of the principal, that is to say, if

𝐶
0
>

𝑘

∑

𝑠=1

𝑎
𝑠
. (27)

The most extreme case occurs when the borrower dies even
before the first repayment instalment is made. In this case,
the lender does not receive any money and so 𝑖

𝑏,0
= −1. This

situation occurs with probability 1 − 𝑝
1
. On the other hand,

the maximum profitability is obtained when 𝑘 = 𝑛, which
occurs with probability 𝑝

𝑛
.

The true average gross interest rates of Example 1 appear
in Table 1. Observe that, for the first nine years, the profitabil-
itywill be negative, obtaining a positive profitability fromyear
ten, and this is because

9

∑

𝑠=1

𝑎
𝑠
= 9,255.66 < 10,000.00 <

10

∑

𝑠=1

𝑎
𝑠
= 10,284.07. (28)

In this case, the expected average profitability of the financial
transaction is 5.6% per year.

(4) Average Interest Rate due to Randomness. A relationship
between the net and gross average rates can be established
through the so-called average rate due to randomness (the
concepts of the agreed average interest rate, true net interest
rate, true gross interest rate, and average interest rate due to
randomness coincide with the concepts of a priori average
return, a posteriori average net return, a posteriori gross aver-
age return, and average return due to randomness introduced
by Gil Peláez [19, pp. 539–542]), denoted by 𝑖

𝑎,𝑘
, which is

defined by means of the following equation:

1 + 𝑖
𝑏,𝑘

fl (1 + 𝑖
𝑛,𝑘
) ⋅ (1 + 𝑖

𝑎,𝑘
) , (29)

from which

𝑖
𝑎,𝑘

=
𝑖
𝑏,𝑘

− 𝑖
𝑛,𝑘

1 + 𝑖
𝑛,𝑘

. (30)

Observe that 𝑖
𝑎,𝑘

will be negative provided that 𝑖
𝑏,𝑘

< 𝑖
𝑛,𝑘
, and

this will occur when the transaction generates losses; that is
to say, 𝑅

0,𝑘
< 0. Analogous to the previously defined rates,

this is variable depending on the duration of the financial
transaction, so that its a priori expected average value can be
calculated as follows:

𝑖
𝑎
= 𝐸 [𝑖

𝑎,𝑘
] =

𝑛

∑

𝑘=0

𝑖
𝑎,𝑘

⋅
1
𝑓
𝑘
. (31)

In Table 1, we can see the values corresponding to Example 1.
In effect, for transaction with a duration of less than twenty-
six years, we will obtain losses with respect to a traditional
(nonrandom) loan. So the average rate due to randomness
would be negative. On the other hand, when the age of
the borrower is equal to or greater than seventy-five years,
the financial transaction would be profitable for the lender
compared to the classical loan. Moreover, when the borrower
is fifty-nine, the lender would recover the principal without
any profit (interest). Finally, the expected average rate due to
randomness is negative, more specifically −3.324809%.

At the beginning, when the contract is formalized, the
loan duration is uncertain. Nevertheless, the probability dis-
tribution of the last repayment instalment is known so that
we can determine its expected value, 𝑘, in the following way:

𝑘 = 𝐸 [𝑘] =

𝑛

∑

𝑘=0

𝑘 ⋅
1
𝑓
𝑘
. (32)

In Example 1, the average duration estimated at the beginning
of the transaction is 34.069 years, in which case the loan
would finish when the borrower reaches the age of 83.

Finally, the financial maturity of the transaction is defined
as the duration of a fixed (nonrandom) transaction such that
its net present value equals that of the random transaction,
that is to say, the value 𝑘̃ satisfying the following equation:

𝐶
0
=

𝑛

∑

𝑠=1

𝑎
𝑠
⋅ 𝑝
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

=

𝑘̃

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
. (33)

It is obvious that, in most cases, this equation does not have a
solution within the set of integer numbers but we can find a
value

𝑘̃ ∈ [𝛼, 𝛼 + 1[ , (34)

being

𝛼

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

< 𝐶
0
<

𝛼+1

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
. (35)
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In Example 1, the final repayment instalment of the transac-
tion is included in the interval [25, 26[, since

25

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

= 9,957.38 < 10,000.00

< 10,056.32

=

26

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
.

(36)

Observe that, after the twenty-sixth year, the average interest
rate due to randomness is positive. In effect, for durations
longer than twenty-six years, the lender obtains a greater
profit from a random transaction than that obtained from a
fixed (nonrandom) transaction.

3. Amortization of a Loan Transaction Where
the First Repayment Instalment Is Random
and the Last Is Fixed

Using the same nomenclature as in Section 2, let us consider
a loan transaction where the borrower receives the principal
𝐶
0
at instant 0 and later he/she pays 𝑛 periodic instalments

𝑎
𝑠
, on specified dates 𝑠 (𝑠 = 1, 2, . . . , 𝑛) in order to amortize

the principal. In this case, we are going to assume that the
payment of the first instalment is subject to a contingency
whereby the borrower will have to pay greater amounts 𝑎

𝑠

than if the loan is not subject to this eventuality. Therefore,
the equation of financial equivalence at the beginning of
the transaction, by considering the exponential discount
function at variable interest rate, is

𝐶
0
=

𝑛

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
⋅ (1 + 𝑟

󸀠

ℎ
)
−1

, (37)

where 𝑟󸀠
ℎ
denotes the risk element which the borrower has to

pay to the lender.
In the case of the aforementioned contingency being the

death of the borrower, the risk represented by 𝑟󸀠
ℎ
is the survival

of the borrower which, consequently, causes a delay in the
commencement of repayment instalments. An example of
this situation is the case of a person who, on retirement,
requests an inverse mortgage receiving a single amount and
agreeing with the financial entity that its repayment is to be
made by instalments by the heirs over an agreed period of
time after the death of the borrower.

Thus, by considering the survival/death of the borrower,
we have (see [17, p. 278])

1 + 𝑟
󸀠

ℎ
=

1

1
𝑞
ℎ−1

, (38)

1
𝑞
ℎ−1

being the probability that a person aged ℎ−1 dies before
reaching the age ℎ, where

1
𝑞
ℎ−1

= 1 −
1
𝑝
ℎ−1

. (39)

By considering (37), (38), and (39), one has

𝐶
0
=

𝑛

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
⋅ (1 −

1
𝑝
ℎ−1

) . (40)

Therefore,

𝐶
0
=

𝑛

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
−

𝑛

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

⋅
1
𝑝
ℎ−1

,

(41)

from which, taking into account (1), (2), and (3), one has

𝐶
0
=

𝑛

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
−

𝑛

∑

𝑠=1

𝑎
𝑠
⋅ 𝑝
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
; (42)

that is to say, the periodic payments where the first date
of instalments is random and the last one is fixed can be
obtained as the difference between a set of payments where
the dates of the first and the last instalments are fixed and
another one where the first date is fixed and the last one is
random:

𝐶
0
= 𝐶

ff
0
− 𝐶

fr
0
, (43)

being

(i) 𝐶ff
0
= ∑
𝑛

𝑠=1
𝑎
𝑠
⋅ ∏
𝑠

ℎ=1
(1 + 𝑖
ℎ
)
−1, where the dates of the

first and last payments are fixed,
(ii) 𝐶fr
0
= ∑
𝑛

𝑠=1
𝑎
𝑠
⋅ 𝑝
𝑠
⋅ ∏
𝑠

ℎ=1
(1 + 𝑖
ℎ
)
−1, where the date of

the first payment is fixed and that of the last one is
random.

The outstanding principal at an intermediate instant 𝑘 of the
transaction, 𝐶

𝑘
, will depend on whether the periodic pay-

ments have or have not started at that instant. We will denote
by 𝐶󸀠
𝑘
the outstanding principal when the periodic payments

have not yet started and by 𝐶
󸀠󸀠

𝑘
the outstanding principal

when the periodic payments have started. Thus, we have the
following expressions according to the employed method.

(1) Prospective Method (according to the Future Amounts Still
to Be Paid, That Is to Say, from Instant 𝑘 to the Last Date 𝑛).
Here, we can consider the following two subcases:

(i) If, at instant 𝑘, the periodic payments have not yet
started, then all future payments are random, so that

𝐶
󸀠

𝑘
=

𝑛

∑

𝑠=𝑘+1

𝑎
𝑠
⋅

𝑠

∏

ℎ=𝑘+1

(1 + 𝑖
ℎ
)
−1
⋅ (1 + 𝑟

󸀠

ℎ
)
−1

, (44)

from which simple algebra shows that

𝐶
󸀠

𝑘
=

𝑛

∑

𝑠=𝑘+1

𝑎
𝑠
⋅

𝑠

∏

ℎ=𝑘+1

(1 + 𝑖
ℎ
)
−1
−

1

𝑝
𝑘

⋅

𝑛

∑

𝑠=𝑘+1

𝑎
𝑠
⋅ 𝑝
𝑠

⋅

𝑠

∏

ℎ=𝑘+1

(1 + 𝑖
ℎ
)
−1
.

(45)
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(ii) If, at instant 𝑘, the periodic payments have started,
then all future payments after 𝑘 are fixed, so that

𝐶
󸀠󸀠

𝑘
=

𝑛

∑

𝑠=𝑘+1

𝑎
𝑠
⋅

𝑠

∏

ℎ=𝑘+1

(1 + 𝑖
ℎ
)
−1
. (46)

It is obvious that, a priori, it is not possible to know for
certain when instant 𝑘will occur, and consequently it
will be only possible to give an average value of the
outstanding principal:

𝐶
𝑘
= 𝐶
󸀠

𝑘
⋅ 𝑝
𝑘
+ 𝐶
󸀠󸀠

𝑘
⋅ (1 − 𝑝

𝑘
) . (47)

(2) Retrospective Method (according to the Periodic Amounts
Repaid from the Start of the Transaction up to the Present).
Analogously, we can consider here the following subcases:

(i) If, at instant 𝑘, the periodic payments have not yet
started, then all payments whose dates belong to the
interval [0, 𝑘] will be zero, so that

𝐶
󸀠

𝑘
= 𝐶
0
⋅

𝑘

∏

ℎ=1

(1 + 𝑖
ℎ
) , (48)

and the probability of occurrence of this situation is
𝑝
𝑘
.

(ii) If, at instant 𝑘, the periodic payments have started, in
this case, it is possible that

(1) the payments started in the first period, so that
the outstanding principal, denoted by 𝐶󸀠󸀠

𝑘,1
, will

be equal to

𝐶
󸀠󸀠

𝑘,1
= 𝐶
0
⋅

𝑘

∏

ℎ=1

(1 + 𝑖
ℎ
) −

𝑘−1

∑

𝑠=1

𝑎
𝑠
⋅

𝑘

∏

ℎ=𝑠+1

(1 + 𝑖
ℎ
) − 𝑎
𝑘
, (49)

and the probability of occurrence of this case is
1
𝑓
0
= 𝑝
0
− 𝑝
1
;

(2) the payments started in the second period, so
that the outstanding principal, denoted by 𝐶󸀠󸀠

𝑘,2
,

will be equal to

𝐶
󸀠󸀠

𝑘,2
= 𝐶
0
⋅

𝑘

∏

ℎ=1

(1 + 𝑖
ℎ
) −

𝑘−1

∑

𝑠=2

𝑎
𝑠
⋅

𝑘

∏

ℎ=𝑠+1

(1 + 𝑖
ℎ
) − 𝑎
𝑘
, (50)

and the probability of occurrence of this case is
1
𝑓
1
= 𝑝
1
− 𝑝
2
;

.

.

.

(𝑘) the payments started in the 𝑘th period, so that
the outstanding principal, denoted by 𝐶󸀠󸀠

𝑘,𝑘
, will

be equal to

𝐶
󸀠󸀠

𝑘,𝑘
= 𝐶
0
⋅

𝑘

∏

ℎ=1

(1 + 𝑖
ℎ
) − 𝑎
𝑘
, (51)

and the probability of occurrence of this case is
1
𝑓
𝑘−1

= 𝑝
𝑘−1

− 𝑝
𝑘
.

By considering the expressions from (48) to (51), one has

𝐶
𝑘
= 𝐶
󸀠

𝑘
⋅ 𝑝
𝑘
+

𝑘

∑

𝑗=1

𝐶
󸀠󸀠

𝑘,𝑗
⋅ (𝑝
𝑗−1

− 𝑝
𝑗
) . (52)

Nevertheless, taking into account that

𝑘

∑

𝑗=1

𝐶
󸀠󸀠

𝑘,𝑗
⋅ (𝑝
𝑗−1

− 𝑝
𝑗
) =

𝑘−1

∑

𝑗=1

[

[

𝐶
0
⋅

𝑘

∏

ℎ=1

(1 + 𝑖
ℎ
) −

𝑘−1

∑

𝑠=𝑗

𝑎
𝑠

⋅

𝑘

∏

ℎ=𝑠+1

(1 + 𝑖
ℎ
) − 𝑎
𝑘
]

]

⋅ (𝑝
𝑗−1

− 𝑝
𝑗
) + [𝐶

0

⋅

𝑘

∏

ℎ=1

(1 + 𝑖
ℎ
) − 𝑎
𝑘
] ⋅ (𝑝
𝑘−1

− 𝑝
𝑘
)

(53)

and since
𝑘

∑

𝑗=1

(𝑝
𝑗−1

− 𝑝
𝑗
) = 1 − 𝑝

𝑘
, (54)

doing some appropriate operations, this simplifies to

𝐶
𝑘
= 𝐶
0
⋅

𝑘

∏

ℎ=1

(1 + 𝑖
ℎ
) −

𝑘−1

∑

𝑠=1

𝑎
𝑠
⋅

𝑘

∏

ℎ=𝑠+1

(1 + 𝑖
ℎ
) ⋅ (1 − 𝑝

𝑠
)

− 𝑎
𝑘
⋅ (1 − 𝑝

𝑘
) .

(55)

(3) Recursive Method (according to the Value of the Outstand-
ing Principal Calculated at a Previous Date). Consider the
following.

(i) If, at instant 𝑘, the periodic payments have not started,
then 𝑎

𝑠
= 0 for 𝑠 = 1, 2, . . . , 𝑘, so that

𝐶
󸀠

𝑘
= 𝐶
𝑘−1

⋅ (1 + 𝑖
𝑘
) . (56)

(ii) If, at instant 𝑘, the periodic payments have started
(independently of the fact that they have started in the
𝑘th period or earlier), then

𝐶
󸀠󸀠

𝑘
= 𝐶
𝑘−1

⋅ (1 + 𝑖
𝑘
) − 𝑎
𝑘
. (57)

Consequently, by considering (47), (56), and (57), one has

𝐶
𝑘
= 𝐶
𝑘−1

⋅ (1 + 𝑖
𝑘
) − 𝑎
𝑘
⋅ (1 − 𝑝

𝑘
) . (58)

Starting from (58) and knowing that each instalment is the
sum of the risk quota plus the saving quota

𝐶
𝑠
= 𝐶
𝑠−1

⋅ (1 + 𝑖
𝑠
) − (𝑎

󸀠

𝑠
+ 𝑎
󸀠󸀠

𝑠
) ⋅ (1 − 𝑝

𝑠
) (59)

and considering that the saving quota is

𝑎
󸀠󸀠

𝑠
= 𝐶
𝑠−1

⋅ (1 + 𝑖
𝑠
) − 𝐶
𝑠
, (60)

this can be simplified to

𝑎
󸀠

𝑠
= 𝑎
󸀠󸀠

𝑠
⋅

𝑝
𝑠

1 − 𝑝
𝑠

. (61)
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Example 2. Assume that, in 2013, a person aged 50 requests
a loan of €10,000, for the purchase of a parking space
which itself serves as collateral. The loan principal will be
amortized by his/her heirs after the death of the purchaser.
The maximum duration of the transaction will be 40 years
and the applicable annual interest rate will be 5% for the five
first years, being updated every five years with an increase
of 0.3%. In order to determine the risk, the financial entity
applies the generational tables of survival for males (tables
PERM/F-2000P), according to which the person requesting
themortgage has at thatmoment a life expectancy of a further
27 years; that is to say, it is expected that the person lives to
the age of 92.The different parameters of the loan transaction
can be observed in Table 2.

In this kind of transaction it is also usual to find some
periods in which the amortization “is not regular,” that is to
say, some periods in which the outstanding principal does
not decrease as usual but increases since the corresponding
instalment value is less than the sumof interest plus risk quota
corresponding to the periods in question. This situation can
be observed in the first twenty-two periods of our example in
which the outstanding principal increases little by little until
it amounts to €15,687.64.

With regard to the risk quota, this parameter diminishes
with the progress of time and moreover the amount of
decrease is progressively greater. This is logical because the
probability of death of the borrower increases, reaching the
value zero when the probability of survival of this person is
zero. This occurs after the twenty-ninth year of the loan.

If death occurs in or before the sixteenth year of the loan,
when the borrower will not have reached the age of 80, then
the total amount of paymentsmade up to that timewill yield a
profit for the borrowerwhichwill be the same as that obtained
fromafixed transaction (i.e., without consideration of the risk
factor) since

10,000 ⋅
15

∏

ℎ=1

(1 + 𝑖
ℎ
) = 21,697.41

<

40

∑

ℎ=16

1,735.22 ⋅
𝑠

∏

ℎ=16

(1 + 𝑖
ℎ
)
−1

= 23,052.58.

(62)

In general terms, where 𝑛 is the number of agreed years and
𝑛̈ is the number of years during which the periodic payments
are zero, it holds that

𝐶
0
⋅

𝑛̈

∏

ℎ=1

(1 + 𝑖
ℎ
) <

𝑛

∑

𝑠=𝑛̈+1

𝑎
𝑠
⋅

𝑠

∏

ℎ=𝑛̈+1

(1 + 𝑖
ℎ
)
−1
. (63)

Thus, if the payment of instalments has started before
the sixteenth year of the loan, the profit obtained by the
lender would be greater than that corresponding to a fixed
(nonrandom) transaction. This will allow the lender to com-
pensate for losses arising from other transactions, making the
practical implementation of this kind of financial transaction
attractive for many financial entities.

In this type of random loan, the following kinds of average
interest rate can be defined.

(1) Average Agreed Interest Rate. If the loan is agreed with
a variable interest rate, it is useful to calculate the average
interest rate, 𝑖

𝑚
, resulting from the contract. By definition,

this average is the rate which, if applied to all periods, makes
it possible to calculate the periodic payments which amortize
the initial loan plus accrued interest. Thus, once the values of
𝐶
0
, 𝑎
𝑠
, and 𝑝

𝑠
satisfying (42) have been determined, the aver-

age interest rate can be derived from the following equation:

𝐶
0
=

𝑛

∑

𝑠=1

𝑎
𝑠
⋅ (1 + 𝑖

𝑚
)
−𝑠
−

𝑛

∑

𝑠=1

𝑎
𝑠
⋅ 𝑝
𝑠
⋅ (1 + 𝑖

𝑚
)
−𝑠
. (64)

In Example 2, by considering that

10,000.00 =
40

∑

𝑠=1

1,735.22 ⋅ (1 + 𝑖
𝑚
)
−𝑠

−

40

∑

𝑠=1

1,735.22 ⋅ 𝑝
𝑠
⋅ (1 + 𝑖

𝑚
)
−𝑠
,

(65)

the average rate of the loan transaction is 5.6577%.

(2) True Net Interest Rate. Once the commencement of the
financial transaction is known (i.e., the agreed date of the
first repayment instalment), the true net interest rate, denoted
by 𝑖
𝑛,𝑘
, can be calculated as the rate satisfying the following

equation:

𝑛

∑

𝑠=𝑘

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

=

𝑛

∑

𝑠=𝑘

𝑎
𝑠
⋅ (1 + 𝑖

𝑛,𝑘
)
−𝑠
. (66)

Knowing that the result of the transaction (profit or loss)
measured in monetary units corresponding to the initial
instant and for a duration of 𝑛 − (𝑘 − 1) periods, 𝑅

0,𝑘
, is given

by the difference

𝑅
0,𝑘

=

𝑛

∑

𝑠=𝑘

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
− 𝐶
0
, (67)

and by considering (66) and (67), one has

𝐶
0
+ 𝑅
0,𝑘

=

𝑛

∑

𝑠=𝑘

𝑎
𝑠
⋅ (1 + 𝑖

𝑛,𝑘
)
−𝑠
, (68)

and this justifies the label “net” for the rate 𝑖
𝑛,𝑘
.

This rate is variable depending on the moment at which
the transaction comes into operation. Thus, at the beginning
of the transaction, one can only determine its expected
average value, taking into account the fact that the probability
of each duration 𝑛 − (𝑘 − 1) and consequently of each rate
is (observe that when the date of the first instalment is fixed
and the last is random, the 𝑘th payment will be the last
one provided that the death of the contracting party occurs
between the ages of 𝑘 and 𝑘 + 1; nevertheless, if the date of
the first instalment is random and the last is fixed, the 𝑘th
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Table 3

Financial equivalence
I 𝐶

0
=

𝑛

∑

𝑠=1

𝑎
𝑠
⋅ 𝑝
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

II 𝐶
0
=

𝑛

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

−

𝑛

∑

𝑠=1

𝑎
𝑠
⋅ 𝑝
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

𝐶
𝑘
prospective method

I 𝐶
𝑘
=

1

𝑝
𝑘

⋅

𝑛

∑

𝑠=𝑘+1

𝑎
𝑠
⋅ 𝑝
𝑠
⋅

𝑠

∏

ℎ=𝑘+1

(1 + 𝑖
ℎ
)
−1

II

𝐶
𝑘
= 𝐶
󸀠

𝑘
⋅ 𝑝
𝑘
+ 𝐶
󸀠󸀠

𝑘
⋅ (1 − 𝑝

𝑘
)

being

𝐶
󸀠

𝑘
=

𝑛

∑

𝑠=𝑘+1

𝑎
𝑠
⋅

𝑠

∏

ℎ=𝑘+1

(1 + 𝑖
ℎ
)
−1

−
1

𝑝
𝑘

⋅

𝑛

∑

𝑠=𝑘+1

𝑎
𝑠
⋅ 𝑝
𝑠
⋅

𝑠

∏

ℎ=𝑘+1

(1 + 𝑖
ℎ
)
−1

𝐶
󸀠󸀠

𝑘
=

𝑛

∑

𝑠=𝑘+1

𝑎
𝑠
⋅

𝑠

∏

ℎ=𝑘+1

(1 + 𝑖
ℎ
)
−1

𝐶
𝑘
retrospective method

I 𝐶
𝑘
=

1

𝑝
𝑘

⋅ [𝐶
0
⋅

𝑘

∏

ℎ=1

(1 + 𝑖
ℎ
) − (

𝑘−1

∑

𝑠=1

𝑎
𝑠
⋅ 𝑝
𝑠
⋅

𝑘

∏

ℎ=𝑠+1

(1 + 𝑖
ℎ
))] − 𝑎

𝑘

II 𝐶
𝑘
= 𝐶
0
⋅

𝑘

∏

ℎ=1

(1 + 𝑖
ℎ
) −

𝑘−1

∑

𝑠=1

𝑎
𝑠
⋅

𝑘

∏

ℎ=𝑠+1

(1 + 𝑖
ℎ
) ⋅ (1 − 𝑝

𝑠
) − 𝑎
𝑘
⋅ (1 − 𝑝

𝑘
)

𝐶
𝑘
recursive method I 𝐶

𝑘
= 𝐶
𝑘−1

⋅ (1 + 𝑖
𝑘
) ⋅

𝑝
𝑘−1

𝑝
𝑘

− 𝑎
𝑘

II 𝐶
𝑘
= 𝐶
𝑘−1

⋅ (1 + 𝑖
𝑘
) − 𝑎
𝑘
⋅ (1 − 𝑝

𝑘
)

Risk quota
I 𝑎

󸀠

𝑠
= 𝐶
𝑠−1

⋅ (1 + 𝑖
𝑠
) ⋅

𝑝
𝑠−1

− 𝑝
𝑠

𝑝
𝑠

II 𝑎
󸀠

𝑠
= [𝐶
𝑠−1

⋅ (1 + 𝑖
𝑠
) − 𝐶
𝑠
] ⋅

𝑝
𝑠

1 − 𝑝
𝑠

Agreed average interest rate
I 𝐶

0
=

𝑛

∑

𝑠=1

𝑎
𝑠
⋅ 𝑝
𝑠
⋅ (1 + 𝑖

𝑚
)
−𝑠

II 𝐶
0
=

𝑛

∑

𝑠=1

𝑎
𝑠
⋅ (1 + 𝑖

𝑚
)
−𝑠

−

𝑛

∑

𝑠=1

𝑎
𝑠
⋅ 𝑝
𝑠
⋅ (1 + 𝑖

𝑚
)
−𝑠

True net interest rate

I

𝑖
𝑛
= 𝐸 [𝑖

𝑛,𝑘
] =

𝑛

∑

𝑘=0

𝑖
𝑛,𝑘

⋅
1
𝑓
𝑘
,

being
𝑘

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

=

𝑘

∑

𝑠=1

𝑎
𝑠
⋅ (1 + 𝑖

𝑛,𝑘
)
−𝑠

II

𝑖
𝑛
= 𝐸 [𝑖

𝑛,𝑘
] =

𝑛

∑

𝑘=1

𝑖
𝑛,𝑘

⋅
1
𝑓
𝑘−1

,

being
𝑛

∑

𝑠=𝑘

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

=

𝑛

∑

𝑠=𝑘

𝑎
𝑠
⋅ (1 + 𝑖

𝑛,𝑘
)
−𝑠

True gross interest rate

I

𝑖
𝑏
= 𝐸 [𝑖

𝑏,𝑘
] =

𝑛

∑

𝑘=0

𝑖
𝑏,𝑘

⋅
1
𝑓
𝑘
,

being

𝐶
0
=

𝑘

∑

𝑠=1

𝑎
𝑠
⋅ (1 + 𝑖

𝑏,𝑘
)
−𝑠

II

𝑖
𝑏
= 𝐸 [𝑖

𝑏,𝑘
] =

𝑛

∑

𝑘=1

𝑖
𝑏,𝑘

⋅
1
𝑓
𝑘−1

,

being

𝐶
0
=

𝑛

∑

𝑠=𝑘

𝑎
𝑠
⋅ (1 + 𝑖

𝑏,𝑘
)
−𝑠

Average interest rate due to randomness
I 𝑖

𝑎
= 𝐸 [𝑖

𝑎,𝑘
] =

𝑛

∑

𝑘=0

𝑖
𝑎,𝑘

⋅
1
𝑓
𝑘
, being

𝑖
𝑎,𝑘

=
𝑖
𝑏,𝑘

− 𝑖
𝑛,𝑘

1 + 𝑖
𝑛,𝑘II 𝑖

𝑎
= 𝐸 [𝑖

𝑎,𝑘
] =

𝑛

∑

𝑘=1

𝑖
𝑎,𝑘

⋅
1
𝑓
𝑘−1
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Table 3: Continued.

Expected average last/first date
I 𝑘 = 𝐸 [𝑘] =

𝑛

∑

𝑘=0

𝑘 ⋅
1
𝑓
𝑘

II 𝑘 = 𝐸 [𝑘] =

𝑛

∑

𝑘=1

𝑘 ⋅
1
𝑓
𝑘−1

Financial last/first date
I

𝛼

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

< 𝐶
0
<

𝛼+1

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

II
𝑛

∑

𝑠=𝛼

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

> 𝐶
0
>

𝑛

∑

𝑠=𝛼+1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

paymentwill be the first one if the death of the contract holder
occurs between the ages of 𝑘 − 1 and 𝑘)

1
𝑓
𝑘−1

= 𝑝
𝑘−1

− 𝑝
𝑘
. (69)

Thus,

𝑖
𝑛
= 𝐸 [𝑖

𝑛,𝑘
] =

𝑛

∑

𝑘=1

𝑖
𝑛,𝑘

⋅
1
𝑓
𝑘−1

. (70)

The interest rates corresponding to Example 2 appear in
Table 2, giving an expected average value of 5.1938%. Observe
that as the periodic payments have to start, in probabilistic
terms, at most in the twenty-ninth year, starting from the
thirtieth year the values of 𝑖

𝑛,𝑘
do not have any effect on the

mathematical expectation since the corresponding probabil-
ities
1
𝑓
𝑘−1

are zero.
In Table 2, a rowwith the notation 𝑛+ has been included in

order to indicate the maturity of the transaction and describe
the situation for the duration of the loan period when the
contracting party survives. This would imply that periodic
payments have not yet started.

(3) True Average Gross Interest Rate. Once the financial trans-
action has finished and then its maturity is well known, 𝑖

𝑏,𝑘

is said to be the true average gross interest rate if it makes
the financial equivalence between the loan principal and the
periodic amounts paid by the borrower possible:

𝐶
0
=

𝑛

∑

𝑠=𝑘

𝑎
𝑠
⋅ (1 + 𝑖

𝑏,𝑘
)
−𝑠
. (71)

This rate is variable according to 𝑘 and a priori, that is, at the
commencement of the transaction, we can only estimate its
mathematical expectation taking into account the fact that
the probability of 𝑖

𝑏,𝑘
is
1
𝑓
𝑘−1

and then

𝑖
𝑏
= 𝐸 [𝑖

𝑏,𝑘
] =

𝑛

∑

𝑘=1

𝑖
𝑏,𝑘

⋅
1
𝑓
𝑘−1

. (72)

Observe that 𝑖
𝑏,𝑘

can have a negative value if the periodic
payments start so late that it is not possible for the lender to
recover the principal, and this occurs when

𝐶
0
>

𝑛

∑

𝑠=𝑘

𝑎
𝑠
, (73)

in the most extreme case when the loan expiration is prior
to the start of payments; in such a case, the lender does not
recover anymoney and so 𝑖

𝑏,0
= −1.The probability of occur-

rence of this fact, according to the actuarial tables, is zero, but
in practice this situation is possible unless the first payment is
agreed later than the first period for which the probability is
zero. On the other hand, maximum profitability is obtained
when 𝑘 = 1, that is to say, when the contract holder dies
within the first year of the loan period.

The true average gross interest rates of Example 2 appear
in Table 2. Observe that if the payments start in the thirty-
sixth period or later, the profitability will be negative, obtain-
ing a positive profitability:

40

∑

𝑠=36

𝑎
𝑠
= 8,676.11 < 10,000.00 <

40

∑

𝑠=35

𝑎
𝑠
= 10,411.32. (74)

The expected average profitability of this transaction is
6.0088%.

(4) Average Interest Rate due to Randomness. From (30), it can
be seen that this rate is 𝑖

𝑎,𝑘
= (𝑖
𝑏,𝑘

− 𝑖
𝑛,𝑘
)/(1 + 𝑖

𝑛,𝑘
).

Moreover, it is variable according to 𝑘, so that a priori we
can only calculate its expected value:

𝑖
𝑎
= 𝐸 [𝑖

𝑎,𝑘
] =

𝑛

∑

𝑘=1

𝑖
𝑎,𝑘

⋅
1
𝑓
𝑘−1

. (75)

In Table 2, we can see the values corresponding to Example 2.
In effect, the transaction must start at the latest by the
sixteenth period because otherwise the lender will obtain
losses with respect to the corresponding traditional (nonran-
dom) loan. Thus, for the considered case, its average value is
0.2830%.

At the beginning, when the contract has been formalized,
the date on which the first instalment falls due is uncertain.
Nevertheless, its probability distribution is well known so that
we can determine its expected value, 𝑘, in the following way:

𝑘 = 𝐸 [𝑘] =

𝑛

∑

𝑘=1

𝑘 ⋅
1
𝑓
𝑘−1

. (76)

In Example 2, the estimated starting date of the periodic
payments in this transaction is 18.597 years after agreeing
the contract, whereby the periodic payments will start in the
nineteenth year, when the subject dies at age 82-83.
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Finally, the financial commencement of the transaction is
defined as the duration of a fixed (nonrandom) transaction
such that its net present value is equal to that of the random
transaction, that is to say, the value 𝑘̃ satisfying the following
equation:

𝐶
0
=

𝑛

∑

𝑠=1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
−

𝑛

∑

𝑠=1

𝑎
𝑠
⋅ 𝑝
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

=

𝑛

∑

𝑠=𝑘̃

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
.

(77)

It is obvious that, in most cases, this equation does not have a
solution within the set of integer numbers but we can find a
value

𝑘̃ ∈ [𝛼, 𝛼 + 1[ , (78)

such that
𝑛

∑

𝑠=𝛼

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

> 𝐶
0
>

𝑛

∑

𝑠=𝛼+1

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
. (79)

In Example 2, the financial commencement of the transaction
is included in the interval [16, 17[, since

40

∑

𝑠=16

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1

= 10,032.65 > 10,000.00

> 9,277.47

=

40

∑

𝑠=17

𝑎
𝑠
⋅

𝑠

∏

ℎ=1

(1 + 𝑖
ℎ
)
−1
.

(80)

Observe that, after the seventeenth year, the average interest
rate due to randomness is negative. In effect, this is the
instant fromwhich the lender obtains losses with the random
transaction and consequently he/she does not obtain the
desired profitability.

4. Conclusion

In this paper, we have introduced two new kinds of loan
transaction based on the uncertainty of the first or the last
date of the periodic instalments which the borrower has to
pay to amortize the loan principal. More specifically, this ran-
domness is linked to the life expectancy of the borrower. Nev-
ertheless, any other risk can also be considered because our
approach is general enough to consider other contingencies:

(i) Loan of type I: the date of the first repayment instal-
ment is fixed (nonrandom) but the final date is ran-
dom.

(ii) Loan of type II: the date of the first repayment instal-
ment is random but the final date is fixed (nonran-
dom).

For each kind of new loan, we present the parameters which
allow us to determine the evolution of these transactions and

also those which represent a difference with the traditional
loans agreed in practice. In this way, we start with the equa-
tion of financial equivalence which represents the starting
point to calculate the traditional loan parameters and then
we determine the risk quota (which is the additional amount
that the borrower must pay with respect to a traditional loan
transaction to compensate the lender for the assumed risk)
and the outstanding principal at each moment. Likewise, if
as is usually agreed these transactions are subject to variable
interest rates, it is necessary to calculate several different aver-
age interest rates to indicate the profitability/cost obtained by
the lender/borrower, respectively. Table 3 gives a summary
of the calculations which are put forward in this paper.

Competing Interests

The authors declare that there are no competing interests
regarding the publication of this paper.

References

[1] S. C. Rambaud, “A financial analysis of certain flexible loans:
calculation of the average duration,” International Journal of
Economics and Finance, vol. 5, no. 4, pp. 53–60, 2013.

[2] D. Conley and J. Thompson, “The effects of health and wealth
shocks on retirements decisions,” Federal Reserve Bank of St.
Louis Review, vol. 95, no. 5, pp. 389–404, 2013.

[3] J. K. Shimand J.G. Siegel,FinancialManagement,McGraw-Hill,
New York, NY, USA, 3rd edition, 2007.
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[19] L. Gil Peláez, Matemática de las Operaciones Financieras, Edi-
torial AC, Madrid, Spain, 1992.

[20] J. Dhaene, M. Goovaerts, M. Vanmaele, and K. Van Weert,
“Convex order approximations in the case of cash flows of
mixed signs,” Insurance:Mathematics and Economics, vol. 51, no.
2, pp. 249–256, 2012.

[21] E. F. Brigham and P. R. Daves, Intermediate Financial Manage-
ment, Thomson/South-Western, Mason, Ohio, USA, 9th edi-
tion, 2007.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


