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The aim of this paper is to investigate the stability of Hyers-Ulam-Rassias type theorems by considering the pexiderized quadratic
functional equation in the setting of random 2-normed spaces (RTNS), while the concept of random 2-normed space has been
recently studied by Goleţ (2005).

1. Introduction and Preliminaries

In 1940, Ulam [1] proposed the famous “Ulam stability prob-
lem,” which was solved by Hyers [2], in 1941, for additive
mappings. In 1950, Aoki [3] solved this Ulam problem for
weaker additive mappings; for some historical comments re-
garding the work of Aoki we refer to [4]. In 1978, Rassias
[5] generalized the theorem of Hyers for linear mappings
in which the Cauchy difference is allowed to be unbounded
by replacing 𝜖 with a function depending on 𝑥 and 𝑦 in
the Hyers theorem. The generalization of Hyers theorem
was also presented by Rassias [6–9] in 1982–1989. Some
important Ulam stability problems on Cauchy equation on
semigroups, approximately additive mappings, and Jensen
equation have been investigated by Gajda [10], Găvruta [11],
and Jung [12], respectively. Until now, the stability problems
for different types of functional equations in various spaces
have been extensively studied, for instance, by Mirmostafaee
and Moslehian [13, 14], Rassias [15], Chang et al. [16, 17],
Xu et al. [18], Jun and Kim [19], Mursaleen et al. [20–22],
and many others. Also very interesting results on additive,
quadratic, and cubic functional equations have been achieved
by Mohiuddine et al. [23–29].This paper is inspired from the
work of Alotaibi and Mohiuddine [30] in which they solved
stability problem for cubic functional equation in random 2-
normed spaces.

The pexiderized quadratic functional equation is of the
form 𝑓(𝑥 + 𝑦) + 𝑓(𝑥 − 𝑦) = 2𝑔(𝑥) + 2ℎ(𝑦). For 𝑓 = 𝑔 = ℎ, it
is called the quadratic functional equation.

The terminology and notations used below are standard
as in [31–33].

A function 𝑓 : R → R+
0
is called a distribution function

if it is nondecreasing and is left continuous with inf
𝑡∈R𝑓(𝑡) =

0 and sup
𝑡∈R𝑓(𝑡) = 1. By 𝐷+, we denote the set of all

distribution functions such that 𝑓(0) = 0.
If 𝑎 ∈ R+

0
, then𝐻

𝑎
∈ 𝐷
+, where

𝐻
𝑎
(𝑡) =

{

{

{

0 if 𝑡 ≤ 𝑎;

1 if 𝑡 > 𝑎.
(1)

It is obvious that𝐻
0
≥ 𝑓 for all 𝑓 ∈ 𝐷+.

A 𝑡-norm is a continuous mapping ∗ : [0, 1] × [0, 1] →
[0, 1] such that ([0, 1], ∗) is abelianmonoid with unit one and
𝑐 ∗ 𝑑 ≥ 𝑎 ∗ 𝑏 if 𝑐 ≥ 𝑎 and 𝑑 ≥ 𝑏 for all 𝑎, 𝑏, 𝑐, 𝑑 ∈ [0, 1].
A triangle function 𝜏 is a binary operation on 𝐷+ which is
commutative and associative and 𝜏(𝑓,𝐻

0
) = 𝑓 for every 𝑓 ∈

𝐷
+.
Gähler [34] presented the following notion of 2-normed

space.
Let 𝑋 be a linear space of a dimension 𝑑 (2 ≤ 𝑑 < ∞).

A function ‖⋅, ⋅‖ : 𝑋 × 𝑋 → R is called 2-normed on 𝑋 if
it satisfied the following conditions: for every 𝑥, 𝑦 ∈ 𝑋, (i)
‖𝑥, 𝑦‖ = 0 if and only if 𝑥 and 𝑦 are linearly dependent; (ii)
‖𝑥, 𝑦‖ = ‖𝑦, 𝑥‖; (iii) ‖𝛼𝑥, 𝑦‖ = |𝛼|‖𝑥, 𝑦‖ for every 𝛼 ∈ R; and
(iv) ‖𝑥 + 𝑦, 𝑧‖ ≤ ‖𝑥, 𝑧‖ + ‖𝑦, 𝑧‖ for every 𝑥, 𝑦, 𝑧 ∈ 𝑋. In this
case, (𝑋, ‖⋅, ⋅‖) is called a 2-norm space.
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Goleţ [35] defined and studied the notion of random
2-normed space with the help of 2-norm of Gähler [34].
Recently, the notion of statistical convergence and lacunary
statistical convergence have been studied by Mursaleen [36]
and Mohiuddine and Aiyub [37], respectively, in random 2-
normed spaces.

Let 𝑋 be a linear space of a dimension greater than one
and let 𝜏 be a triangle function. A functionF : 𝑋×𝑋 → 𝐷

+

is called a probabilistic 2-norm on𝑋 if it satisfies the following
conditions:

(i) F
𝑥,𝑦
(𝑡) = 𝐻

0
(𝑡) (∀𝑥, 𝑦 ∈ 𝑋) if 𝑥 and 𝑦 are linearly

dependent,
(ii) F

𝑥,𝑦
(𝑡) ̸= 𝐻

0
(𝑡) if 𝑥 and 𝑦 are linearly independent,

(iii) F
𝑥,𝑦
(𝑡) = F

𝑦,𝑥
(𝑡),

(iv) F
𝛼𝑥,𝑦
(𝑡) = F

𝑥,𝑦
(𝑡/|𝛼|) for all 𝑡 > 0, 𝛼 ̸= 0 and 𝑥, 𝑦 ∈

𝑋,
(v) F

𝑥+𝑦,𝑧
≥ 𝜏(F

𝑥,𝑧
,F
𝑦,𝑧
) whenever 𝑥, 𝑦, 𝑧 ∈ 𝑋,

where F
𝑥,𝑦
(𝑡) denotes the value of F

𝑥,𝑦
at 𝑡 ∈ R and the

triple (𝑋,F, 𝜏) is called a probabilistic 2-normed space. If we
replaced (v) by

(v󸀠) F
𝑥+𝑦,𝑧

(𝑡
1
+𝑡
2
) ≥ F

𝑥,𝑧
(𝑡
1
)∗F
𝑦,𝑧
(𝑡
2
), for all𝑥, 𝑦, 𝑧 ∈ 𝑋

and 𝑡
1
, 𝑡
2
∈ R+
0
,

then triple (𝑋,F, ∗) is called a random 2-normed space
(RTNS).

Example A. Let (𝑋, ‖⋅, ⋅‖) be a 2-normed space with ‖𝑥, 𝑧‖ =
‖𝑥
1
𝑧
2
− 𝑥
2
𝑧
1
‖, 𝑥 = (𝑥

1
, 𝑥
2
), 𝑧 = (𝑧

1
, 𝑧
2
), and 𝑎 ∗ 𝑏 = 𝑎𝑏 for

𝑎, 𝑏 ∈ [0, 1]. For all 𝑥 ∈ 𝑋, 𝑡 > 0, and nonzero 𝑧 ∈ 𝑋, consider

F
𝑥,𝑧
(𝑡) =

{
{

{
{

{

𝑡

𝑡 + ‖𝑥, 𝑧‖

if 𝑡 > 0

0 if 𝑡 ≤ 0.
(2)

Then (𝑋,F, ∗) is a RTNS.

We remark that every 2-normed space (𝑋, ‖⋅, ⋅‖) can be
made RTNS by considering F

𝑥,𝑦
(𝑡) = 𝐻

0
(𝑡 − ‖𝑥, 𝑦‖), for

every 𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0, and 𝑎 ∗ 𝑏 = min{𝑎, 𝑏}, where 𝑎, 𝑏 ∈
[0, 1].

The notions of convergence and Cauchy sequences have
been recently studied by Alotaibi andMohiuddine [30] in the
setting of RTNS.

Let (𝑋,F, ∗) be a RTNS. Then, a sequence 𝑥 = (𝑥
𝑘
) is

said to be

(i) convergent in (𝑋,F, ∗) (F-convergent) to 𝐿 if for
every 𝜖 > 0 and 𝜃 ∈ (0, 1) there exists 𝑘

0
∈ N such

thatF
𝑥𝑘−𝐿,𝑧

(𝜖) > 1 − 𝜃 whenever 𝑘 ≥ 𝑘
0
and nonzero

𝑧 ∈ 𝑋. In this case we writeF-lim
𝑘→∞

𝑥
𝑘
= 𝐿;

(ii) Cauchy sequence in (𝑋,F, ∗) (F-Cauchy) if for every
𝜖 > 0, 𝜃 > 0, and nonzero 𝑧 ∈ 𝑋 there exists a number
𝑁 = 𝑁(𝜖, 𝑧) such that limF

𝑥𝑘−𝑥𝑙 ,𝑧
(𝜖) > 1 − 𝜃 for all

𝑘, 𝑙 ≥ 𝑁. We say that RTNS is 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 if every F-
Cauchy sequence isF-convergent. A complete RTNS
is called random 2-Banach space.

2. Main Results

Throughout the paper, by 𝑌, (𝑍,F󸀠, ∗), and (𝑌,F, ∗), we
denote linear space, random 2-normed space, and random
2-Banach space, respectively. Firstly, we prove the stability of
the pexiderized quadratic functional equation in RTNS for an
odd case.

Let 𝜑 be a function from 𝑋 × 𝑋 to 𝑍. A mapping 𝑓 :
𝑋 → 𝑌 is said to be 𝜑-approximately pexiderized quadratic
function if there exist mappings 𝑔, ℎ : 𝑋 → 𝑌 such that

F
𝑓(𝑥+𝑦)+𝑓(𝑥−𝑦)−2𝑔(𝑥)−2ℎ(𝑦),𝑧

(𝑡) ≥ F
󸀠

𝜑(𝑥,𝑦),𝑧
(𝑡) , (3)

for all 𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0, and nonzero 𝑧 ∈ 𝑋.

Theorem 1. Suppose that 𝑓, 𝑔 and ℎ are odd functions from𝑋
to 𝑌 satisfying (3). If for some real number 𝛼 with 0 < |𝛼| < 2

𝜑 (2𝑥, 2𝑦) = 𝛼𝜑 (𝑥, 𝑦) , (4)

for all 𝑥, 𝑦 ∈ 𝑋, then there exists a unique additive mapping
𝑇 : 𝑋 → 𝑋 such that

F
𝑓(𝑥)−𝑇(𝑥),𝑧

(𝑡) ≥ F
󸀠󸀠

𝑥,𝑧
(

2 − |𝛼|

4

𝑡) ,

F
𝑔(𝑥)+ℎ(𝑥)−𝑇(𝑥),𝑧

(𝑡) ≥ F
󸀠󸀠

𝑥,𝑧
(

6 − 3 |𝛼|

14 − |𝛼|

𝑡) ,

(5)

where

F
󸀠󸀠

𝑥,𝑧
(𝑡) = F

󸀠

𝜑(𝑥,𝑥),𝑧
(

𝑡

3

) ∗F
󸀠

𝜑(𝑥,0),𝑧
(

𝑡

3

) ∗F
󸀠

𝜑(0,𝑥),𝑧
(

𝑡

3

) ,

(6)

for all 𝑥 ∈ 𝑋, 𝑡 > 0, and nonzero 𝑧 ∈ 𝑋.

Proof. Replacing 𝑥 by 𝑦 and 𝑦 by 𝑥 in (3), we obtain

F
𝑓(𝑥+𝑦)−𝑓(𝑥−𝑦)−2𝑔(𝑦)−2ℎ(𝑥),𝑧

(𝑡) ≥ F
󸀠

𝜑(𝑦,𝑥),𝑧
(𝑡) (7)

for all 𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0, and nonzero 𝑧 ∈ 𝑋. It follows from (3)
and (7) that

F
𝑓(𝑥+𝑦)−𝑔(𝑥)−ℎ(𝑦)−𝑔(𝑦)−ℎ(𝑥),𝑧

(𝑡) ≥ F
󸀠

𝜑(𝑥,𝑦),𝑧
(𝑡) ∗F

󸀠

𝜑(𝑦,𝑥),𝑧
(𝑡) .

(8)

Substituting 𝑦 = 0 in (8), we get

F
𝑓(𝑥)−𝑔(𝑥)−ℎ(𝑥),𝑧

(𝑡) ≥ F
󸀠

𝜑(𝑥,0),𝑧
(𝑡) ∗F

󸀠

𝜑(0,𝑥),𝑧
(𝑡) . (9)

From (8) and (9), we conclude that

F
𝑓(𝑥+𝑦)−𝑓(𝑥)−𝑓(𝑦),𝑧

(3𝑡)

≥ F
󸀠

𝜑(𝑥,𝑦),𝑧
(𝑡) ∗F

󸀠

𝜑(𝑦,𝑥),𝑧
(𝑡) ∗F

󸀠

𝜑(𝑥,0),𝑧
(𝑡)

∗F
󸀠

𝜑(0,𝑥),𝑧
(𝑡) ∗F

󸀠

𝜑(𝑦,0),𝑧
(𝑡) ∗F

󸀠

𝜑(0,𝑦),𝑧
(𝑡) ,

(10)

for every 𝑥, 𝑦 ∈ 𝑋 𝑡 > 0 and nonzero 𝑧 ∈ 𝑋. Then, by our
assumption,

F
󸀠󸀠

2
𝑛
𝑥,𝑧
(𝑡) = F

󸀠󸀠

𝑥,𝑧
(

𝑡

𝛼
𝑛
) . (11)
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Taking 𝑥 = 𝑦 in (10), for all 𝑥 ∈ 𝑋, 𝑡 > 0, and nonzero 𝑧 ∈ 𝑋,
we get

F
𝑓(2𝑥)−2𝑓(𝑥),𝑧

(𝑡) ≥ F
󸀠󸀠

𝑥,𝑧
(𝑡) . (12)

Putting 𝑥 = 2𝑛𝑥 in (12), we have

F
𝑓(2
𝑛+1
𝑥)/2
𝑛+1
−𝑓(2
𝑛
𝑥)/2
𝑛
,𝑧
(𝑡)

= F
𝑓(2
𝑛+1
𝑥)−𝑓(2

𝑛
𝑥),𝑧
(2
𝑛

𝑡)

≥ F
󸀠󸀠

2
𝑛
𝑥,𝑧
(2
𝑛

𝑡) ≥ F
󸀠󸀠

𝑥,𝑧
((

2

𝛼

)

𝑛

𝑡) .

(13)

Thus,

F
𝑓(2
𝑛+1
𝑥)/2
𝑛+1
−𝑓(2
𝑛
𝑥)/2
𝑛
,𝑧
((

𝛼

2

)

𝑛

𝑡) ≥ F
󸀠󸀠

𝑥,𝑧
(𝑡) . (14)

Therefore, for each 𝑛 > 𝑚 ≥ 0,

F
𝑓(2
𝑛
𝑥)/2
𝑛
−𝑓(2
𝑚
𝑥)/2
𝑚
,𝑧
(

𝑛

∑

𝑘=𝑚+1

(

𝛼

2

)

𝑘−1

𝑡)

= F
∑
𝑛

𝑘=𝑚+1
(𝑓(2
𝑘
𝑥)/2
𝑘
−𝑓(2
𝑘−1
𝑥),𝑧/(2𝑘−1))

(

𝑛

∑

𝑘=𝑚+1

(

𝛼

2

)

𝑘−1

𝑡)

≥

𝑛

∏

𝑘=𝑚+1

F
𝑓(2
𝑘
𝑥)/2
𝑘
−𝑓(2
𝑘−1
𝑥)/(2𝑘−1),𝑧

((

𝛼

2

)

𝑘−1

𝑡)

≥ F
󸀠󸀠

𝑥,𝑧
(𝑡) ,

(15)

where∏𝑛
𝑗=1
𝑎
𝑗
= 𝑎
1
∗𝑎
2
∗⋅ ⋅ ⋅∗𝑎

𝑛
. Let 𝜖 > 0 and 𝑡

0
> 0 be given.

With the help of the definition of RTNS, we haveF󸀠󸀠
𝑥,𝑧
(𝑡) = 1

and, therefore, we can find some 𝑡
1
> 𝑡
0
such thatF󸀠󸀠

𝑥,𝑧
(𝑡
1
) >

1 − 𝜖. The convergence of the series ∑∞
𝑛=1
(𝛼/2)
𝑛

𝑡
1
gives some

𝑛
0
∈ N such that for each 𝑛 > 𝑚 ≥ 𝑛

0
,∑𝑛
𝑘=𝑚+1

(𝛼/2)
𝑘−1

𝑡
1
< 𝑡
0
.

Therefore,

F
𝑓(2
𝑛
𝑥)/2
𝑛
−𝑓(2
𝑚
𝑥)/2
𝑚
,𝑧
(𝑡
0
)

≥ F
𝑓(2
𝑛
𝑥)/2
𝑛
−𝑓(2
𝑚
𝑥)/2
𝑚
,𝑧
(

𝑛

∑

𝑘=𝑚+1

(

𝛼

2

)

𝑘−1

𝑡
1
)

≥ F
󸀠󸀠

𝑥,𝑧
(𝑡
1
) > 1 − 𝜖.

(16)

It follows that (𝑓(2𝑛𝑥)/2𝑛) is a Cauchy sequence in (𝑌,F, ∗).
Since (𝑌,F, ∗) is complete RTNS, this sequence converges to
some point in 𝑌; that is, 𝑇(𝑥) ∈ 𝑌. Therefore, a mapping 𝑇

from 𝑋 to 𝑌 is defined by 𝑇(𝑥) = F-lim
𝑛→∞

(𝑓(2
𝑛
𝑥)/2
𝑛
).

Fix 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0. From (10), we get that

F
𝑓(2
𝑛
(𝑥+𝑦))/2

𝑛
−𝑓(2
𝑛
𝑥)/2
𝑛
−𝑓(2
𝑛
𝑦)/2
𝑛
,𝑧
(

𝑡

4

)

= F
𝑓(2
𝑛
(𝑥+𝑦))−𝑓(2

𝑛
𝑥)−𝑓(2

𝑛
𝑦),𝑧
(

2
𝑛
𝑡

4

)

≥ F
󸀠

𝜑(𝑥,𝑦),𝑧
(

2
𝑛
𝑡

12𝛼
𝑛
) ∗F

󸀠

𝜑(𝑦,𝑥),𝑧
(

2
𝑛
𝑡

12𝛼
𝑛
)

∗F
󸀠

𝜑(𝑥,0),𝑧
(

2
𝑛
𝑡

12𝛼
𝑛
) ∗F

󸀠

𝜑(0,𝑥),𝑧
(

2
𝑛
𝑡

12𝛼
𝑛
)

∗F
󸀠

𝜑(𝑦,0),𝑧
(

2
𝑛
𝑡

12𝛼
𝑛
) ∗F

󸀠

𝜑(0,𝑦),𝑧
(

2
𝑛
𝑡

12𝛼
𝑛
)

(17)

for all 𝑛. Moreover,
F
𝑇(𝑥+𝑦)−𝑇(𝑥)−𝑇(𝑦),𝑧

(𝑡)

≥ F
𝑇(𝑥+𝑦)−𝑓(2

𝑛
(𝑥+𝑦))/2

𝑛
,𝑧
(

𝑡

4

) ∗F
𝑇(𝑥)−𝑓(2

𝑛
𝑥)/2
𝑛
,𝑧
(

𝑡

4

)

∗F
𝑇(𝑦)−𝑓(2

𝑛
𝑦)/2
𝑛
,𝑧
(

𝑡

4

)

∗F
𝑓(2
𝑛
(𝑥+𝑦))/2

𝑛
−𝑓(2
𝑛
𝑥)/2
𝑛
−𝑓(2
𝑛
𝑦)/2
𝑛
,𝑧
(

𝑡

4

)

(18)

for all 𝑛. From (17) and (18), we obtain

F
𝑇(𝑥+𝑦)−𝑇(𝑥)−𝑇(𝑦),𝑧

(𝑡) = 1. (19)

Thus, 𝑇(𝑥+𝑦) = 𝑇(𝑥)+𝑇(𝑦). Now by taking (15) with𝑚 = 0,
we get

F
𝑇(𝑥)−𝑓(𝑥),𝑧

(𝑡)

≥ F
𝑇(𝑥)−𝑓(2

𝑛
𝑥)/2
𝑛
,𝑧
(

𝑡

2

) ∗F
𝑓(2
𝑛
𝑥)/2
𝑛
−𝑓(𝑥),𝑧

(

𝑡

2

)

≥ F
𝑇(𝑥)−𝑓(2

𝑛
𝑥)/2
𝑛
,𝑧
(

𝑡

2

) ∗F
󸀠󸀠

𝑥,𝑧
(

𝑡

2∑
𝑛

𝑘=1
(𝛼/2)
𝑘−1
)

≥ F
󸀠󸀠

𝑥,𝑧
(

𝑡

2∑
∞

𝑘=1
(𝛼/2)
𝑘−1
) = F

󸀠󸀠

𝑥,𝑧
(

2 − 𝛼

4

𝑡) .

(20)

It follows from (9) and (20) that

F
𝑔(𝑥)+ℎ(𝑥)−𝑇(𝑥),𝑧

(

14 − 𝛼

12

𝑡)

≥ F
𝑓(𝑥)−𝑇(𝑥),𝑧

(𝑡) ∗F
𝑔(𝑥)+ℎ(𝑥)−𝑓(𝑥),𝑧

(

2 − 𝛼

12

𝑡)

≥ F
󸀠󸀠

𝑥,𝑧
(

2 − 𝛼

4

𝑡) ∗F
󸀠

𝜑(𝑥,0),𝑧
(

2 − 𝛼

12

𝑡)

∗F
󸀠

𝜑(0,𝑥),𝑧
(

2 − 𝛼

12

𝑡)

≥ F
󸀠󸀠

𝑥,𝑧
(

2 − 𝛼

4

𝑡) .

(21)
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Thus, we obtained (5). Now we will prove the uniqueness of
𝑇. For this, we assume that 𝑇󸀠 is another additive mapping
from 𝑋 into 𝑌, which satisfies the required inequality. Since,
for each 𝑛 ∈ N,𝑇(2𝑛𝑥) = 2𝑛𝑇(𝑥) and𝑇󸀠(2𝑛𝑥) = 2𝑛𝑇󸀠(𝑥), then

F
𝑇(𝑥)−𝑇

󸀠
(𝑥),𝑧
(𝑡)

= F
𝑇(2
𝑛
𝑥)−𝑇
󸀠
(2
𝑛
𝑥),𝑧
(2
𝑛

𝑡)

≥ F
𝑇
󸀠
(2
𝑛
𝑥)−𝑓(2

𝑛
𝑥),𝑧
(

2
𝑛
𝑡

2

) ∗F
𝑓(2
𝑛
𝑥)−𝑇(2

𝑛
𝑥),𝑧
(

2
𝑛
𝑡

2

)

≥ F
󸀠󸀠

2
𝑛
𝑥,𝑧
(

(2 − |𝛼|) 2
𝑛
𝑡

8

) = F
󸀠󸀠

𝑥,𝑧
(

(2/𝛼)
𝑛

(2 − |𝛼|) 𝑡

8

) .

(22)

We obtain with the help of the definition of RTNS that

F
󸀠󸀠

𝑥,𝑧
(

(2/𝛼)
𝑛

(2 − |𝛼|) 𝑡

8

) = 1. (23)

Therefore, F
𝑇(𝑥)−𝑇

󸀠
(𝑥),𝑧
(𝑡) = 1, for all 𝑥 ∈ 𝑋, 𝑡 > 0, and

nonzero 𝑧 ∈ 𝑋. Hence, 𝑇(𝑥) = 𝑇󸀠(𝑥) for all 𝑥 ∈ 𝑋.

Now, we are going to prove the stability of the pexiderized
quadratic functional equation in RTNS for an even case.

Theorem 2. If (4) holds for 0 < |𝛼| < 4, let𝑓, 𝑔, and ℎ be three
even functions from 𝑋 to 𝑌 such that 𝑓(0) = 𝑔(0) = ℎ(0) = 0
and satisfies (3). Then there is a unique quadratic mapping 𝐶 :
𝑋 → 𝑌 such that, for every 𝑥 ∈ 𝑋, 𝑡 > 0, and nonzero 𝑧 ∈ 𝑋,

F
𝐶(𝑥)−𝑓(𝑥),𝑧

(𝑡) ≥ F
󸀠󸀠

𝑥,𝑧
(

(4 − |𝛼|)

16

𝑡) ,

F
𝐶(𝑥)−𝑔(𝑥),𝑧

(𝑡) ≥ F
󸀠󸀠

𝑥,𝑧
(

(12 − 3 |𝛼|)

52 − |𝛼|

𝑡) ,

F
𝐶(𝑥)−ℎ(𝑥),𝑧

(𝑡) ≥ F
󸀠󸀠

𝑥,𝑧
(

(12 − 3 |𝛼|)

52 − |𝛼|

𝑡) ,

(24)

whereF󸀠󸀠
𝑥,𝑧
(𝑡) is defined by (6).

Proof. Substitute 𝑥 by 𝑦 and 𝑦 by 𝑥 in (3). Then, for all 𝑥, 𝑦 ∈
𝑋, 𝑡 > 0, and nonzero 𝑧 ∈ 𝑋, we obtain

F
𝑓(𝑥+𝑦)+𝑓(𝑥−𝑦)−2𝑔(𝑦)−2ℎ(𝑥),𝑧

(𝑡) ≥ F
󸀠

𝜑(𝑦,𝑥),𝑧
(𝑡) . (25)

Again substituting 𝑦 = 𝑥 in (3), we get

F
𝑓(2𝑥)−2𝑔(𝑥)−2ℎ(𝑥),𝑧

(𝑡) ≥ F
󸀠

𝜑(𝑥,𝑥),𝑧
(𝑡) . (26)

Putting 𝑥 = 0 in (3), we get

F
2𝑓(𝑦)−2ℎ(𝑦),𝑧

(𝑡) ≥ F
󸀠

𝜑(0,𝑦),𝑧
(𝑡) . (27)

For 𝑦 = 0, (3) becomes

F
2𝑓(𝑥)−2𝑔(𝑥),𝑧

(𝑡) ≥ F
󸀠

𝜑(𝑥,0),𝑧
(𝑡) . (28)

It follows from (25), (27), and (28) that

F
𝑓(𝑥+𝑦)−𝑓(𝑥−𝑦)−2𝑓(𝑥)−2𝑓(𝑦),𝑧

(𝑡)

≥ F
󸀠

𝜑(𝑥,𝑦),𝑧
(

𝑡

3

) ∗F
󸀠

𝜑(𝑥,0),𝑧
(

𝑡

3

) ∗F
󸀠

𝜑(0,𝑦),𝑧
(

𝑡

3

) .

(29)

By substituting 𝑦 = 𝑥 in (29), we get

F
2𝑓(𝑥)−4𝑓(𝑥),𝑧

(𝑡) ≥ F
󸀠󸀠

𝑥,𝑧
(𝑡) . (30)

From (4), we obtain

F
󸀠󸀠

2
𝑛
𝑥,𝑧
(𝑡) = F

󸀠󸀠

𝑥,𝑧
(

𝑡

𝛼
𝑛
) , (31)

for every 𝑥 ∈ 𝑋, nonzero 𝑧 ∈ 𝑋 and for each 𝑛 ≥ 0. It follows
from (30) and (31) that

F
𝑓(2
𝑛+1
𝑥)−4𝑓(2

𝑛
𝑥),𝑧
(𝑡) ≥ F

󸀠󸀠

𝑥,𝑧
(

𝑡

𝛼
𝑛
) . (32)

From (32), we obtain

F
𝑓(2
𝑛+1
𝑥)/4
𝑛+1
−𝑓(2
𝑛
𝑥)/4
𝑛
,𝑧
(𝑡)

= F
𝑓(2
𝑛+1
𝑥)−4𝑓(2

𝑛
𝑥),𝑧
(4
𝑛+1

𝑡) ≥ F
󸀠󸀠

𝑥,𝑧
(

4
𝑛+1
𝑡

𝛼
𝑛
)

(33)

or, equivalently,

F
𝑓(2
𝑛+1
𝑥)/4
𝑛+1
−𝑓(2
𝑛
𝑥)/4
𝑛
,𝑧
(

𝛼
𝑛
𝑡

4
𝑛+1
) ≥ F

󸀠󸀠

𝑥,𝑧
(𝑡) . (34)

Therefore, for all 𝑥 ∈ 𝑋, 𝑡 > 0, and nonzero 𝑧 ∈ 𝑋 and for
each 𝑛 > 𝑚 ≥ 0

F
𝑓(2
𝑛
𝑥)/4
𝑛
−𝑓(2
𝑚
𝑥)/4
𝑚
,𝑧
(

𝑛

∑

𝑘=𝑚+1

𝛼
𝑘−1
𝑡

4
𝑘
)

= F
∑
𝑛

𝑘=𝑚+1
(𝑓(2
𝑘
𝑥)/4
𝑘
−𝑓(2
𝑘−1
𝑥)/4
𝑘−1
),𝑧
(

𝑛

∑

𝑘=𝑚+1

𝛼
𝑘−1
𝑡

4
𝑘
)

≥

𝑛

∏

𝑘=𝑚+1

F
𝑓(2
𝑘
𝑥)/4
𝑘
−𝑓(2
𝑘−1
𝑥)/4
𝑘−1
,𝑧
(

𝛼
𝑘−1
𝑡

4
𝑘
) ≥ F

󸀠󸀠

𝑥,𝑧
(𝑡) ,

(35)

where∏ is the same as Theorem 1. Given 𝜖 > 0 and 𝑡
0
> 0,

since F󸀠󸀠
𝑥,𝑧
(𝑡) = 1, there is some 𝑡

1
> 𝑡
0
such that F󸀠󸀠

𝑥,𝑧
(𝑡
1
) >

1−𝜖. By the convergence of∑∞
𝑘=1
(𝛼
𝑘−1
/4
𝑘
)𝑡
1
, we can find some

𝑛
0
such that∑𝑛

𝑘=𝑚+1
(𝛼
𝑘−1
/4
𝑘
)𝑡
1
< 𝑡
0
for each 𝑛 > 𝑚 ≥ 𝑛

0
.This

gives that

F
𝑓(2
𝑛
𝑥)/4
𝑛
−𝑓(2
𝑚
𝑥)/4
𝑚
,𝑧
(𝑡
0
)

≥ F
𝑓(2
𝑛
𝑥)/4
𝑛
−𝑓(2
𝑚
𝑥)/4
𝑚
,𝑧
(

𝑛

∑

𝑘=𝑚+1

𝛼
𝑘−1

4
𝑘
𝑡
1
)

≥ F
󸀠󸀠

𝑥,𝑧
(𝑡
0
) > 1 − 𝜖.

(36)
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We see that (𝑓(2𝑛𝑥)/4𝑛) is a Cauchy sequence in (𝑌,F, ∗)
and so it is convergent to some point 𝐶(𝑥) ∈ 𝑌. Therefore,
a mapping 𝐶 from 𝑋 to 𝑌 is defined by 𝐶(𝑥) = F-
lim
𝑛→∞

(𝑓(2
𝑛
𝑥)/4
𝑛
). Fix 𝑥, 𝑦 ∈ 𝑋 and 𝑡 > 0. Thus, (29) gives

that

F
𝑓(2
𝑛
(𝑥+𝑦))/4

𝑛
+𝑓(2
𝑛
(𝑥−𝑦))/4

𝑛
−2(𝑓(2

𝑛
𝑥)/4
𝑛
)−2(𝑓(2

𝑛
𝑦)/4
𝑛
),𝑧
(

𝑡

5

)

= F
𝑓(2
𝑛
(𝑥+𝑦))+𝑓(2

𝑛
(𝑥−𝑦))−2𝑓(2

𝑛
𝑥)−2𝑓(2

𝑛
𝑦),𝑧
(

4
𝑛
𝑡

5

)

≥ F
󸀠

𝜑(𝑥,𝑦),𝑧
(

4
𝑛
𝑡

15𝛼
𝑛
) ∗F

󸀠

𝜑(𝑥,0),𝑧
(

4
𝑛
𝑡

15𝛼
𝑛
)

∗F
󸀠

𝜑(0,𝑦),𝑧
(

4
𝑛
𝑡

15𝛼
𝑛
) ,

(37)

for all 𝑛. Furthermore,

F
𝐶(𝑥+𝑦)+𝐶(𝑥−𝑦)−2𝐶(𝑥)−2𝐶(𝑦),𝑧

(𝑡)

≥ F
𝐶(𝑥+𝑦)−𝑓(2

𝑛
(𝑥+𝑦))/4

𝑛
,𝑧
(

𝑡

5

)

∗F
𝐶(𝑥−𝑦)−𝑓(2

𝑛
(𝑥−𝑦))/4

𝑛
,𝑧
(

𝑡

5

)

∗F
2𝐶(𝑥)−2(𝑓(2

𝑛
𝑥)/4
𝑛
),𝑧
(

𝑡

5

) ∗F
2𝐶(𝑦)−2(𝑓(2

𝑛
𝑦)/4
𝑛
),𝑧
(

𝑡

5

)

∗F
𝑓(2
𝑛
(𝑥+𝑦))/4

𝑛
+𝑓(2
𝑛
(𝑥−𝑦))/4

𝑛
−2(𝑓(2

𝑛
𝑥)/4
𝑛
)−2(𝑓(2

𝑛
𝑦)/4
𝑛
),𝑧
(

𝑡

5

) .

(38)

Equations (37) and (38) give that

F
𝐶(𝑥+𝑦)+𝐶(𝑥−𝑦)−2𝐶(𝑥)−2𝐶(𝑦),𝑧

(𝑡) = 1, (39)

for all 𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0, and nonzero 𝑧 ∈ 𝑋. Thus, 𝐶(𝑥 + 𝑦) +
𝐶(𝑥 − 𝑦) = 2𝐶(𝑥) + 2𝐶(𝑦). Using (35) with𝑚 = 0, we get

F
𝐶(𝑥)−𝑓(𝑥),𝑧

(𝑡)

≥ F
𝐶(𝑥)−𝑓(2

𝑛
𝑥)/4
𝑛
,𝑧
(

𝑡

2

) ∗F
𝑓(2
𝑛
𝑥)/4
𝑛
−𝑓(𝑥),𝑧

(

𝑡

2

)

≥ F
𝐶(𝑥)−𝑓(2

𝑛
𝑥)/4
𝑛
,𝑧
(

𝑡

2

) ∗F
󸀠󸀠

𝑥,𝑧
(

4𝑡

2∑
𝑛

𝑘=1
(𝛼/4)
𝑘−1
)

≥ F
󸀠󸀠

𝑥,𝑧
(

4𝑡

2∑
∞

𝑘=0
(𝛼/4)
𝑘
) = F

󸀠󸀠

𝑥,𝑧
(

4 − 𝛼

16

𝑡)

(40)

for sufficiently large 𝑛. From (28) and (40), we conclude that

F
𝐶(𝑥)−𝑔(𝑥),𝑧

(

52 − 𝛼

48

𝑡)

≥ F
𝐶(𝑥)−𝑓(𝑥),𝑧

(𝑡) ∗F
𝑓(𝑥)−𝑔(𝑥),𝑧

(

4 − 𝛼

48

𝑡)

≥ F
󸀠󸀠

𝑥,𝑧
(

4 − 𝛼

16

𝑡) ∗F
󸀠

𝜑(𝑥,0),𝑧
(

4 − 𝛼

48

𝑡)

≥ F
󸀠󸀠

𝑥,𝑧
(

4 − 𝛼

16

𝑡) .

(41)

Thus,

F
𝐶(𝑥)−𝑔(𝑥),𝑧

(𝑡) ≥ F
󸀠󸀠

𝑥,𝑧
(

12 − 3𝛼

52 − 𝛼

𝑡) . (42)

Similarly, one can show that the above inequality also holds
for ℎ. We obtain the uniqueness assertion of this theorem by
proceeding the same lines as in Theorem 1.

Theorem 3. Suppose that (4) holds with 0 < |𝛼| < 4. If a map
𝑓 : 𝑋 → 𝑌 satisfies

F
𝑓(𝑥+𝑦)+𝑓(𝑥−𝑦)−2𝑓(𝑥)−2𝑓(𝑦),𝑧

(𝑡) ≥ F
󸀠

𝜑(𝑥,𝑦),𝑧
(𝑡) , (43)

for all 𝑥, 𝑦 ∈ 𝑋, 𝑡 > 0, and nonzero 𝑧 ∈ 𝑋 with 𝑓(0) = 0.
Then, there are unique mappings 𝑇, 𝐶 : 𝑋 → 𝑌 such that 𝑇 is
additive, 𝐶 is quadratic, and

F
𝑓(𝑥)−𝑇(𝑥)−𝐶(𝑥),𝑧

(𝑡) ≥ 𝑀
𝑥,𝑧
({(

2 − 𝛼

8

) ∗ (

4 − 𝛼

32

)} 𝑡) ,

(44)

for all 𝑥 ∈ 𝑋, 𝑡 > 0, and nonzero 𝑧 ∈ 𝑋, where

𝑀
𝑥,𝑧
(𝑡) = F

󸀠

𝜑(𝑥,𝑥),𝑧
(

𝑡

3

) ∗F
󸀠

𝜑(−𝑥,−𝑥),𝑧
(

𝑡

3

)

∗F
󸀠

𝜑(𝑥,0),𝑧
(

𝑡

3

) ∗F
󸀠

𝜑(0,𝑥),𝑧
(

𝑡

3

)

∗F
󸀠

𝜑(−𝑥,0),𝑧
(

𝑡

3

) ∗F
󸀠

𝜑(0,−𝑥),𝑧
(

𝑡

3

) .

(45)

Proof. Passing to the odd part 𝑓∘ and even part 𝑓𝑒 of 𝑓, we
deduce from (43) that

F
𝑓
∘
(𝑥+𝑦)+𝑓

∘
(𝑥−𝑦)−2𝑓

∘
(𝑥)−2𝑓

∘
(𝑦),𝑧

(𝑡)

≥ F
󸀠

𝜑(𝑥,𝑦),𝑧
(𝑡) ∗F

󸀠

𝜑(−𝑥,−𝑦),𝑧
(𝑡) .

(46)

On the other hand,
F
𝑓
𝑒
(𝑥+𝑦)+𝑓

𝑒
(𝑥−𝑦)−2𝑓

𝑒
(𝑥)−2𝑓

𝑒
(𝑦),𝑧

(𝑡)

≥ F
󸀠

𝜑(𝑥,𝑦),𝑧
(𝑡) ∗F

󸀠

𝜑(−𝑥,−𝑦),𝑧
(𝑡) .

(47)

With the help of the proofs of Theorems 1 and 2, we
obtain unique additive and quadratic mappings 𝑇 and 𝐶,
respectively, satisfying

F
𝑓
∘
(𝑥)−𝑇(𝑥),𝑧

(𝑡) ≥ 𝑀
𝑥,𝑧
(

2 − |𝛼|

4

𝑡) ,

F
𝑓
𝑒
(𝑥)−𝐶(𝑥),𝑧

(𝑡) ≥ 𝑀
𝑥,𝑧
(

4 − |𝛼|

16

𝑡) .

(48)
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Therefore,

F
𝑓(𝑥)−𝑇(𝑥)−𝐶(𝑥),𝑧

(𝑡)

≥ F
𝑓
∘
−𝑇(𝑥),𝑧

(

𝑡

2

) ∗F
𝑓
𝑒
−𝐶(𝑥),𝑧

(

𝑡

2

)

≥ 𝑀
𝑥,𝑧
(

2 − |𝛼|

8

𝑡) ∗𝑀
𝑥,𝑧
(

4 − |𝛼|

32

𝑡)

= 𝑀
𝑥,𝑧
({(

2 − 𝛼

8

) ∗ (

4 − 𝛼

32

)} 𝑡) ,

(49)

for all 𝑥 ∈ 𝑋, 𝑡 > 0, and nonzero 𝑧 ∈ 𝑋.

Remark 4. Let (𝑋, ⟨⋅, ⋅ | ⋅⟩) be a 2-inner product space. We
can define a 2-norm on 𝑋 × 𝑋 by ‖𝑥

1
, 𝑥
2
‖ = √⟨𝑥

1
, 𝑥
1
| 𝑥
2
⟩

for all 𝑥
1
, 𝑥
2
∈ 𝑋. In this case, parallelogram law is given by

󵄩
󵄩
󵄩
󵄩
𝑥
1
+ 𝑥
2
, 𝑥
3

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑥
1
− 𝑥
2
, 𝑥
3

󵄩
󵄩
󵄩
󵄩

2

= 2
󵄩
󵄩
󵄩
󵄩
𝑥
1
, 𝑥
3

󵄩
󵄩
󵄩
󵄩

2

+ 2
󵄩
󵄩
󵄩
󵄩
𝑥
2
, 𝑥
3

󵄩
󵄩
󵄩
󵄩

2

,

(50)

for all 𝑥
1
, 𝑥
2
, 𝑥
3
∈ 𝑋 (for more details of 2-inner product

space we refer to [38]).

Now we give the following illustrative example.

Example 5. Let (𝑋, ⟨⋅, ⋅ | ⋅⟩) be a 2-inner product space. Let 𝑌
be a 2-normed space such that ‖𝑥, 𝑧‖ = ‖𝑥

1
𝑧
2
− 𝑥
2
𝑧
1
‖, where

𝑥 = (𝑥
1
, 𝑥
2
) and 𝑧 = (𝑧

1
, 𝑧
2
). Suppose that 𝑎 ∗ 𝑏 = 𝑎𝑏 for all

𝑎, 𝑏 ∈ [0, 1]. Suppose thatF andF󸀠 are two random2-norms
on 𝑌 and R, respectively, which are given by Example A.
Suppose that the random 2-normFmakes𝑌 into an random
2-Banach space. Fixing 𝑥

∘
, 𝑦
∘
, 𝑧
∘
∈ 𝑌 and 𝑎 ∈ 𝑋, we define

𝑓 (𝑥) = ⟨𝑥, 𝑎 | 𝑠
1
⟩ 𝑥
∘
+
󵄩
󵄩
󵄩
󵄩
𝑥, 𝑠
1

󵄩
󵄩
󵄩
󵄩

2

𝑦
∘
+ √
󵄩
󵄩
󵄩
󵄩
𝑥, 𝑠
1

󵄩
󵄩
󵄩
󵄩
𝑧
∘
,

𝑔 (𝑥) = ⟨𝑥, 𝑎 | 𝑠
1
⟩ 𝑥
∘
+
󵄩
󵄩
󵄩
󵄩
𝑥, 𝑠
1

󵄩
󵄩
󵄩
󵄩

2

𝑦
∘
,

ℎ (𝑥) =
󵄩
󵄩
󵄩
󵄩
𝑥, 𝑠
1

󵄩
󵄩
󵄩
󵄩

2

𝑦
∘
+ √
󵄩
󵄩
󵄩
󵄩
𝑥, 𝑠
1

󵄩
󵄩
󵄩
󵄩
𝑧
∘
,

𝜑 (𝑥, 𝑠
2
) = (√

󵄩
󵄩
󵄩
󵄩
𝑥 + 𝑠
2
, 𝑠
1

󵄩
󵄩
󵄩
󵄩
+ √
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑠
2
, 𝑠
1

󵄩
󵄩
󵄩
󵄩

−2√
󵄩
󵄩
󵄩
󵄩
𝑠
2
, 𝑠
1

󵄩
󵄩
󵄩
󵄩
) 𝑧
∘
,

(51)

for each 𝑥, 𝑠
1
, 𝑠
2
∈ 𝑋. Using parallelogram law, one can easily

verify that

𝑓 (𝑥 + 𝑠
2
) + 𝑓 (𝑥 − 𝑠

2
) − 2𝑔 (𝑥) − 2ℎ (𝑠

2
)

= (√
󵄩
󵄩
󵄩
󵄩
𝑥 + 𝑠
2
, 𝑠
1

󵄩
󵄩
󵄩
󵄩
+ √
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑠
2
, 𝑠
1

󵄩
󵄩
󵄩
󵄩

−2√
󵄩
󵄩
󵄩
󵄩
𝑠
2
, 𝑠
1

󵄩
󵄩
󵄩
󵄩
) 𝑧
∘
,

(52)

for all 𝑥, 𝑠
1
, 𝑠
2
∈ 𝑋. Therefore,

F
𝑓(𝑥+𝑠2)+𝑓(𝑥−𝑠2)−2𝑔(𝑥)−2ℎ(𝑠2),𝑧

(𝑡) = F
󸀠

𝜑(𝑥,𝑠2),𝑧
(𝑡) , (53)

for each 𝑥, 𝑠
2
∈ 𝑋, 𝑡 ∈ R, and nonzero 𝑧 ∈ 𝑋. Moreover,

𝜑(2𝑥, 2𝑠
2
) = √2𝜑(𝑥, 𝑠

2
) for each𝑥, 𝑠

2
∈ 𝑋.We can see that the

conditions of Theorems 1 and 2 for 𝑓, 𝑔, ℎ and |𝛼| = √2 < 2
are satisfied. It follows that odd and even parts of 𝑓 can be
approximated by linear and quadratic functions, respectively.
In fact𝑓∘, the odd part of𝑓 and𝑓∘(𝑥) = ⟨𝑥, 𝑎 | 𝑠

1
⟩𝑥
∘
, is linear.

The even part of 𝑓 is 𝑓𝑒, and 𝑓𝑒(𝑥) = ‖𝑥, 𝑠
1
‖
2
𝑦
∘
+ √‖𝑥, 𝑠

1
‖𝑧
∘

contains a quadratic 𝐶(𝑥) = ‖𝑥, 𝑠
1
‖
2
𝑦
∘
. Also

F
𝑓
𝑒
(𝑥)−𝐶(𝑥),𝑧

(𝑡) = F
󸀠

√‖𝑥,𝑠1‖|𝑧∘|,𝑧
(𝑡)

≥ F
󸀠󸀠

𝑥,𝑧
(

4 − √2

16

𝑡) .

(54)
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stability of a Jensen functional equation via fixed point tech-
nique,”Mathematical and ComputerModelling, vol. 54, no. 9-10,
pp. 2403–2409, 2011.

[25] S. A. Mohiuddine, “Stability of Jensen functional equation in
intuitionistic fuzzy normed space,” Chaos, Solitons & Fractals,
vol. 42, no. 5, pp. 2989–2996, 2009.

[26] S. A. Mohiuddine and A. Alotaibi, “Fuzzy stability of a cubic
functional equation via fixed point technique,” Advances in
Difference Equations, vol. 2012, article 48, 2012.

[27] S. A. Mohiuddine and M. A. Alghamdi, “Stability of func-
tional equation obtained through a fixed-point alternative in
intuitionistic fuzzy normed spaces,” Advances in Difference
Equations, vol. 2012, article 141, 2012.

[28] S. A. Mohiuddine, A. Alotaibi, and M. Obaid, “Stability of
various functional equations in non-Archimedean intuitionistic
fuzzy normed spaces,”Discrete Dynamics in Nature and Society,
vol. 2012, Article ID 234727, 16 pages, 2012.

[29] A. S. Al-Fhaid and S. A. Mohiuddine, “On the Ulam stability of
mixed typeQAmappings in IFN-spaces,”Advances inDifference
Equations, vol. 2013, article 203, 2013.

[30] A. Alotaibi and S. A. Mohiuddine, “On the stability of a cubic
functional equation in random 2-normed spaces,” Advances in
Difference Equations, vol. 2012, article 39, 10 pages, 2012.

[31] K. Menger, “Statistical metrics,” Proceedings of the National
Academy of Sciences of the United States of America, vol. 28, pp.
535–537, 1942.

[32] B. Schweizer and A. Sklar, “Statistical metric spaces,” Pacific
Journal of Mathematics, vol. 10, pp. 313–334, 1960.

[33] B. Schweizer and A. Sklar, Probabilistic Metric Spaces, North-
Holland, New York, NY, USA, 1983.
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