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Both the structural parameter and external excitation have coupling influence on structural response. A new system identification
method in time domain is proposed to simultaneously evaluate structural parameter and external excitation. The method can
be used for linear and hysteresis nonlinear structural condition assessment based on incomplete structural responses. In this
method, the structural excitation is decomposed by orthogonal approximation. With this approximation, the strongly time-variant
excitation identification is transformed to gentle time-variant, even constant parameters identification.Then the extended Kalman
filter is applied to simultaneously identify state vector including the structural parameters and excitation orthogonal parameters
in state space based on incomplete measurements. The proposed method is validated numerically with the simulation of three-
story linear and nonlinear structures subject to external force. The external force on the top floor and the structural parameters are
simultaneously identifiedwith the proposed system identificationmethod. Results fromboth simulations indicate that the proposed
method is capable of identifing the dynamic load and structural parameters fairly accurately with contaminated incomplete
measurement for both of the linear and nonlinear structural systems.

1. Introduction

The evaluation of the structural parameter and external
excitation are twomain parts of structural healthmonitoring,
which contribute efficiently to structural maintenance and
management. After the severe external excitation, infras-
tructures always suffer from structural damages and some
components may perform nonlinearly. The nonlinearities in
structural system may have adversely influence on structural
health monitoring (SHM) and structural control. Both the
structural parameter and external excitation have coupling
influence on structural response. Therefore, the evaluation
of one aspect without considering another aspect may cause
error in the identification result. Exact knowledge of struc-
tural parameter and the excitation timehistory are essential to
the rapid postevent structural condition assessment and the
prediction of load-bearing capacity.

Vibration-based SHM methods are investigated actively
for decades [1–3]. An extensive summary of health moni-
toring and vibration-based structural condition assessment

of civil engineering structures are provided [1, 4]. Zou et al.
[5] summarized the methods on vibration-based damage
detection and health monitoring for composite structures,
especially in delaminationmodelling techniques and delami-
nation detection. More recently, Chen and Li [6] presented
methods to identify structural parameters and input time
history from output-only measurements iteratively. Lu and
Law [7] identify the physical parameters and the input
excitation force of linear structures based on the sensi-
tivities of dynamic response. Law and Yong [8] proposed
substructural condition assessment method for structural
damage detection and external force identification of linear
structural system. Online identification methods for linear
substructures have been developed by Ding [9] and the
local damage can be accurately identified. Sun and Betti [10]
proposed a simultaneous identification method for linear
structure with artificial bee colony algorithm. Lei et al. [11]
successfully identified the shear building based on partial
output measurements with EKF and least-squares estimator.
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However, the target structures investigated above are almost
linear and time-invariant.

In the past few decades, numerous methods have been
developed for structural model updating and external excita-
tion of nonlinear structures. The Kalman filter is an effective
means of parameter identification and input estimation for
a linear or nonlinear structure. Two forms of the extended
recursive least-squares algorithm were considered for the
identification of system parameter and the tracking of a
chirped sinusoid with additive noise [12]. Other time-
variant parameter identification methods are the online
identification of nonlinear hysteretic structure with an adap-
tive tracking techniques based on least-squares estimation
[13], nonlinear normal mode analysis which considered the
nonlinearity of structural system [14–16], an online sequential
weighted least-squares support vector machine technique
to quantify the structural parameter changes when the
measurement involves damage events [17], and an adaptive
tracking technique based on extended Kalman filter for
identifying the structural parameters and their increments
[18]. These methods do not require a priori knowledge
of the time of occurrence of the anomalies. Hence, these
methods could be applied to conduct the structural condition
assessment online. However, most existingmethods for time-
variant parameter identification may require the complete
measurement of structural response.

In this paper, a simultaneous identification method for
structural parameter and external excitation is proposed
for both linear and nonlinear structures based on the
extended Kalman filter. The structural parameters include
stiffness, damping, and the parameters of nonlinear model.
In this study, the excitation time history is decomposed
by orthogonal polynomial. The coefficients of orthogonal
polynomial and structural parameter are taken as state
variables. With extended Kalman filter the state vector is
identified recursively. The proposed method was validated
numerically with the simulation of a linear shear frame
and a hysteretic nonlinear shear frame. Results from the
numerical simulations indicate that the proposed method
can be used to identify structural parameter and external
excitations effectively based on incomplete contaminated
structural responses measurements.

2. Equation of Motion in State Space

The equation of motion of an𝑁 dofs linear structural system
subject to external excitation is

Mẍ (𝑡) + Cẋ (𝑡) + Kx (𝑡) = LF, (1)

where M, C, and K are the mass, damping, and stiffness
matrices of the structural system, respectively. F is the exter-
nal force acting on the structure and L is the location matrix
of external force. ẍ, ẋ, and x are, respectively, the vectors
of acceleration, velocity, and displacement responses of the
structural system. The equation of motion of the linear
structural system shown in (1) can also be expressed in the
state space generally as the following equation:

Ż (𝑡) = AZ (𝑡) + BL × F (𝑡) , (2)

where

Z = [
x
ẋ] , A = [

0 I
−M−1K −M−1C] , B = [

0

M−1] . (3)

The equation of motion of a hysteretic nonlinear struc-
tural system subject to excitation can be written as

Mẍ (𝑡) + Cẋ (𝑡) + Kz (𝑡) = LF (𝑡) , (4)

where z(𝑡) = [z1(𝑡) z2(𝑡) ⋅ ⋅ ⋅ zi(𝑡)]
𝑇 is the hysteretic com-

ponent vector, and the hysteretic component can be repre-
sented as

𝑧̇
𝑖

= 𝑥̇
𝑖

− 𝛽
𝑖

󵄨󵄨󵄨󵄨𝑥̇𝑖
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨

𝛼𝑖−1

𝑧
𝑖

− 𝛾
𝑖

𝑥̇
𝑖

󵄨󵄨󵄨󵄨𝑧𝑖
󵄨󵄨󵄨󵄨

𝛼𝑖
, (5)

where subscript 𝑖 represent the 𝑖th story. 𝑥̇
𝑖

and 𝑧
𝑖

are,
respectively, the 𝑖th story velocity and hysteretic compo-
nent. 𝛽

𝑖

and 𝛾
𝑖

are nondimensional parameters which decide
the shape of the hysteresis loop of the 𝑖th story. 𝛼

𝑖

is a non-
dimensional parameter that controls the smoothness of the
hysteresis loop of the 𝑖th story. The equation of motion
of the nonlinear structural system shown in (5) can also
be expressed in the state space generally as the following
equation:

Ż (𝑡) = 𝑓 (Z, F, 𝑡)

=
[
[

[

ẋ (𝑡)
M−1 [LF (𝑡) − (CX (𝑡) + KZ (𝑡))]

ẋ (𝑡) − 𝛽 |ẋ (𝑡)| |z (𝑡)|𝛼−1z − 𝛾ẋ (𝑡) |z (𝑡)|𝛼
]
]

]

,

(6)

where𝑓(Z, F, 𝑡) is a nonlinear function ofZ in state space. For
the linear and nonlinear structures, responses can be recur-
sively calculated by (4) or (6), respectively. The identification
method proposed in this paper is based on these two types of
state space equations.

3. Extended Kalman Filter for Structural
System Identification

The equation of motion of an 𝑁 dofs structure under load
excitation can be written as

Mẍ (𝑡) + F
𝑐

[ẋ (𝑡)] + F
𝑠

[x (𝑡)] = LF (𝑡) , (7)

where F
𝑐

[ẋ(𝑡)] denotes damping force vector and F
𝑠

[x(𝑡)]
denotes stiffness force vector. Introducing an extended state
vector with a dimension of 2𝑛 + 𝑚,

Z (𝑡) = [x (𝑡) , ẋ (𝑡) , 𝜃]T, (8)

where 𝑛 denote the dimension of original state vector and
𝜃 = [𝜃

1

, 𝜃
2

, . . . , 𝜃
𝑚

]
𝑇 denote 𝑚-unknown parameter of the

structure, including damping, stiffness, or nonlinear param-
eters. Equation (8) can be written in continuous state space
as

Ż (𝑡) = 𝑓 (Z, F, 𝑡) + w (𝑡) , (9)
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where Z, F, and w are the state, the external force, and the
process noise vectors which are assumed to be zero-mean
Gaussian noise. The observation equation at discrete time
steps 𝑡

𝑘

= 𝑘Δ𝑡 can be written as

y (𝑡
𝑘

) = ℎ (Z (𝑡
𝑘

)) + k (𝑡
𝑘

) , (10)

where y(𝑡
𝑘

) and k(𝑡
𝑘

) are the measurement response and
measurement noise vectors. Both process and measurement
noises are assumed to be uncorrelated zero-mean Gaussian
random processes. With the EKF, (9) and (10) can be
linearized as

𝑓 (Z, F, 𝑡) ≈ 𝑓 (Ẑ
𝑘|𝑘

, F, 𝑡) + A
𝑘|𝑘

(Z − Ẑ
𝑘|𝑘

) ,

ℎ (Z
𝑘+1

) ≈ ℎ (Ẑ
𝑘+1|𝑘

) +H
𝑘+1|𝑘

(Z
𝑘+1

− Ẑ
𝑘+1|𝑘

) ,

(11)

in which A
𝑘|𝑘

is the linearized matrix of 𝑓(Ẑ
𝑘|𝑘

, F, 𝑡) and
H
𝑘+1|𝑘

is the linearized matrix of ℎ(Ẑ
𝑘+1|𝑘

) as follows:

A
𝑘|𝑘

= [
𝜕𝑓

𝜕Z
]
̂

𝑍𝑘|𝑘

, (12)

H
𝑘+1|𝑘

= [
𝜕ℎ

𝜕Z
]
̂

𝑍𝑘+1|𝑘

. (13)

Equation (11) constitutes a classical system with continu-
ous time evolution of states and discrete measurements. The
hybrid EKF can estimate the states of Z((𝑘 + 1)Δ𝑡) at 𝑡 = 𝑘Δ𝑡

from the contaminated measurements through the following
set of equations:

Ẑ
𝑘+1|𝑘

= Ẑ
𝑘|𝑘

+ ∫

(𝑘+1)Δ𝑡

𝑘Δ𝑡

𝑓 (Ẑ
𝑡|𝑘

) 𝑑𝑡. (14)

And the recursive optimal solution for Z((𝑘 + 1)Δ𝑡) at 𝑡 =

(𝑘 + 1)Δ𝑡 is shown as follows:

Ẑ
𝑘+1|𝑘+1

= Ẑ
𝑘+1|𝑘

+ K
𝑘+1

[Y
𝑘+1

− ℎ (Ẑ
𝑘+1|𝑘

)] , (15)

where K
𝑘+1

is the Kalman gain matrix:

K
𝑘+1

= P
𝑘+1|𝑘

H𝑇𝑘+1|𝑘[H
𝑘+1|𝑘

P
𝑘+1|𝑘

H𝑇
𝑘+1|𝑘

+ R
𝑘+1

]
−1

, (16)

whereP
𝑘+1|𝑘

is the error covariancematrix of a posteriori state
vector Ẑ

𝑘+1|𝑘

:

P
𝑘+1|𝑘

= Φ
𝑘+1|𝑘

P
𝑘|𝑘

Φ
𝑇

𝑘+1|𝑘

+Q
𝑘

, (17)

where Q
𝑘

is the covariance matrix of process noise at 𝑡 =

𝑘Δ𝑡. Φ
𝑘+1|𝑘

is the state transition matrix of the linearized
system given by

Φ
𝑘+1|𝑘

≈ I + Δ𝑡 × A
𝑘|𝑘

, (18)

in which I is the unit matrix of dimension 2𝑛+𝑚. P
𝑘|𝑘

in (17)
is the error covariance matrix of a priori state vector Ẑ

𝑘+1|𝑘

given byΦ
𝑘+1|𝑘

≈ I + Δ𝑡 × A
𝑘|𝑘

as follows:

P
𝑘|𝑘

= [I − K
𝑘

H
𝑘|𝑘−1

]P
𝑘|𝑘−1

[I − K
𝑘

H
𝑘|𝑘−1

]
𝑇

+ K
𝑘

R
𝑘

K
𝑘

𝑇

.

(19)

4. Orthogonal Decomposition of Excitation

The external force is always difficult to be directly identified
with extended Kalman filter since it is nonstationary and
time-variant. However, the input 𝐹 is a kind of random
process which can be decomposed by standard orthogonal
polynomial. Since the orthogonal is constant, the input his-
tory will be reconstructed as if the orthogonal parameters can
be identified. Therefore, the input identification transforms
to the polynomial parameters identification based on input
orthogonal decomposition method. The input in (7) can be
decomposed as follows:

𝐹
𝑖

(𝑡) =

𝑁𝑓

∑

𝑖=1

𝑁𝑚

∑

𝑚=1

𝑤
𝑚

𝑖

𝑇
𝑖

𝑚

(𝑡) , (20)

where 𝑤
𝑚

𝑖 is the polynomial coefficients of the 𝑖th input. 𝑇𝑖
𝑚

is the 𝑚th orthogonal polynomial of the 𝑖th input. 𝑁
𝑚

is
the order of input decomposition. 𝑁

𝑓

is the number of
inputs. The orthogonal polynomial 𝑇𝑖

𝑚

and order of input
decomposition 𝑁

𝑚

can affect the accuracy of input approx-
imation. The order of input decomposition 𝑁

𝑚

is closely
related to input history length and complexity. The orthog-
onal polynomial 𝑇𝑖

𝑚

can be determined in different kinds
based on different decomposition methods. The Chebyshev
decomposition method is one of the most accuracy meth-
ods of random input fitting. The Chebyshev decomposition
orthogonal polynomial can be written as follows:

𝑇
1

=
1

√𝜋
,

𝑇
2

= √
2

𝜋
(
2𝑡

𝑇
− 1) ,

𝑇
𝑛+1

(𝑡) = 2 (
2𝑡

𝑇
− 1)𝑇

𝑛

(𝑡) − 𝑇
𝑛−1

(𝑡)

(𝑛 = 2, 3, . . . , 𝑁
𝑚

− 1) ,

(21)

where 𝑇 is the length of the input history and 𝑁
𝑚

is the
order of decomposition. Based on the Chebyshev standard
orthogonal polynomial decomposition, (7) can be written as
follows:

Mẍ (𝑡) + F
𝑐

[ẋ (𝑡)] + F
𝑠

[x (𝑡)] =
𝑁𝑓

∑

𝑖=1

𝑁𝑚

∑

𝑚=1

𝑤
𝑚

𝑖

𝑇
𝑖

𝑚

(𝑡) . (22)

The input can be reconstructed if the polynomial param-
eters 𝑤

𝑚

𝑖 can be identified.

5. Simultaneous Identification of
Structural System

A new time domain simultaneous identification method is
proposed in this section based on orthogonal decomposition
of excitation and extended Kalman filter. The input history
is firstly decomposed by the Chebyshev standard orthogonal
polynomial as shown in (20). The number of decomposition
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order is based on the input length and complexity. Then,
the structural parameters and polynomial parameters will be
identified by extended Kalman estimator based on structural
measurements, as shown from (12) to (19).

5.1. N-Storey Linear Structure. The equation of motion is giv-
en by

M
{{{{

{{{{

{

𝑥̈
1

(𝑡)

𝑥̈
2

(𝑡)

...
𝑥̈
𝑛

(𝑡)

}}}}

}}}}

}

+ C
{{{{

{{{{

{

𝑥̇
1

(𝑡)

𝑥̇
2

(𝑡)

...
𝑥̇
𝑛

(𝑡)

}}}}

}}}}

}

+ K
{{{{

{{{{

{

𝑥
1

(𝑡)

𝑥
2

(𝑡)

...
𝑥
𝑛

(𝑡)

}}}}

}}}}

}

= L(
𝑁𝑓

∑

𝑖=1

𝑁𝑚

∑

𝑚=1

𝑤
𝑚

𝑖

𝑇
𝑖

𝑚

(𝑡)) ,

(23)

where

M =
[
[
[

[

𝑚
1

𝑚
2

d
𝑚
𝑛

]
]
]

]

,

C =
[
[
[

[

𝑐
1

+ 𝑐
2

−𝑐
2

−𝑐
2

𝑐
2

+ 𝑐
3

d −𝑐
𝑛

−𝑐
𝑛

𝑐
𝑛

]
]
]

]

,

K =
[
[
[

[

𝑘
1

+ 𝑘
2

−𝑘
2

−𝑘
2

𝑘
2

+ 𝑘
3

d −𝑘
𝑛

−𝑘
𝑛

𝑘
𝑛

]
]
]

]

.

(24)

Beside w = [𝑤
1

, 𝑤
2

, . . . , 𝑤
𝑖

]
𝑇, 𝑖 = (1, 2, . . . , 𝑁

𝑓

), is the
polynomial coefficients vector. In (23), 𝑥

𝑖

(𝑡) is the absolute
structural response. 𝑇𝑖

𝑚

is the orthogonal polynomial which
is given by (21). The state vector is defined as

Z (𝑡) = [𝑥
1∼𝑛

, 𝑥̇
1∼𝑛

, 𝑘
1∼𝑛

, 𝑐
1∼𝑛

, 𝑤
1∼𝑁𝑚

]
T
. (25)

Consider that 𝑘̇
1∼𝑛

= ̇𝑐
1∼𝑛

= 𝑤̇
1∼𝑁𝑚

= 0. Equation (23)
can be written in state space as follows:

[
[
[
[
[

[

ẋ
ẍ
k̇
̇c

ẇ

]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[

[

ẋ

M−1 [
[

L
𝑁𝑓

∑

𝑖=1

𝑁𝑚

∑

𝑚=1

𝑤
𝑚

𝑖

𝑇
𝑖

𝑚

− (Fc [c,ẋ] + Fs [k,x])]
]

0
0
0

]
]
]
]
]
]
]
]
]

]

.

(26)

The measurement can be obtained in the discrete time
step from displacements or accelerations. The observation

F(t)

Figure 1: Three-storey frame.

equation can be written with the measurement of the dis-
placement as

[
[
[
[

[

𝑦
1

𝑦
2

...
𝑦
𝑛

]
]
]
]

]

= [I 0 0 0 0]
[
[
[
[
[

[

x
ẋ
k
c
w

]
]
]
]
]

]

. (27)

In which I is the unit matrix of dimension 𝑛.

5.2. N-Story Hysteretic Structure. The equation of motion is
given by

M
{{{{

{{{{

{

𝑥̈
1

(𝑡)

𝑥̈
2

(𝑡)

...
𝑥̈
𝑛

(𝑡)

}}}}

}}}}

}

+ C
{{{{

{{{{

{

𝑥̇
1

(𝑡)

𝑥̇
2

(𝑡)

...
𝑥̇
𝑛

(𝑡)

}}}}

}}}}

}

+ K
{{{{

{{{{

{

𝑧
1

(𝑡)

𝑧
2

(𝑡)

...
𝑧
𝑛

(𝑡)

}}}}

}}}}

}

= L(
𝑁𝑓

∑

𝑖=1

𝑁𝑚

∑

𝑚=1

𝑤
𝑚

𝑖

𝑇
𝑖

𝑚

(𝑡)) ,

(28)

in which

M =

[
[
[
[
[

[

𝑚
1

... 𝑚
2

...
... d

𝑚
𝑛

𝑚
𝑛

. . . 𝑚
𝑛

]
]
]
]
]

]

,

C =

[
[
[
[
[

[

𝑐
1

−𝑐
2

𝑐
2

−𝑐
3

d d
𝑐
𝑛−1

−𝑐
𝑛

𝑐
𝑛

]
]
]
]
]

]

,

K =

[
[
[
[
[

[

𝑘
1

−𝑘
2

𝑘
2

−𝑘
3

d d
𝑘
𝑛−1

−𝑘
𝑛

𝑘
𝑛

]
]
]
]
]

]

.

(29)
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Figure 2: Continued.
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Figure 2: Identification results for linear structural system.

Beside w = [𝑤
1

, 𝑤
2

, . . . , 𝑤
𝑖

]
𝑇, 𝑖 = (1, 2, . . . , 𝑁

𝑓

), is the poly-
nomial parameter vector. The responses 𝑥

𝑖

(𝑡) and 𝑧
𝑖

(𝑡) in
(28) are the interstorey response and hysteretic component
of 𝑖th storey unit, respectively. In this paper 𝑧

𝑖

(𝑡) is defined
as (5). 𝑇𝑖

𝑚

is the orthogonal polynomial which is given by
(20). The state vector is defined as

Z (𝑡) = [𝑥
1∼𝑛

, 𝑧
1∼𝑛

, 𝑥̇
1∼𝑛

, 𝑘
1∼𝑛

, 𝑐
1∼𝑛

, 𝛽
1∼𝑛

, 𝛾
1∼𝑛

, 𝑤
1∼𝑁𝑚

]
T
.

(30)

Consider that 𝑘̇
1∼𝑛

= ̇𝑐
1∼𝑛

= 𝑤̇
1∼𝑁𝑚

= 0. Equation (28) can be
written in state space as follows:

[
[
[
[
[
[
[
[
[
[
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ẋ
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]
]
]
]
]
]
]
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[
[
[
[
[
[
[
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[
[
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ẋ
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󵄨󵄨󵄨󵄨
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0
0
0
0
0

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(31)

The observation equation is nonlinear in state space with
the measurement of acceleration. The discrete linearized
observation matrix can be calculated by (13).

6. Implementation Procedure

Step 1. Decompose structural excitation by using the Cheby-
shev standard orthogonal polynomial. The excitation is
represented as orthogonal polynomial approximation. The
accuracy of the approximation is according to the order of
decomposition.

Step 2. Obtain the mass, damping, and stiffness matrices of
the initial structural model, which may be inaccurate with
model errors or initial structural damage.

Step 3. Conduct measurement on the structure. The “mea-
sured” data for the simulation studies is obtained from the
solution of (1) or (6).

Step 4. Simultaneously identify structural parameter andpol-
ynomial parameters with the proposed EKF algorithm as
shown in Section 3 from (12) to (19).

7. Numerical Simulation Studies

In this Section the proposed system identification method
is validated numerically by the investigation of linear and
nonlinear 3-storey shear frame as shown in Figure 1. The
structural parameters and external force are simultaneously
identified with incomplete contaminated measurement for
the two cases. The sampling rate is 1000Hz and 4-second
measurements are collected for the identification.

7.1. Case 1: Three-Storey Linear Structure. A linear three-
storey shear frame subject to 𝐹(𝑡) = sin(4𝜋𝑡) + 2 cos(2𝜋𝑡) +
sin(5𝜋𝑡) kN on the top of the floors is studied in this case.The
equation of motion with excitation decomposition is shown
in (25). The values of structural real parameters are 𝑚

1

=

𝑚
2

= 𝑚
3

= 500 kg, 𝑐
1

= 4 kNs/m, 𝑐
2

= 3 kNs/m, 𝑐
3

=

2 kNs/m, 𝑘
1

= 48 kN/m, 𝑘
2

= 43 kN/m, and 𝑘
3

= 40 kN/m.
The horizontal displacements of all floors are measured. The
“measured” displacements for this simulation are obtained
from the solution of (1) with 5% RMS noise process.

In this simulation, the mass of each floor is taken as
known constant. The excitation history is decomposed by
forty-order orthogonal polynomial. The unknown parame-
ters are 𝑘

𝑖

, 𝑐
𝑖

and 𝑤
𝑗

(𝑖 = 1, 2, 3 and 𝑗 = 1, 2, . . . , 40).
The extended state vector is expressed as Z(𝑡) = [𝑥

1−3

, 𝑥̇
1−3

,

𝑘
1−3

, 𝑐
1−3

, 𝑤
1−40

]
T. The initial guess for 𝑘

𝑖

, 𝑐
𝑖

, and 𝑤
𝑗

are
𝑘
𝑖

= 45 kN/m, 𝑐
𝑖

= 0 kNs/m, (𝑖 = 1, 2, 3), and 𝑤
𝑗

= 0

(𝑗 = 1, 2, . . . , 40). The initial guess of displacement and
velocity in state variables are supposed as zero. Figure 2
shows the identified structural parameters and excitations.
The stiffness and damping as shown in Figures 2(a)–2(f)
are accurately identified. The value of the stiffness converges
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Figure 3: Continued.
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Figure 3: Identification results for nonlinear structural system.

to the real value in a short time even with the polluted
measurement. In this study only the 3rd floor’s displacement,
velocity, and acceleration are listed as shown in Figures
2(g), 2(h), and 2(i). The identified and real displacement
is nearly overlapping as shown in Figure 2(g). There are
some fluctuations at the beginning and the end of the time
history of identified velocity though the identified velocity is
very close to the real velocity as shown in Figure 2(h). The
identified acceleration fluctuates severely at the beginning
and the end compared to the real acceleration as shown
in Figure 2(i). The displacement is identified with high

accuratcy, while the acceleration is identified with lower
accuracy. The force can also be identified with contaminated
measurement with some fluctuations at the beginning and
end of the time history. It is demonstrated that the structural
parameter and excitation can be fairly accurately identified
with contaminated measurement.

7.2. Three-Storey Hysteretic Nonlinear Structure. A three-
storey hysteretic nonlinear shear frame subject to 𝐹(𝑡) =

4 sin(6𝜋𝑡) + 2 cos(2𝜋𝑡) + sin(4𝜋𝑡) kN on the top of the
floors is investigated. The real values of the structure are
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= 48 kN/m, 𝑘
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= 43 kN/m, 𝑘
3

= 40 kN/m,
𝛽
1
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2
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= 10, 𝛾
1

= 𝛾
2

= 𝛾
3

= 5, and 𝑛
1

=

𝑛
2

= 𝑛
3

= 2. The mass and parameter 𝑛 are also taken
as known constant. The other parameters including stiffness,
damping, and the parameters of Bouc-Wenmodel [19] are the
unknowns to be identified. Only the horizontal acceleration
of each floor is measured for the identification in this case
study. The “measured” accelerations for this simulation are
obtained from the solution of (4) with 5% RMS noise.
The excitation history is also decomposed by forty-order
orthogonal polynomial. The unknown parameters are 𝑘

𝑖

, 𝑐
𝑖

,
and𝑤

𝑗

, (𝑖 = 1, 2, 3 and 𝑗 = 1, 2 . . . , 40), the extended state
vector is Z(𝑡) = [𝑥

1−3

, 𝑥̇
1−3

, 𝑧
1−3

, 𝑘
1−3

, 𝑐
1−3

, 𝛽
1−3

, 𝛾
1−3

,𝑤
1−40

]
T,

and the initial guess for 𝑘
𝑖

, 𝑐
𝑖

,𝑤
𝑚

, 𝛽
𝑖

, and 𝛾
𝑖

is 𝑘
𝑖

= 45 kN/m,
𝑐
𝑖

= 0 kNs/m, 𝑤
𝑚

= 0, and 𝛽
𝑖

= 𝛾
𝑖

= 8. The initial values of
state variables are zero.

Figure 3 shows the identification results for the nonlinear
structural system. Though there are a large number of
fluctuations at the beginning of the identified time history,
the stiffness and damping are fairly accurately identified
with contaminated measurement as shown in Figures 3(a)–
3(f). The nonlinear parameters of Bouc-wen model are also
identified with acceptable accuracy as shown from Figures
3(g) to 3(l). The fluctuation at the beginning is also a little
large in the time history of the nonlinear parameters, 𝛽 and
𝛾. Similarly, in this case only the 3rd floor’s displacement,
nonlinear displacement, velocity and acceleration are listed
as shown in Figures 3(m)–3(p). There are some errors in
the amplitude of the identified displacement and nonlinear
displacement. The identified velocity is nearly overlapping
with the real velocity as shown in Figure 3(n). There are
severe fluctuations in the peak of identified acceleration as
shown in Figure 3(o), which is consistent with the linear case
study.The external force is also identified accurately as shown
in Figure 3(q). It is indicated that the system identification
method with EKF and excitation decomposition can con-
duct the nonlinear structural system identification including
structural parameter and external force with contaminated
measurement.

8. Conclusions

A new method in time domain was proposed in this paper
for simultaneous identification of structural parameters and
loads based on limited output information with extended
Kalman filter and orthogonal polynomials decomposition.
The structural excitation is decomposed by orthogonal
approximation. Then the structural parameters and coeffi-
cients of orthogonal polynomial are simultaneously identified
with EKF. Numerical simulations of linear and nonlinear
structures are utilized to study the effectiveness of the pro-
posed method. From the simulation result, the proposed sys-
tem identification method can conduct the structural system
identification accurately and effectively with contaminated
measurement.However, the severe nonlinear parameter, such
as the nonlinear parameter 𝑛 of Bouc-Wen model, is taken as
known in this paper. New identification method dealing with

the severe nonlinear system identification will be developed
in the future research.
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