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It will be shown that the affine fullerene C
60
, which is defined as an affine image of buckminsterfullerene C

60
, can be obtained only

by means of the golden section. The concept of the affine fullerene C
60
will be constructed in a general GS-quasigroup using the

statements about the relationships between affine regular pentagons and affine regular hexagons.The geometrical interpretation of
all discovered relations in a general GS-quasigroup will be given in the GS-quasigroup C((1/2) (1 + √5)).

1. Introduction

The fullerenes are closed carbon-cage molecules containing
only pentagonal and hexagonal rings.

C
60

is the first fullerene that was theoretically conceived
and experimentally obtained. The geometrical structure of
C
60

is a truncated icosahedron with a carbon atom at
the corners of each hexagon and a bond along each edge
(Figure 1). The sixty-carbon cluster with the geometry of a
truncated icosahedron is named buckminsterfullerene [1, 2].

The affine regular icosahedron is defined as an affine
image of a regular icosahedron. Let the affine regular icosa-
hedron be given with the pairs of opposite vertices 𝑎, 𝑎; 𝑏, 𝑏;
𝑐, 𝑐; 𝑑, 𝑑; 𝑒, 𝑒; 𝑓, 𝑓 as in Figure 2. Let us divide each edge
of this icosahedron into three equal parts and then omit two
lateral parts. On each of the twenty faces of the icosahedron
on the sides the three segments in their middle parts are
left. Let us connect the adjacent ends of these segments, so
that an affine regular hexagon is formed on each side of an
icosahedron, and an affine regular pentagon appears in the
neighborhood of each vertex of icosahedron (Figure 3).

The obtained polyhedron consists of twelve affine regular
pentagons and twenty affine regular hexagons. It is an affine
version of buckminsterfullerene C

60
which will be called

affine fullerene C
60
. It is presented in Figure 3, from where it

is obvious how the labels of vertices of that polyhedron are
chosen, starting from the labels of vertices of the affine regular
icosahedron.

Wewill prove that the complete affine fullereneC
60
can be

presented only by means of the golden section. The concept
of a GS-quasigroup will be used in this consideration.

2. GS-Quasigroup

A quasigroup (𝑄, ⋅) is said to be a golden section quasigroup
or shortly a GS-quasigroup [3] if it satisfies the (mutually
equivalent) identities

𝑎 (𝑎𝑏 ⋅ 𝑐) ⋅ 𝑐 = 𝑏, (1)

𝑎 ⋅ (𝑎 ⋅ 𝑏𝑐) 𝑐 = 𝑏, (2)

and the identity of idempotence

𝑎𝑎 = 𝑎. (3)

GS-quasigroups are medial quasigroups; that is, the identity

𝑎𝑏 ⋅ 𝑐𝑑 = 𝑎𝑐 ⋅ 𝑏𝑑 (4)

is valid [4].
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Figure 1

As a consequence of the identity of mediality, the consid-
ered GS-quasigroup (𝑄, ⋅) satisfies the identities of elasticity
and left and right distributivity; that is, we have these
identities:

𝑎𝑏 ⋅ 𝑎 = 𝑎 ⋅ 𝑏𝑎, (5)

𝑎 ⋅ 𝑏𝑐 = 𝑎𝑏 ⋅ 𝑎𝑐, (6)

𝑎𝑏 ⋅ 𝑐 = 𝑎𝑐 ⋅ 𝑏𝑐. (7)

Further, the identities

𝑎 (𝑎𝑏 ⋅ 𝑏) = 𝑏, (8)

(𝑏 ⋅ 𝑏𝑎) 𝑎 = 𝑏, (9)

𝑎 (𝑎𝑏 ⋅ 𝑐) = 𝑏 ⋅ 𝑏𝑐, (10)

(𝑐 ⋅ 𝑏𝑎) 𝑎 = 𝑐𝑏 ⋅ 𝑏, (11)

𝑎 (𝑎 ⋅ 𝑏𝑐) = 𝑏 (𝑏 ⋅ 𝑎𝑐) , (12)

(𝑐𝑏 ⋅ 𝑎) 𝑎 = (𝑐𝑎 ⋅ 𝑏) 𝑏 (13)

and equivalencies

𝑎𝑏 = 𝑐 ⇐⇒ 𝑎 = 𝑐 ⋅ 𝑐𝑏, (14)

𝑎𝑏 = 𝑐 ⇐⇒ 𝑏 = 𝑎𝑐 ⋅ 𝑐 (15)

also hold.
Let C be the set of points of the Euclidean plane. For

any two different points 𝑎, 𝑏 we define 𝑎𝑏 = 𝑐 if the point
𝑏 divides the pair 𝑎, 𝑐 in the ratio of the golden section. In
[3], it is proved that (C, ⋅) is a GS-quasigroup. We will denote
that quasigroup by C((1/2)(1 + √5)) because we have 𝑐 =
(1/2)(1+√5) if 𝑎 = 0 and 𝑏 = 1.The figures in this quasigroup
C((1/2)(1+√5)) can be used for illustration of “geometrical”
concepts and relations in any GS-quasigroup.
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3. Affine Regular Pentagons and Hexagons
in GS-Quasigroups

From now on, let (𝑄, ⋅) be any GS-quasigroup. The elements
of the set 𝑄 are said to be points.

In eachmedial quasigroup, the concept of a parallelogram
can be introduced by means of two auxiliary points. In [5],
it is proved that the points 𝑎, 𝑏, 𝑐, 𝑑 are the vertices of a
parallelogram denoted by Par(𝑎, 𝑏, 𝑐, 𝑑), if and only if there
are two points 𝑝 and 𝑞 such that 𝑝𝑎 = 𝑞𝑏 and 𝑝𝑑 = 𝑞𝑐. It
is also shown that if the statement Par(𝑎, 𝑏, 𝑐, 𝑑) holds, then
the equalities 𝑝𝑎 = 𝑞𝑏 and 𝑝𝑑 = 𝑞𝑐 are equivalent. In a
general GS-quasigroup, the notation of a parallelogram can
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be characterized by the equivalency Par(𝑎, 𝑏, 𝑐, 𝑑) ⇔ 𝑎 ⋅ 𝑏(𝑐𝑎 ⋅
𝑎) = 𝑑 (Figure 4).

In [3], some properties of the quaternary relation Par on
the set𝑄 are proved.Wewillmention only the propertywhich
will be used afterwards.

Lemma 1. From Par(𝑎, 𝑏, 𝑐, 𝑑) and Par(𝑐, 𝑑, 𝑒, 𝑓) there follows
Par(𝑎, 𝑏, 𝑓, 𝑒).

We will say that 𝑏 is themidpoint of the pair of points 𝑎, 𝑐
and we write𝑀(𝑎, 𝑏, 𝑐) if and only if Par(𝑎, 𝑏, 𝑐, 𝑏) holds. The
statement𝑀(𝑎, 𝑏, 𝑐) holds if and only if 𝑐 = 𝑏𝑎 ⋅ 𝑏 [3].

The concept of the affine regular hexagon [6] in a
GS-quasigroup is defined in the following way. We will
say that (𝑎

1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
, 𝑎
6
) is an affine regular hexagon

with the vertices 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
, 𝑎
6
and the center 𝑜 and

we write ARH
𝑜
(𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
, 𝑎
5
, 𝑎
6
) if the statements

Par(𝑜, 𝑎
𝑖−1
, 𝑎
𝑖
, 𝑎
𝑖+1
) hold (𝑖 = 1, 2,3, 4, 5, 6), where indexes are

taken modulo 6 (Figure 5). The following statement can be
proved [6].

Lemma 2. An affine regular hexagon is uniquely determined
by any three consecutive vertices.

The points 𝑜, 𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
determine the figure which will

be denoted by the symbolHARH
𝑜
(𝑎
1
, 𝑎
2
, 𝑎
3
, 𝑎
4
), “half ” of the

affine regular hexagon with the center 𝑜 (Figure 5).
The following results [6] will be very useful.

Lemma 3. Let 𝑛 ∈ N, 𝑛 ≥ 3. If the statements
𝐻𝐴𝑅𝐻

𝑐
12

(𝑏
1
, 𝑎
1
, 𝑎
2
, 𝑏
2
), 𝐻𝐴𝑅𝐻

𝑐
23

(𝑏
2
, 𝑎
2
, 𝑎
3
, 𝑏
3
), . . ., and

𝐻𝐴𝑅𝐻
𝑐
𝑛−1,𝑛

(𝑏
𝑛−1
, 𝑎
𝑛−1
, 𝑎
𝑛
, 𝑏
𝑛
) are valid, then there exists a

unique point 𝑐
𝑛1

so that the statement 𝐻𝐴𝑅𝐻
𝑐
𝑛1

(𝑏
𝑛
, 𝑎
𝑛
, 𝑎
1
, 𝑏
1
)

is valid too. (The case for 𝑛 = 5 is illustrated in Figure 6.)

Lemma 3 implies the following statement.

Lemma 4. Let 𝑛 ∈ N, 𝑛 ≥ 3. If the statements
𝐴𝑅𝐻
𝑐
12

(𝑏
1
, 𝑎
1
, 𝑎
2
, 𝑏
2
, 𝑑
21
, 𝑑
12
), 𝐴𝑅𝐻

𝑐
23

(𝑏
2
, 𝑎
2
, 𝑎
3
,𝑏
3
, 𝑑
32
, 𝑑
23
),

. . . , 𝐴𝑅𝐻
𝑐
𝑛−1,𝑛

(𝑏
𝑛−1
, 𝑎
𝑛−1
, 𝑎
𝑛
, 𝑏
𝑛
, 𝑑
𝑛,𝑛−1
, 𝑑
𝑛−1,𝑛
) are valid, then

there exist unique points 𝑐
𝑛1
, 𝑑
𝑛1
, 𝑑
1𝑛

so that the statement
𝐴𝑅𝐻
𝑐
𝑛1

(𝑏
𝑛
, 𝑎
𝑛
, 𝑎
1
, 𝑏
1
, 𝑑
1𝑛
, 𝑑
𝑛1
) is valid, too.

The points 𝑎, 𝑏, 𝑐, 𝑑 successively are said to be the vertices
of the golden section trapezoid [7] denoted by GST(𝑎, 𝑏, 𝑐, 𝑑)
if the identity 𝑎 ⋅ 𝑎𝑏 = 𝑑 ⋅ 𝑑𝑐 holds (Figure 7). It can be proved
that the following equivalency GST(𝑎, 𝑏, 𝑐, 𝑑) ⇔ 𝑐 = 𝑎(𝑑𝑏 ⋅ 𝑏)
holds. The following statement is also valid.
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Lemma 5. Any of the three statements 𝐺𝑆𝑇(𝑎, 𝑏, 𝑐, 𝑑),
𝐺𝑆𝑇(𝑏, 𝑒, 𝑓, 𝑐), and 𝑎𝑒 = 𝑑𝑓 is a consequence of the two
remaining statements.

In [8], it is proved that any two of the five statements

GST (𝑎, 𝑏, 𝑐, 𝑑) , GST (𝑏, 𝑐, 𝑑, 𝑒) , GST (𝑐, 𝑑, 𝑒, 𝑎) ,

GST (𝑑, 𝑒, 𝑎, 𝑏) , GST (𝑒, 𝑎, 𝑏, 𝑐)
(16)

imply the remaining statements.
The points 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 successively are said to be the

vertices of the affine regular pentagon [8] denoted by
ARP(𝑎, 𝑏, 𝑐, 𝑑, 𝑒) if any two (and then all five) of the five
statements (16) are valid (Figure 7).

Lemma 6. An affine regular pentagon is uniquely determined
by any three of its vertices.

Now, we are going to study the relationships between
the previously defined geometrical concepts in a general GS-
quasigroup.

Lemma 7. If the statements Par(𝑑
1
, 𝑜, 𝑏
2
, 𝑎
1
), Par(𝑑

2
, 𝑜, 𝑏
1
, 𝑎
2
)

are valid, then

(i) the statements 𝑑
1
𝑏
1
= 𝑑
2
𝑏
2
and GST(𝑑

1
, 𝑎
1
, 𝑎
2
, 𝑑
2
) are

equivalent (Figure 8);
(ii) the statements 𝑑

1
𝑏
1
= 𝑑
2
𝑏
2
and GST(𝑎

1
, 𝑏
1
, 𝑏
2
, 𝑎
2
) are

equivalent (Figure 8).
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Proof. (i) We have the equalities

𝑎
1
= 𝑑
1
⋅ 𝑜 (𝑏
2
𝑑
1
⋅ 𝑑
1
) , 𝑎

2
= 𝑑
2
⋅ 𝑜 (𝑏
1
𝑑
2
⋅ 𝑑
2
) , (17)

and we have to prove the equivalency of the equalities

𝑑
1
⋅ 𝑑
1
𝑎
1
= 𝑑
2
⋅ 𝑑
2
𝑎
2
, 𝑑

1
𝑏
1
= 𝑑
2
𝑏
2
. (18)

However, we get

𝑎
1
= 𝑑
1
⋅ 𝑜 (𝑏
2
𝑑
1
⋅ 𝑑
1
)
(6)

= 𝑑
1
𝑜 ⋅ 𝑑
1
(𝑏
2
𝑑
1
⋅ 𝑑
1
)

(5)

= 𝑑
1
𝑜 ⋅ (𝑑
1
⋅ 𝑏
2
𝑑
1
) 𝑑
1

(11)

= 𝑑
1
𝑜 ⋅ (𝑑
1
𝑏
2
⋅ 𝑏
2
)
(4)

= (𝑑
1
⋅ 𝑑
1
𝑏
2
) ⋅ 𝑜𝑏
2

(10)

= 𝑜 (𝑜𝑑
1
⋅ 𝑏
2
) ⋅ 𝑜𝑏
2

(6)

= 𝑜 ⋅ (𝑜𝑑
1
⋅ 𝑏
2
) 𝑏
2

(13)

= 𝑜 ⋅ (𝑜𝑏
2
⋅ 𝑑
1
) 𝑑
1

(19)

and thus we get

𝑑
1
⋅ 𝑑
1
𝑎
1

= 𝑑
1
⋅ 𝑑
1
[𝑜 ⋅ (𝑜𝑏

2
⋅ 𝑑
1
) 𝑑
1
]

(6)

= (𝑑
1
⋅ 𝑑
1
𝑜) ⋅ 𝑑
1
[𝑑
1
⋅ (𝑜𝑏
2
⋅ 𝑑
1
) 𝑑
1
]

(5),(2)

= (𝑑
1
⋅ 𝑑
1
𝑜) ⋅ 𝑜𝑏

2

(4)

= 𝑑
1
𝑜 ⋅ (𝑑
1
𝑜 ⋅ 𝑏
2
)

(20)

and analogously 𝑑
2
⋅ 𝑑
2
𝑎
2
= 𝑑
2
𝑜 ⋅ (𝑑
2
𝑜 ⋅ 𝑏
1
). Because of that,

it is necessary to prove the equivalency of the equality 𝑑
1
𝑜 ⋅

(𝑑
1
𝑜⋅𝑏
2
) = 𝑑
2
𝑜⋅(𝑑
2
𝑜⋅𝑏
1
) and the equality 𝑏

2
= (𝑑
2
⋅𝑑
1
𝑏
1
) ⋅𝑑
1
𝑏
1

which is, according to (15), equivalent to 𝑑
1
𝑏
1
= 𝑑
2
𝑏
2
. As we

get

𝑑
2
𝑜 ⋅ (𝑑
2
𝑜 ⋅ 𝑏
1
)

(8)

= 𝑑
2
𝑜 ⋅ [𝑑
2
𝑜 ⋅ 𝑑
2
(𝑑
2
𝑏
1
⋅ 𝑏
1
)]

(6)

= 𝑑
2
[𝑜 ⋅ 𝑜 (𝑑

2
𝑏
1
⋅ 𝑏
1
)]

(2),(5)

= [𝑑
1
⋅ 𝑑
1
(𝑑
2
𝑑
1
⋅ 𝑑
1
)] [𝑜 ⋅ 𝑜 (𝑑

2
𝑏
1
⋅ 𝑏
1
)]

(4)

= 𝑑
1
𝑜 ⋅ [𝑑
1
𝑜 ⋅ (𝑑
2
𝑑
1
⋅ 𝑑
2
𝑏
1
) (𝑑
1
𝑏
1
)]

(6)

= 𝑑
1
𝑜 ⋅ [𝑑
1
𝑜 ⋅ (𝑑
2
⋅ 𝑑
1
𝑏
1
) (𝑑
1
𝑏
1
)] ,

(21)

a1 a2

d1

b1 b2

d2

o

d1b1 = d2b2

Figure 8

these should be equivalent equalities:

𝑑
1
𝑜 ⋅ (𝑑
1
𝑜 ⋅ 𝑏
2
) = 𝑑
1
𝑜 ⋅ [𝑑
1
𝑜 ⋅ (𝑑
2
⋅ 𝑑
1
𝑏
1
) (𝑑
1
𝑏
1
)] ,

𝑏
2
= (𝑑
2
⋅ 𝑑
1
𝑏
1
) ⋅ 𝑑
1
𝑏
1
,

(22)

which is obvious.
(ii) Firstly, let us prove that from GST(𝑎

1
, 𝑏
1
, 𝑏
2
, 𝑎
2
) there

follows 𝑑
1
𝑏
1
= 𝑑
2
𝑏
2
.

We have the equalities

𝑑
1
= 𝑎
1
⋅ 𝑏
2
(𝑜𝑎
1
⋅ 𝑎
1
) ,

𝑑
2
= 𝑎
2
⋅ 𝑏
1
(𝑜𝑎
2
⋅ 𝑎
2
) ,

𝑏
2
= 𝑎
1
(𝑎
2
𝑏
1
⋅ 𝑏
1
) .

(23)

Therefore we get

𝑑
1
𝑏
1
= [𝑎
1
⋅ 𝑏
2
(𝑜𝑎
1
⋅ 𝑎
1
)] 𝑏
1

= 𝑎
1
[𝑎
1
(𝑎
2
𝑏
1
⋅ 𝑏
1
) ⋅ (𝑜𝑎

1
⋅ 𝑎
1
)] ⋅ 𝑏
1

(6)

= [𝑎
1
⋅ 𝑎
1
(𝑎
2
𝑏
1
⋅ 𝑏
1
)] [𝑎
1
(𝑜𝑎
1
⋅ 𝑎
1
)] ⋅ 𝑏
1

(12)

= [(𝑎
2
𝑏
1
) (𝑎
2
𝑏
1
⋅ 𝑎
1
𝑏
1
) ⋅ 𝑎
1
(𝑜𝑎
1
⋅ 𝑎
1
)] 𝑏
1

(7)

= [(𝑎
2
⋅ 𝑎
2
𝑎
1
) 𝑏
1
⋅ 𝑎
1
(𝑜𝑎
1
⋅ 𝑎
1
)] 𝑏
1

(4)

= [(𝑎
2
⋅ 𝑎
2
𝑎
1
) 𝑎
1
⋅ 𝑏
1
(𝑜𝑎
1
⋅ 𝑎
1
)] 𝑏
1

(9)

= [𝑎
2
⋅ 𝑏
1
(𝑜𝑎
1
⋅ 𝑎
1
)] 𝑏
1

(6)

= [𝑎
2
𝑏
1
⋅ 𝑎
2
(𝑜𝑎
1
⋅ 𝑎
1
)] 𝑏
1

(7)

= (𝑎
2
𝑏
1
⋅ 𝑏
1
) [𝑎
2
(𝑜𝑎
1
⋅ 𝑎
1
) ⋅ 𝑏
1
] ,

𝑑
2
𝑏
2
= [𝑎
2
⋅ 𝑏
1
(𝑜𝑎
2
⋅ 𝑎
2
)] ⋅ 𝑎
1
(𝑎
2
𝑏
1
⋅ 𝑏
1
)

(6)

= [𝑎
2
𝑏
1
⋅ 𝑎
2
(𝑜𝑎
2
⋅ 𝑎
2
)] ⋅ 𝑎
1
(𝑎
2
𝑏
1
⋅ 𝑏
1
)
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(4)

= (𝑎
2
𝑏
1
⋅ 𝑎
1
) [𝑎
2
(𝑜𝑎
2
⋅ 𝑎
2
) ⋅ (𝑎
2
𝑏
1
⋅ 𝑏
1
)]

(7)

= (𝑎
2
𝑏
1
⋅ 𝑎
1
) [𝑎
2
(𝑎
2
𝑏
1
⋅ 𝑏
1
) ⋅ (𝑜𝑎

2
⋅ 𝑎
2
) (𝑎
2
𝑏
1
⋅ 𝑏
1
)]

(8)

= (𝑎
2
𝑏
1
⋅ 𝑎
1
) [𝑏
1
⋅ (𝑜𝑎
2
⋅ 𝑎
2
) (𝑎
2
𝑏
1
⋅ 𝑏
1
)]

(4)

= (𝑎
2
𝑏
1
⋅ 𝑏
1
) [𝑎
1
⋅ (𝑜𝑎
2
⋅ 𝑎
2
) (𝑎
2
𝑏
1
⋅ 𝑏
1
)] ,

(24)

so it is necessary to prove the equality

𝑎
2
(𝑜𝑎
1
⋅ 𝑎
1
) ⋅ 𝑏
1
= 𝑎
1
⋅ (𝑜𝑎
2
⋅ 𝑎
2
) (𝑎
2
𝑏
1
⋅ 𝑏
1
) . (25)

Really, we have

𝑎
1
⋅ (𝑜𝑎
2
⋅ 𝑎
2
) (𝑎
2
𝑏
1
⋅ 𝑏
1
)

(9),(11)

= (𝑎
1
⋅ 𝑎
1
𝑏
1
) 𝑏
1
⋅ [(𝑜 ⋅ 𝑎

2
𝑏
1
) 𝑏
1
⋅ (𝑎
2
𝑏
1
⋅ 𝑏
1
)]

(7)

= [(𝑎
1
⋅ 𝑎
1
𝑏
1
) ⋅ (𝑜 ⋅ 𝑎

2
𝑏
1
) (𝑎
2
𝑏
1
)] 𝑏
1

(4)

= [𝑎
1
(𝑜 ⋅ 𝑎
2
𝑏
1
) ⋅ (𝑎
1
𝑏
1
⋅ 𝑎
2
𝑏
1
)] 𝑏
1

(7)

= [𝑎
1
(𝑜 ⋅ 𝑎
2
𝑏
1
) ⋅ (𝑎
1
𝑎
2
⋅ 𝑏
1
)] 𝑏
1

(4)

= [(𝑎
1
⋅ 𝑎
1
𝑎
2
) ⋅ (𝑜 ⋅ 𝑎

2
𝑏
1
) 𝑏
1
] 𝑏
1

(11)

= (𝑎
1
⋅ 𝑎
1
𝑎
2
) (𝑜𝑎
2
⋅ 𝑎
2
) ⋅ 𝑏
1

(10)

= [𝑎
2
(𝑎
2
𝑎
1
⋅ 𝑎
2
) ⋅ (𝑜𝑎

2
⋅ 𝑎
2
)] 𝑏
1

(5)

= [(𝑎
2
⋅ 𝑎
2
𝑎
1
) 𝑎
2
⋅ (𝑜𝑎
2
⋅ 𝑎
2
)] 𝑏
1

(7)

= [(𝑎
2
⋅ 𝑎
2
𝑎
1
) (𝑜𝑎
2
) ⋅ 𝑎
2
] 𝑏
1

(4)

= [(𝑎
2
𝑜) (𝑎
2
𝑎
1
⋅ 𝑎
2
) ⋅ 𝑎
2
] 𝑏
1

(5)

= [(𝑎
2
𝑜) (𝑎
2
⋅ 𝑎
1
𝑎
2
) ⋅ 𝑎
2
] 𝑏
1

(6)

= [𝑎
2
(𝑜 ⋅ 𝑎
1
𝑎
2
) ⋅ 𝑎
2
] 𝑏
1

(5)

= [𝑎
2
⋅ (𝑜 ⋅ 𝑎

1
𝑎
2
) 𝑎
2
] 𝑏
1

(11)

= 𝑎
2
(𝑜𝑎
1
⋅ 𝑎
1
) ⋅ 𝑏
1
.

(26)

Now, we are going to prove that 𝑑
1
𝑏
1
= 𝑑
2
𝑏
2
implies

GST(𝑎
1
, 𝑏
1
, 𝑏
2
, 𝑎
2
). According to (i), from the hypotheses of

(ii), there follows the statement GST(𝑑
1
, 𝑎
1
, 𝑎
2
, 𝑑
2
) and, from

this statement and the equality 𝑑
1
𝑏
1
= 𝑑
2
𝑏
2
, according to

Lemma 5, there follows the statement GST(𝑎
1
, 𝑏
1
, 𝑏
2
, 𝑎
2
).

Lemma 8. If the statements 𝐻𝐴𝑅𝐻
𝑜
(𝑐
1
, 𝑏
1
, 𝑏
2
, 𝑐
2
), 𝐻𝐴𝑅𝐻

𝑑
1

(𝑎
1
, 𝑏
1
, 𝑐
1
, 𝑒
1
), and 𝐻𝐴𝑅𝐻

𝑑
2

(𝑎
2
, 𝑏
2
, 𝑐
2
, 𝑒
2
) are valid, then the

statement 𝐺𝑆𝑇(𝑎
1
, 𝑏
1
, 𝑏
2
, 𝑎
2
) and equality 𝑑

1
𝑏
1
= 𝑑
2
𝑏
2
are

equivalent (Figure 9).

Proof. The assumptions of the lemma imply the state-
ments Par(𝑜, 𝑏

2
, 𝑏
1
, 𝑐
1
), Par(𝑜, 𝑏

1
, 𝑏
2
, 𝑐
2
), Par(𝑏

1
, 𝑐
1
, 𝑑
1
, 𝑎
1
), and

a1 a2

d1

b1 b2

d2

e1 e2

c2c1 o

d1b1 = d2b2

Figure 9

Par(𝑏
2
, 𝑐
2
, 𝑑
2
, 𝑎
2
), and then, according to Lemma 1, parallelo-

grams Par(𝑜, 𝑏
2
, 𝑎
1
, 𝑑
1
), Par(𝑜, 𝑏

1
, 𝑎
2
, 𝑑
2
) follow from the first

and the third, and the second and the fourth parallelogram,
respectively. Owing to these last statements, according to
Lemma 7(ii), statements GST(𝑎

1
, 𝑏
1
, 𝑏
2
, 𝑎
2
) and 𝑑

1
𝑏
1
= 𝑑
2
𝑏
2

are equivalent.

Lemma 9. With the assumption ARH (𝑎
𝑏
, 𝑏
𝑎
, 𝑏
𝑐
, 𝑐
𝑏
, 𝑐
𝑎
, 𝑎
𝑐
), the

statement 𝑓𝑎
𝑏
= 𝑒𝑎
𝑐
follows from the equalities 𝑑𝑏

𝑐
= 𝑓𝑏

𝑎
,

𝑑𝑐
𝑏
= 𝑒𝑐
𝑎
(Figure 10).

Proof. Supposing that a more precise statement ARH
𝑜
(𝑎
𝑏
,

𝑏
𝑎
, 𝑏
𝑐
, 𝑐
𝑏
, 𝑐
𝑎
, 𝑎
𝑐
) is valid, so the statements Par(𝑐

𝑏
, 𝑐
𝑎
, 𝑜, 𝑏
𝑐
)

and Par(𝑏
𝑎
, 𝑜, 𝑎
𝑐
, 𝑎
𝑏
) are valid. From the statements

Par(𝑐
𝑏
, 𝑐
𝑎
, 𝑜, 𝑏
𝑐
), 𝑑𝑐

𝑏
= 𝑒

𝑐
𝑎
there follows 𝑑𝑏

𝑐
= 𝑒

𝑜,

which together with 𝑑𝑏
𝑐
= 𝑓𝑏
𝑎
gives the equality𝑓𝑏

𝑎
= 𝑒𝑜,

and this statement and the statement Par(𝑏
𝑎
, 𝑜, 𝑎
𝑐
, 𝑎
𝑏
) imply

the equality 𝑓𝑎
𝑏
= 𝑒𝑎
𝑐
.

Theorem 10. The statement ARP(𝑎
𝑏
, 𝑎
𝑓
 , 𝑎
𝑑
, 𝑎
𝑒
 , 𝑎
𝑐
) follows

from the statements ARH(𝑎
𝑏
, 𝑏
𝑎
, 𝑏
𝑐
, 𝑐
𝑏
, 𝑐
𝑎
, 𝑎
𝑐
), ARH(𝑏

𝑐
, 𝑏
𝑑
 ,

𝑑


𝑏
, 𝑑


𝑐
, 𝑐
𝑑
 , 𝑐
𝑏
), ARP(𝑏

𝑐
, 𝑏
𝑑
 , 𝑏
𝑒
, 𝑏
𝑓
 , 𝑏
𝑎
), ARP(𝑐

𝑏
, 𝑐
𝑑
 , 𝑐
𝑓
, 𝑐
𝑒
 , 𝑐
𝑎
),

ARH(𝑏
𝑎
, 𝑏
𝑓
 , 𝑓
𝑏
, 𝑓
𝑎
, 𝑎
𝑓
 , 𝑎
𝑏
), and ARH(𝑐

𝑎
, 𝑐
𝑒
 , 𝑒
𝑐
, 𝑒
𝑎
, 𝑎
𝑒
 , 𝑎
𝑐
)

(Figure 11).

Proof. It is sufficient to prove that the statement
GST(𝑎

𝑓
 , 𝑎
𝑏
, 𝑎
𝑐
, 𝑎
𝑒
) follows from the statements ARH

𝑜
(𝑎
𝑏
,

𝑏
𝑎
, 𝑏
𝑐
, 𝑐
𝑏
, 𝑐
𝑎
, 𝑎
𝑐
), HARH

𝑑
(𝑏
𝑑
 , 𝑏
𝑐
, 𝑐
𝑏
, 𝑐
𝑑
), GST(𝑏

𝑑
 , 𝑏
𝑐
, 𝑏
𝑎
, 𝑏
𝑓
),

GST(𝑐
𝑑
 , 𝑐
𝑏
, 𝑐
𝑎
, 𝑐
𝑒
), HARH

𝑓
(𝑏
𝑓
 , 𝑏
𝑎
, 𝑎
𝑏
, 𝑎
𝑓
), and HARH

𝑒
(𝑐
𝑒
 ,

𝑐
𝑎
, 𝑎
𝑐
, 𝑎
𝑒
). Firstly, according to Lemma 8, the equality

𝑑𝑏
𝑐
= 𝑓𝑏
𝑎
follows from the statements HARH

𝑜
(𝑐
𝑏
, 𝑏
𝑐
, 𝑏
𝑎
, 𝑎
𝑏
),

HARH
𝑑
(𝑏
𝑑
 , 𝑏
𝑐
, 𝑐
𝑏
, 𝑐
𝑑
), HARH

𝑓
(𝑏
𝑓
 , 𝑏
𝑎
, 𝑎
𝑏
, 𝑎
𝑓
), and GST

(𝑏
𝑑
 , 𝑏
𝑐
, 𝑏
𝑎
, 𝑏
𝑓
). Owing to the same lemma, the equality

𝑑𝑐
𝑏
= 𝑒𝑐
𝑎
follows from the statements HARH

𝑜
(𝑏
𝑐
, 𝑐
𝑏
, 𝑐
𝑎
, 𝑎
𝑐
),

HARH
𝑑
(𝑐
𝑑
 , 𝑐
𝑏
, 𝑏
𝑐
, 𝑏
𝑑
), HARH

𝑒
(𝑐
𝑒
 , 𝑐
𝑎
, 𝑎
𝑐
, 𝑎
𝑒
), and GST(𝑐

𝑑
 ,

𝑐
𝑏
, 𝑐
𝑎
, 𝑐
𝑒
).

Now, all requirements of Lemma 9 are satisfied and the
equality 𝑓𝑎

𝑏
= 𝑒𝑎
𝑐
follows accordingly.

Finally, according to Lemma 8, the statements
HARH

𝑜
(𝑏
𝑎
, 𝑎
𝑏
, 𝑎
𝑐
, 𝑐
𝑎
), HARH

𝑓
(𝑎
𝑓
 , 𝑎
𝑏
, 𝑏
𝑎
, 𝑏
𝑓
), and HARH

𝑒


(𝑎
𝑒
 , 𝑎
𝑐
, 𝑐
𝑎
, 𝑐
𝑒
) and equality 𝑓𝑎

𝑏
= 𝑒𝑎
𝑐
imply the statement

GST(𝑎
𝑓
 , 𝑎
𝑏
,𝑎
𝑐
, 𝑎
𝑒
).
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4. Construction of an Affine Fullerene C
60

in
a GS-Quasigroup

In this section, we are going to construct an affine fullerene
C
60

in a general GS-quasigroup by means of the previously
discovered statements about affine regular pentagons and
hexagons in a general GS-quasigroup.

Theorem11. An affine fullerene C
60
can be constructed in each

GS-quasigroup.

Proof. For the sake of clarity, each step of the proof is precisely
presented in figures in the GS-quasigroup C((1/2)(1 + √5))

and each sequence of the proof of the theoremcanbe followed
on the Schlegel diagram (Figure 12).

Let us start with the four given points 𝑏
𝑎
, 𝑏
𝑐
, 𝑐
𝑏
, 𝑏
𝑑
 .

The affine regular hexagons ARH(𝑎
𝑏
, 𝑏
𝑎
, 𝑏
𝑐
, 𝑐
𝑏
, 𝑐
𝑎
, 𝑎
𝑐
) and

ARH(𝑏
𝑐
, 𝑏
𝑑
 , 𝑑
𝑏
, 𝑑
𝑐
, 𝑐
𝑑
 , 𝑐
𝑏
) can be constructed according to

Lemma 2.
Owing to Lemma 6, affine regular pentagons ARP(𝑏

𝑐
,

𝑏
𝑑
 , 𝑏
𝑒
, 𝑏
𝑓
 , 𝑏
𝑎
) and ARP(𝑐

𝑏
, 𝑐


𝑑
, 𝑐
𝑓
, 𝑐
𝑒
 , 𝑐
𝑎
) can be obtained. If we

apply Lemma 2 again, we can get ARH(𝑏
𝑎
, 𝑏
𝑓
, 𝑓
𝑏
, 𝑓
𝑎
, 𝑐
𝑓
 , 𝑎
𝑏
)

and ARH(𝑐
𝑎
, 𝑐
𝑒
 , 𝑒
𝑐
, 𝑒
𝑎
, 𝑎
𝑒
 , 𝑎
𝑐
).

According toTheorem 10, the existence of these obtained
affine regular hexagons and affine regular pentagons around
an affine regular hexagon will result in the existence of the
affine regular pentagon ARP(𝑎

𝑏
, 𝑎
𝑓
 , 𝑎
𝑑
, 𝑎
𝑒
 , 𝑎
𝑐
) (Figure 13).

According to Lemma 2, the already obtained points
𝑎
𝑑
, 𝑎
𝑓
 , 𝑓
𝑎
uniquely determine ARH(𝑑

𝑎
, 𝑎
𝑑
, 𝑎
𝑓
 , 𝑓
𝑎
, 𝑓
𝑑
, 𝑑
𝑓
)

and then, because of Lemma 4, the statements ARH(𝑑
𝑎
, 𝑎
𝑑
,

𝑎
𝑓
 , 𝑓
𝑎
, 𝑓
𝑑
, 𝑑
𝑓
), ARH(𝑓

𝑎
, 𝑎
𝑓
 , 𝑎
𝑏
, 𝑏
𝑎
, 𝑏
𝑓
 , 𝑓
𝑏
), ARH(𝑏

𝑎
, 𝑎
𝑏
, 𝑎
𝑐
,

𝑐
𝑎
, 𝑐
𝑏
, 𝑏
𝑐
), and ARH(𝑐

𝑎
, 𝑎
𝑐
, 𝑎
𝑒
 , 𝑒
𝑎
, 𝑒
𝑐
, 𝑐
𝑒
) imply the statement

ARH(𝑒
𝑎
, 𝑎
𝑒
 , 𝑎
𝑑
, 𝑑
𝑎
, 𝑑
𝑒
 , 𝑒
𝑑
). In the same way, the statements

ARH(𝑒
𝑏
, 𝑏
𝑒
, 𝑏
𝑑
 , 𝑑
𝑏
, 𝑑
𝑒
, 𝑒
𝑑
), ARH(𝑑

𝑏
, 𝑏
𝑑
 , 𝑏
𝑐
, 𝑐
𝑏
, 𝑐
𝑑
 , 𝑑
𝑐
), ARH

(𝑐
𝑏
, 𝑏
𝑐
, 𝑏
𝑎
, 𝑎
𝑏
, 𝑎
𝑐
, 𝑐
𝑎
), and ARH(𝑎

𝑏
, 𝑏
𝑎
, 𝑏
𝑓
 , 𝑓
𝑏
, 𝑓
𝑎
, 𝑎
𝑓
) imply

ARH(𝑓
𝑏
, 𝑏
𝑓
 , 𝑏
𝑒
, 𝑒
𝑏
, 𝑒
𝑓
 , 𝑓
𝑒
) and, analogously, the statements

ARH(𝑓
𝑐
, 𝑐
𝑓
, 𝑐
𝑒
 , 𝑒
𝑐
, 𝑒
𝑓
, 𝑓
𝑒
), ARH(𝑒

𝑐
, 𝑐
𝑒
 , 𝑐
𝑎
, 𝑎
𝑐
, 𝑎
𝑒
 , 𝑒
𝑎
), ARH(𝑎

𝑐
,

𝑐
𝑎
, 𝑐
𝑏
, 𝑏
𝑐
, 𝑏
𝑎
, 𝑎
𝑏
), and ARH(𝑏

𝑐
, 𝑐
𝑏
, 𝑐
𝑑
 , 𝑑
𝑐
, 𝑑
𝑏
, 𝑏
𝑑
) imply ARH(𝑑

𝑐
,

𝑐
𝑑
 , 𝑐
𝑓
, 𝑓
𝑐
, 𝑓
𝑑
 , 𝑑
𝑓
).
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This consideration is presented in Figure 14.
These two precisely described procedures will also be

used later. It will also be denoted which figure is used for the
geometrical presentation of the obtained implications in the
GS-quasigroup C((1/2)(1 + √5)).

Now, according to Theorem 10, the statements ARH
(𝑑


𝑏
, 𝑏
𝑑
 , 𝑏
𝑐
, 𝑐
𝑏
, 𝑐
𝑑
 , 𝑑
𝑐
), ARH(𝑏

𝑐
, 𝑏
𝑎
, 𝑎
𝑏
, 𝑎
𝑐
, 𝑐
𝑎
, 𝑐
𝑏
), ARP(𝑏

𝑐
, 𝑏
𝑎
,

𝑏
𝑓
 , 𝑏
𝑒
, 𝑏
𝑑
), ARP(𝑐

𝑏
, 𝑐
𝑎
, 𝑐
𝑒
 , 𝑐
𝑓
, 𝑐
𝑑
), ARH(𝑏

𝑑
 , 𝑏
𝑒
, 𝑒
𝑏
, 𝑒
𝑑
 , 𝑑
𝑒
,

𝑑
𝑏
), and ARH(𝑐

𝑑
 , 𝑐
𝑓
, 𝑓
𝑐
, 𝑓
𝑑
 , 𝑑
𝑓
, 𝑑
𝑐
) imply ARP(𝑑

𝑏
, 𝑑
𝑒
,

𝑑
𝑎
 , 𝑑


𝑓
, 𝑑
𝑐
). The statements ARP(𝑒

𝑐
, 𝑒
𝑓
, 𝑒
𝑏
 , 𝑒


𝑑
, 𝑒
𝑎
) and

ARP(𝑓
𝑎
, 𝑓
𝑑
, 𝑓
𝑐
 , 𝑓


𝑒
, 𝑓
𝑏
) can be obtained similarly (Figure 15).

Thanks to Lemma 4, the statements ARH(𝑒
𝑑
 ,

𝑑
𝑒
, 𝑑
𝑏
, 𝑏
𝑑
 , 𝑏
𝑒
, 𝑒
𝑏
), ARH(𝑏

𝑑
 , 𝑑
𝑏
,𝑑
𝑐
, 𝑐
𝑑
 , 𝑐
𝑏
, 𝑏
𝑐
), ARH(𝑐

𝑑
 , 𝑑
𝑐
, 𝑑
𝑓
,

𝑓
𝑑
 , 𝑓
𝑐
, 𝑐
𝑓
), and ARH(𝑓

𝑑
 , 𝑑
𝑓
, 𝑑
𝑎
 , 𝑎


𝑑
 , 𝑎


𝑓
, 𝑓
𝑎
) imply ARH(𝑎

𝑑
 ,

𝑑
𝑎
 , 𝑑


𝑒
, 𝑒
𝑑
 , 𝑒
𝑎
 , 𝑎
𝑒
). We can find the affine regular hexagons

ARH(𝑏
𝑒
 , 𝑒


𝑏
 , 𝑒


𝑓
, 𝑓
𝑒
 , 𝑓
𝑏
 , 𝑏
𝑓
) and ARH(𝑐

𝑓
 , 𝑓


𝑐
 , 𝑓


𝑑
, 𝑑
𝑓
 , 𝑑
𝑐
 , 𝑐
𝑑
)

in the same way (Figure 16).
If we apply Theorem 10, we will discover three new

affine regular pentagons (Figure 17). The statement
ARP(𝑑

𝑓
 , 𝑑
𝑐
 , 𝑑
𝑏
 , 𝑑
𝑒
 , 𝑑
𝑎
) follows from ARH(𝑑

𝑓
 , 𝑓
𝑑
, 𝑓
𝑎
, 𝑎
𝑓
 ,

𝑎
𝑑
, 𝑑
𝑎
), ARH(𝑓

𝑎
, 𝑓


𝑏
, 𝑏
𝑓
 , 𝑏
𝑎
, 𝑎
𝑏
, 𝑎
𝑓
), ARP(𝑓

𝑎
, 𝑓


𝑏
, 𝑓


𝑒
, 𝑓


𝑐
 , 𝑓


𝑑
),

ARP(𝑎
𝑓
 , 𝑎
𝑏
, 𝑎
𝑐
, 𝑎
𝑒
 , 𝑎
𝑑
), ARH(𝑓

𝑑
, 𝑓
𝑐
 , 𝑐


𝑓
 , 𝑐


𝑑
, 𝑑
𝑐
 , 𝑑
𝑓
), and
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ARH(𝑎
𝑑
, 𝑎
𝑒
 , 𝑒
𝑎
, 𝑒
𝑑
, 𝑑
𝑒
 , 𝑑
𝑎
), and similarly we get ARP

(𝑒
𝑑
 ,𝑒
𝑎
 , 𝑒
𝑐
 , 𝑒
𝑓
 , 𝑒
𝑏
) and ARP(𝑓

𝑒
 , 𝑓
𝑏
 , 𝑓
𝑎
 , 𝑓
𝑑
 , 𝑓
𝑐
).

Now, we are in a position to use Lemma 4 whose
application gives the statements about three new
affine regular hexagons (Figure 18). The statements
ARH(𝑏

𝑑
, 𝑑
𝑏
 , 𝑑
𝑒
 , 𝑒
𝑑
, 𝑒
𝑏
 , 𝑏


𝑒
), ARH(𝑒𝑑, 𝑑𝑒 , 𝑑𝑎, 𝑎𝑑, 𝑎𝑒 , 𝑒



𝑎
), ARH

(𝑎
𝑑
, 𝑑
𝑎
, 𝑑
𝑓
 , 𝑓
𝑑
, 𝑓
𝑎
, 𝑎
𝑓
), and ARH(𝑓

𝑑
, 𝑑
𝑓
 , 𝑑
𝑐
 , 𝑐
𝑑
, 𝑐
𝑓
 , 𝑓


𝑐
)

imply ARH(𝑐
𝑑
, 𝑑
𝑐
 , 𝑑
𝑏
 , 𝑏
𝑑
, 𝑏
𝑐
 , 𝑐


𝑏
). Similarly, we can get
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the affine regular hexagons ARH(𝑎
𝑒
, 𝑒
𝑎
 , 𝑒
𝑐
 , 𝑐
𝑒
, 𝑐
𝑎
 , 𝑎


𝑐
) and

ARH(𝑏
𝑓
, 𝑓
𝑏
 , 𝑓
𝑎
 , 𝑎
𝑓
, 𝑎
𝑏
 , 𝑏


𝑎
).

If we apply Theorem 10, we will obtain the three
new affine regular pentagons ARP(𝑎

𝑒
, 𝑎
𝑐
 , 𝑎


𝑏
 , 𝑎


𝑓
, 𝑎
𝑑
),

ARP(𝑏
𝑓
, 𝑏


𝑎
 , 𝑏


𝑐
 , 𝑏


𝑑
, 𝑏


𝑒
), and ARP(𝑐

𝑑
, 𝑐


𝑏
 , 𝑐


𝑎
 , 𝑐


𝑒
, 𝑐


𝑓
) (Figure

19).
Finally, the application of Lemma 3 will allow us to close

the complete structure. We have to prove that the points
𝑏


𝑎
 , 𝑎


𝑏
 , 𝑎


𝑐
 , 𝑐


𝑎
 , 𝑐


𝑏
 , 𝑏


𝑐
 are the vertices of an affine regular

hexagon.
By applying Lemma 3 we get that the statements

HARH(𝑐
𝑎
 , 𝑎


𝑐
 , 𝑎


𝑒
, 𝑒
𝑎
), HARH(𝑒

𝑎
 , 𝑎
𝑒
, 𝑎
𝑑
 , 𝑑


𝑎
), HARH(𝑑

𝑎
 ,

𝑎
𝑑
 , 𝑎


𝑓
, 𝑓
𝑎
), and HARH(𝑓

𝑎
 , 𝑎
𝑓
, 𝑎
𝑏
 , 𝑏


𝑎
) imply HARH(𝑏

𝑎
 , 𝑎


𝑏
 ,

𝑎
𝑐
 , 𝑐


𝑎
).

Analogously, we have that HARH(𝑎
𝑏
 , 𝑏


𝑎
 , 𝑏


𝑓
, 𝑓
𝑏
), HARH

(𝑓
𝑏
 , 𝑏
𝑓
, 𝑏
𝑒
 , 𝑒


𝑏
), HARH(𝑒

𝑏
 , 𝑏


𝑒
 , 𝑏


𝑑
, 𝑑
𝑏
), and HARH(𝑑

𝑏
 , 𝑏
𝑑
,

𝑏
𝑐
 , 𝑐


𝑏
) imply HARH(𝑐

𝑏
 , 𝑏


𝑐
 , 𝑏


𝑎
 , 𝑎


𝑏
), and HARH(𝑏

𝑐
 , 𝑐


𝑏
 , 𝑐


𝑑
,

𝑑
𝑐
), HARH(𝑑

𝑐
 , 𝑐
𝑑
, 𝑐
𝑓
 , 𝑓


𝑐
), HARH(𝑓

𝑐
 , 𝑐


𝑓
 , 𝑐


𝑒
, 𝑒
𝑐
), and

HARH(𝑒
𝑐
 , 𝑐
𝑒
, 𝑐
𝑎
 , 𝑎


𝑐
) imply HARH(𝑎

𝑐
 , 𝑐


𝑎
 , 𝑐


𝑏
 , 𝑏


𝑐
).

These obtained three halves of affine regular hexagons
HARH(𝑏

𝑎
 , 𝑎


𝑏
 , 𝑎


𝑐
 , 𝑐


𝑎
), HARH(𝑐

𝑏
 , 𝑏


𝑐
 , 𝑏


𝑎
 , 𝑎


𝑏
), and HARH

(𝑎
𝑐
 , 𝑐


𝑎
 , 𝑐


𝑏
 , 𝑏


𝑐
) determine the affine regular hexagon

ARH(𝑏
𝑎
 , 𝑎


𝑏
 , 𝑎


𝑐
 , 𝑐


𝑎
 , 𝑐


𝑏
 , 𝑏


𝑐
) (Figure 19). This completes the

proof of the theorem.

Thus, we have proved that any affine fullerene C
60
can be

obtained only by applying the golden section.
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