Affine Fullerene \mathbf{C}_{60} in a GS-Quasigroup

Vladimir Volenec, ${ }^{1}$ Zdenka Kolar-Begović, ${ }^{2}$ and Ružica Kolar-Šuper ${ }^{3}$
${ }^{1}$ Department of Mathematics, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
${ }^{2}$ Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, 31000 Osijek, Croatia
${ }^{3}$ Faculty of Education, University of Osijek, Cara Hadrijana 10, 31000 Osijek, Croatia

Correspondence should be addressed to Zdenka Kolar-Begović; zkolar@mathos.hr
Received 2 May 2014; Accepted 28 May 2014; Published 7 July 2014
Academic Editor: Ali R. Ashrafi
Copyright © 2014 Vladimir Volenec et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

It will be shown that the affine fullerene C_{60}, which is defined as an affine image of buckminsterfullerene C_{60}, can be obtained only by means of the golden section. The concept of the affine fullerene C_{60} will be constructed in a general GS-quasigroup using the statements about the relationships between affine regular pentagons and affine regular hexagons. The geometrical interpretation of all discovered relations in a general GS-quasigroup will be given in the GS-quasigroup $\mathbb{C}((1 / 2)(1+\sqrt{5}))$.

1. Introduction

The fullerenes are closed carbon-cage molecules containing only pentagonal and hexagonal rings.
C_{60} is the first fullerene that was theoretically conceived and experimentally obtained. The geometrical structure of C_{60} is a truncated icosahedron with a carbon atom at the corners of each hexagon and a bond along each edge (Figure 1). The sixty-carbon cluster with the geometry of a truncated icosahedron is named buckminsterfullerene [1,2].

The affine regular icosahedron is defined as an affine image of a regular icosahedron. Let the affine regular icosahedron be given with the pairs of opposite vertices $a, a^{\prime} ; b, b^{\prime}$; $c, c^{\prime} ; d, d^{\prime} ; e, e^{\prime} ; f, f^{\prime}$ as in Figure 2. Let us divide each edge of this icosahedron into three equal parts and then omit two lateral parts. On each of the twenty faces of the icosahedron on the sides the three segments in their middle parts are left. Let us connect the adjacent ends of these segments, so that an affine regular hexagon is formed on each side of an icosahedron, and an affine regular pentagon appears in the neighborhood of each vertex of icosahedron (Figure 3).

The obtained polyhedron consists of twelve affine regular pentagons and twenty affine regular hexagons. It is an affine version of buckminsterfullerene C_{60} which will be called affine fullerene C_{60}. It is presented in Figure 3, from where it
is obvious how the labels of vertices of that polyhedron are chosen, starting from the labels of vertices of the affine regular icosahedron.

We will prove that the complete affine fullerene C_{60} can be presented only by means of the golden section. The concept of a GS-quasigroup will be used in this consideration.

2. GS-Quasigroup

A quasigroup (Q, \cdot) is said to be a golden section quasigroup or shortly a GS-quasigroup [3] if it satisfies the (mutually equivalent) identities

$$
\begin{align*}
& a(a b \cdot c) \cdot c=b \tag{1}\\
& a \cdot(a \cdot b c) c=b \tag{2}
\end{align*}
$$

and the identity of idempotence

$$
\begin{equation*}
a a=a . \tag{3}
\end{equation*}
$$

GS-quasigroups are medial quasigroups; that is, the identity

$$
\begin{equation*}
a b \cdot c d=a c \cdot b d \tag{4}
\end{equation*}
$$

is valid [4].

Figure 1

As a consequence of the identity of mediality, the considered GS-quasigroup (Q, \cdot) satisfies the identities of elasticity and left and right distributivity; that is, we have these identities:

$$
\begin{align*}
& a b \cdot a=a \cdot b a \tag{5}\\
& a \cdot b c=a b \cdot a c \tag{6}\\
& a b \cdot c=a c \cdot b c \tag{7}
\end{align*}
$$

Further, the identities

$$
\begin{gather*}
a(a b \cdot b)=b, \tag{8}\\
(b \cdot b a) a=b, \tag{9}\\
a(a b \cdot c)=b \cdot b c, \tag{10}\\
(c \cdot b a) a=c b \cdot b, \tag{11}\\
a(a \cdot b c)=b(b \cdot a c), \tag{12}\\
(c b \cdot a) a=(c a \cdot b) b \tag{13}
\end{gather*}
$$

and equivalencies

$$
\begin{align*}
& a b=c \Longleftrightarrow a=c \cdot c b \tag{14}\\
& a b=c \Longleftrightarrow b=a c \cdot c \tag{15}
\end{align*}
$$

also hold.
Let \mathbb{C} be the set of points of the Euclidean plane. For any two different points a, b we define $a b=c$ if the point b divides the pair a, c in the ratio of the golden section. In [3], it is proved that (\mathbb{C}, \cdot) is a GS-quasigroup. We will denote that quasigroup by $\mathbb{C}((1 / 2)(1+\sqrt{5}))$ because we have $c=$ $(1 / 2)(1+\sqrt{5})$ if $a=0$ and $b=1$. The figures in this quasigroup $\mathbb{C}((1 / 2)(1+\sqrt{5}))$ can be used for illustration of "geometrical" concepts and relations in any GS-quasigroup.

Figure 2

Figure 3

3. Affine Regular Pentagons and Hexagons in GS-Quasigroups

From now on, let (Q, \cdot) be any GS-quasigroup. The elements of the set Q are said to be points.

In each medial quasigroup, the concept of a parallelogram can be introduced by means of two auxiliary points. In [5], it is proved that the points a, b, c, d are the vertices of a parallelogram denoted by $\operatorname{Par}(a, b, c, d)$, if and only if there are two points p and q such that $p a=q b$ and $p d=q c$. It is also shown that if the statement $\operatorname{Par}(a, b, c, d)$ holds, then the equalities $p a=q b$ and $p d=q c$ are equivalent. In a general GS-quasigroup, the notation of a parallelogram can

be characterized by the equivalency $\operatorname{Par}(a, b, c, d) \Leftrightarrow a \cdot b(c a$. $a)=d($ Figure 4$)$.

In [3], some properties of the quaternary relation Par on the set Q are proved. We will mention only the property which will be used afterwards.

Lemma 1. From $\operatorname{Par}(a, b, c, d)$ and $\operatorname{Par}(c, d, e, f)$ there follows $\operatorname{Par}(a, b, f, e)$.

We will say that b is the midpoint of the pair of points a, c and we write $M(a, b, c)$ if and only if $\operatorname{Par}(a, b, c, b)$ holds. The statement $M(a, b, c)$ holds if and only if $c=b a \cdot b$ [3].

The concept of the affine regular hexagon [6] in a GS-quasigroup is defined in the following way. We will say that ($a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$) is an affine regular hexagon with the vertices $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}$ and the center o and we write $\operatorname{ARH}_{o}\left(a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right)$ if the statements $\operatorname{Par}\left(o, a_{i-1}, a_{i}, a_{i+1}\right)$ hold ($i=1,2,3,4,5,6$), where indexes are taken modulo 6 (Figure 5). The following statement can be proved [6].

Lemma 2. An affine regular hexagon is uniquely determined by any three consecutive vertices.

The points $o, a_{1}, a_{2}, a_{3}, a_{4}$ determine the figure which will be denoted by the symbol $\operatorname{HARH}_{o}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$, "half" of the affine regular hexagon with the center o (Figure 5).

The following results [6] will be very useful.
Lemma 3. Let $n \in \mathbb{N}, n \geq$ 3. If the statements $\operatorname{HARH}_{c_{12}}\left(b_{1}, a_{1}, a_{2}, b_{2}\right), \quad \operatorname{HARH}_{\mathcal{c}_{23}}\left(b_{2}, a_{2}, a_{3}, b_{3}\right), \ldots$, and $\operatorname{HARH}_{c_{n-1, n}}\left(b_{n-1}, a_{n-1}, a_{n}, b_{n}\right)$ are valid, then there exists a unique point $c_{n 1}$ so that the statement HARH $H_{c_{n 1}}\left(b_{n}, a_{n}, a_{1}, b_{1}\right)$ is valid too. (The case for $n=5$ is illustrated in Figure 6.)

Lemma 3 implies the following statement.
Lemma 4. Let $n \in \mathbb{N}, n \geq$ 3. If the statements $\operatorname{ARH}_{c_{12}}\left(b_{1}, a_{1}, a_{2}, b_{2}, d_{21}, d_{12}\right), \operatorname{ARH}_{c_{23}}\left(b_{2}, a_{2}, a_{3}, b_{3}, d_{32}, d_{23}\right)$, $\ldots, A R H_{c_{n-1, n}}\left(b_{n-1}, a_{n-1}, a_{n}, b_{n}, d_{n, n-1}, d_{n-1, n}\right)$ are valid, then there exist unique points $c_{n 1}, d_{n 1}, d_{1 n}$ so that the statement $A R H_{c_{n 1}}\left(b_{n}, a_{n}, a_{1}, b_{1}, d_{1 n}, d_{n 1}\right)$ is valid, too.

The points a, b, c, d successively are said to be the vertices of the golden section trapezoid [7] denoted by GST (a, b, c, d) if the identity $a \cdot a b=d \cdot d c$ holds (Figure 7). It can be proved that the following equivalency $\operatorname{GST}(a, b, c, d) \Leftrightarrow c=a(d b \cdot b)$ holds. The following statement is also valid.

Figure 5

Figure 6

Lemma 5. Any of the three statements $\operatorname{GST}(a, b, c, d)$, $\operatorname{GST}(b, e, f, c)$, and ae $=d f$ is a consequence of the two remaining statements.

In [8], it is proved that any two of the five statements

$$
\begin{array}{lll}
\operatorname{GST}(a, b, c, d), & \operatorname{GST}(b, c, d, e), & \operatorname{GST}(c, d, e, a), \\
\operatorname{GST}(d, e, a, b), & \operatorname{GST}(e, a, b, c) & \tag{16}
\end{array}
$$

imply the remaining statements.
The points a, b, c, d, e successively are said to be the vertices of the affine regular pentagon [8] denoted by $\operatorname{ARP}(a, b, c, d, e)$ if any two (and then all five) of the five statements (16) are valid (Figure 7).

Lemma 6. An affine regular pentagon is uniquely determined by any three of its vertices.

Now, we are going to study the relationships between the previously defined geometrical concepts in a general GSquasigroup.

Lemma 7. If the statements $\operatorname{Par}\left(d_{1}, o, b_{2}, a_{1}\right), \operatorname{Par}\left(d_{2}, o, b_{1}, a_{2}\right)$ are valid, then
(i) the statements $d_{1} b_{1}=d_{2} b_{2}$ and $\operatorname{GST}\left(d_{1}, a_{1}, a_{2}, d_{2}\right)$ are equivalent (Figure 8);
(ii) the statements $d_{1} b_{1}=d_{2} b_{2}$ and $\operatorname{GST}\left(a_{1}, b_{1}, b_{2}, a_{2}\right)$ are equivalent (Figure 8).

Figure 7

Proof. (i) We have the equalities

$$
\begin{equation*}
a_{1}=d_{1} \cdot o\left(b_{2} d_{1} \cdot d_{1}\right), \quad a_{2}=d_{2} \cdot o\left(b_{1} d_{2} \cdot d_{2}\right) \tag{17}
\end{equation*}
$$

and we have to prove the equivalency of the equalities

$$
\begin{equation*}
d_{1} \cdot d_{1} a_{1}=d_{2} \cdot d_{2} a_{2}, \quad d_{1} b_{1}=d_{2} b_{2} . \tag{18}
\end{equation*}
$$

However, we get

$$
\begin{align*}
a_{1} & =d_{1} \cdot o\left(b_{2} d_{1} \cdot d_{1}\right) \stackrel{(6)}{=} d_{1} o \cdot d_{1}\left(b_{2} d_{1} \cdot d_{1}\right) \\
& \stackrel{(5)}{=} d_{1} o \cdot\left(d_{1} \cdot b_{2} d_{1}\right) d_{1} \\
& \stackrel{(11)}{=} d_{1} o \cdot\left(d_{1} b_{2} \cdot b_{2}\right) \stackrel{(4)}{=}\left(d_{1} \cdot d_{1} b_{2}\right) \cdot o b_{2} \tag{19}\\
& \stackrel{(10)}{=} o\left(o d_{1} \cdot b_{2}\right) \cdot o b_{2} \\
& \stackrel{(6)}{=} o \cdot\left(o d_{1} \cdot b_{2}\right) b_{2} \stackrel{(13)}{=} o \cdot\left(o b_{2} \cdot d_{1}\right) d_{1}
\end{align*}
$$

and thus we get

$$
\begin{align*}
& d_{1} \cdot d_{1} a_{1} \\
& \quad=d_{1} \cdot d_{1}\left[o \cdot\left(o b_{2} \cdot d_{1}\right) d_{1}\right] \\
& \stackrel{(6)}{=}\left(d_{1} \cdot d_{1} o\right) \cdot d_{1}\left[d_{1} \cdot\left(o b_{2} \cdot d_{1}\right) d_{1}\right] \tag{20}\\
& \stackrel{(5),(2)}{=}\left(d_{1} \cdot d_{1} o\right) \cdot o b_{2} \stackrel{(4)}{=} d_{1} o \cdot\left(d_{1} o \cdot b_{2}\right)
\end{align*}
$$

and analogously $d_{2} \cdot d_{2} a_{2}=d_{2} o \cdot\left(d_{2} o \cdot b_{1}\right)$. Because of that, it is necessary to prove the equivalency of the equality $d_{1} o$. $\left(d_{1} o \cdot b_{2}\right)=d_{2} o \cdot\left(d_{2} o \cdot b_{1}\right)$ and the equality $b_{2}=\left(d_{2} \cdot d_{1} b_{1}\right) \cdot d_{1} b_{1}$ which is, according to (15), equivalent to $d_{1} b_{1}=d_{2} b_{2}$. As we get

$$
\begin{align*}
& d_{2} o \cdot\left(d_{2} o \cdot b_{1}\right) \\
& \stackrel{(8)}{=} d_{2} o \cdot\left[d_{2} o \cdot d_{2}\left(d_{2} b_{1} \cdot b_{1}\right)\right] \\
& \stackrel{(6)}{=} d_{2}\left[o \cdot o\left(d_{2} b_{1} \cdot b_{1}\right)\right] \\
& \stackrel{(2),(5)}{=}\left[d_{1} \cdot d_{1}\left(d_{2} d_{1} \cdot d_{1}\right)\right]\left[o \cdot o\left(d_{2} b_{1} \cdot b_{1}\right)\right] \tag{21}\\
& \stackrel{(4)}{=} d_{1} o \cdot\left[d_{1} o \cdot\left(d_{2} d_{1} \cdot d_{2} b_{1}\right)\left(d_{1} b_{1}\right)\right] \\
& \stackrel{(6)}{=} d_{1} o \cdot\left[d_{1} o \cdot\left(d_{2} \cdot d_{1} b_{1}\right)\left(d_{1} b_{1}\right)\right],
\end{align*}
$$

Figure 8
these should be equivalent equalities:

$$
\begin{align*}
& d_{1} o \cdot\left(d_{1} o \cdot b_{2}\right)=d_{1} o \cdot\left[d_{1} o \cdot\left(d_{2} \cdot d_{1} b_{1}\right)\left(d_{1} b_{1}\right)\right] \tag{22}\\
& b_{2}=\left(d_{2} \cdot d_{1} b_{1}\right) \cdot d_{1} b_{1}
\end{align*}
$$

which is obvious.
(ii) Firstly, let us prove that from $\operatorname{GST}\left(a_{1}, b_{1}, b_{2}, a_{2}\right)$ there follows $d_{1} b_{1}=d_{2} b_{2}$.

We have the equalities

$$
\begin{align*}
& d_{1}=a_{1} \cdot b_{2}\left(o a_{1} \cdot a_{1}\right) \\
& d_{2}=a_{2} \cdot b_{1}\left(o a_{2} \cdot a_{2}\right) \tag{23}\\
& b_{2}=a_{1}\left(a_{2} b_{1} \cdot b_{1}\right)
\end{align*}
$$

Therefore we get

$$
\begin{aligned}
d_{1} b_{1} & =\left[a_{1} \cdot b_{2}\left(o a_{1} \cdot a_{1}\right)\right] b_{1} \\
& =a_{1}\left[a_{1}\left(a_{2} b_{1} \cdot b_{1}\right) \cdot\left(o a_{1} \cdot a_{1}\right)\right] \cdot b_{1} \\
& \stackrel{(6)}{=}\left[a_{1} \cdot a_{1}\left(a_{2} b_{1} \cdot b_{1}\right)\right]\left[a_{1}\left(o a_{1} \cdot a_{1}\right)\right] \cdot b_{1} \\
& \stackrel{(12)}{=}\left[\left(a_{2} b_{1}\right)\left(a_{2} b_{1} \cdot a_{1} b_{1}\right) \cdot a_{1}\left(o a_{1} \cdot a_{1}\right)\right] b_{1} \\
& \stackrel{(7)}{=}\left[\left(a_{2} \cdot a_{2} a_{1}\right) b_{1} \cdot a_{1}\left(o a_{1} \cdot a_{1}\right)\right] b_{1} \\
& \stackrel{(4)}{=}\left[\left(a_{2} \cdot a_{2} a_{1}\right) a_{1} \cdot b_{1}\left(o a_{1} \cdot a_{1}\right)\right] b_{1} \\
& \stackrel{(9)}{=}\left[a_{2} \cdot b_{1}\left(o a_{1} \cdot a_{1}\right)\right] b_{1} \\
& \stackrel{(6)}{=}\left[a_{2} b_{1} \cdot a_{2}\left(o a_{1} \cdot a_{1}\right)\right] b_{1} \\
& \stackrel{(7)}{=}\left(a_{2} b_{1} \cdot b_{1}\right)\left[a_{2}\left(o a_{1} \cdot a_{1}\right) \cdot b_{1}\right], \\
d_{2} b_{2} & =\left[a_{2} \cdot b_{1}\left(o a_{2} \cdot a_{2}\right)\right] \cdot a_{1}\left(a_{2} b_{1} \cdot b_{1}\right) \\
& \stackrel{(6)}{=}\left[a_{2} b_{1} \cdot a_{2}\left(o a_{2} \cdot a_{2}\right)\right] \cdot a_{1}\left(a_{2} b_{1} \cdot b_{1}\right)
\end{aligned}
$$

$$
\begin{align*}
& \stackrel{(4)}{=}\left(a_{2} b_{1} \cdot a_{1}\right)\left[a_{2}\left(o a_{2} \cdot a_{2}\right) \cdot\left(a_{2} b_{1} \cdot b_{1}\right)\right] \\
& \stackrel{(7)}{=}\left(a_{2} b_{1} \cdot a_{1}\right)\left[a_{2}\left(a_{2} b_{1} \cdot b_{1}\right) \cdot\left(o a_{2} \cdot a_{2}\right)\left(a_{2} b_{1} \cdot b_{1}\right)\right] \\
& \stackrel{(8)}{=}\left(a_{2} b_{1} \cdot a_{1}\right)\left[b_{1} \cdot\left(o a_{2} \cdot a_{2}\right)\left(a_{2} b_{1} \cdot b_{1}\right)\right] \\
& \stackrel{(4)}{=}\left(a_{2} b_{1} \cdot b_{1}\right)\left[a_{1} \cdot\left(o a_{2} \cdot a_{2}\right)\left(a_{2} b_{1} \cdot b_{1}\right)\right] \tag{24}
\end{align*}
$$

so it is necessary to prove the equality

$$
\begin{equation*}
a_{2}\left(o a_{1} \cdot a_{1}\right) \cdot b_{1}=a_{1} \cdot\left(o a_{2} \cdot a_{2}\right)\left(a_{2} b_{1} \cdot b_{1}\right) \tag{25}
\end{equation*}
$$

Really, we have

$$
\begin{align*}
& a_{1} \cdot\left(o a_{2} \cdot a_{2}\right)\left(a_{2} b_{1} \cdot b_{1}\right) \\
& \stackrel{(9))(11)}{=}\left(a_{1} \cdot a_{1} b_{1}\right) b_{1} \cdot\left[\left(o \cdot a_{2} b_{1}\right) b_{1} \cdot\left(a_{2} b_{1} \cdot b_{1}\right)\right] \\
& \stackrel{(7)}{=}\left[\left(a_{1} \cdot a_{1} b_{1}\right) \cdot\left(o \cdot a_{2} b_{1}\right)\left(a_{2} b_{1}\right)\right] b_{1} \\
& \stackrel{(4)}{=}\left[a_{1}\left(o \cdot a_{2} b_{1}\right) \cdot\left(a_{1} b_{1} \cdot a_{2} b_{1}\right)\right] b_{1} \\
& \stackrel{(7)}{=}\left[a_{1}\left(o \cdot a_{2} b_{1}\right) \cdot\left(a_{1} a_{2} \cdot b_{1}\right)\right] b_{1} \\
& \stackrel{(4)}{=}\left[\left(a_{1} \cdot a_{1} a_{2}\right) \cdot\left(o \cdot a_{2} b_{1}\right) b_{1}\right] b_{1} \\
& \stackrel{(11)}{=}\left(a_{1} \cdot a_{1} a_{2}\right)\left(o a_{2} \cdot a_{2}\right) \cdot b_{1} \\
& \stackrel{(10)}{=}\left[a_{2}\left(a_{2} a_{1} \cdot a_{2}\right) \cdot\left(o a_{2} \cdot a_{2}\right)\right] b_{1} \tag{26}\\
& \stackrel{(5)}{=}\left[\left(a_{2} \cdot a_{2} a_{1}\right) a_{2} \cdot\left(o a_{2} \cdot a_{2}\right)\right] b_{1} \\
& \stackrel{(7)}{=}\left[\left(a_{2} \cdot a_{2} a_{1}\right)\left(o a_{2}\right) \cdot a_{2}\right] b_{1} \\
& \stackrel{(4)}{=}\left[\left(a_{2} o\right)\left(a_{2} a_{1} \cdot a_{2}\right) \cdot a_{2}\right] b_{1} \\
& \stackrel{(5)}{=}\left[\left(a_{2} o\right)\left(a_{2} \cdot a_{1} a_{2}\right) \cdot a_{2}\right] b_{1} \\
& \stackrel{(6)}{=}\left[a_{2}\left(o \cdot a_{1} a_{2}\right) \cdot a_{2}\right] b_{1} \\
& \stackrel{(5)}{=}\left[a_{2} \cdot\left(o \cdot a_{1} a_{2}\right) a_{2}\right] b_{1} \\
& \stackrel{(11)}{=} a_{2}\left(o a_{1} \cdot a_{1}\right) \cdot b_{1} \cdot \\
&
\end{align*}
$$

Now, we are going to prove that $d_{1} b_{1}=d_{2} b_{2}$ implies $\operatorname{GST}\left(a_{1}, b_{1}, b_{2}, a_{2}\right)$. According to (i), from the hypotheses of (ii), there follows the statement $\operatorname{GST}\left(d_{1}, a_{1}, a_{2}, d_{2}\right)$ and, from this statement and the equality $d_{1} b_{1}=d_{2} b_{2}$, according to Lemma 5, there follows the statement $\operatorname{GST}\left(a_{1}, b_{1}, b_{2}, a_{2}\right)$.

Lemma 8. If the statements $\operatorname{HARH}_{o}\left(c_{1}, b_{1}, b_{2}, c_{2}\right), \operatorname{HARH}_{d_{1}}$ $\left(a_{1}, b_{1}, c_{1}, e_{1}\right)$, and $\operatorname{HARH}_{d_{2}}\left(a_{2}, b_{2}, c_{2}, e_{2}\right)$ are valid, then the statement $\operatorname{GST}\left(a_{1}, b_{1}, b_{2}, a_{2}\right)$ and equality $d_{1} b_{1}=d_{2} b_{2}$ are equivalent (Figure 9).

Proof. The assumptions of the lemma imply the statements $\operatorname{Par}\left(o, b_{2}, b_{1}, c_{1}\right), \operatorname{Par}\left(o, b_{1}, b_{2}, c_{2}\right), \operatorname{Par}\left(b_{1}, c_{1}, d_{1}, a_{1}\right)$, and

Figure 9
$\operatorname{Par}\left(b_{2}, c_{2}, d_{2}, a_{2}\right)$, and then, according to Lemma 1, parallelo$\operatorname{grams} \operatorname{Par}\left(o, b_{2}, a_{1}, d_{1}\right), \operatorname{Par}\left(o, b_{1}, a_{2}, d_{2}\right)$ follow from the first and the third, and the second and the fourth parallelogram, respectively. Owing to these last statements, according to Lemma 7(ii), statements $\operatorname{GST}\left(a_{1}, b_{1}, b_{2}, a_{2}\right)$ and $d_{1} b_{1}=d_{2} b_{2}$ are equivalent.

Lemma 9. With the assumption $\operatorname{ARH}\left(a_{b}, b_{a}, b_{c}, c_{b}, c_{a}, a_{c}\right)$, the statement $f^{\prime} a_{b}=e^{\prime} a_{c}$ follows from the equalities $d^{\prime} b_{c}=f^{\prime} b_{a}$, $d^{\prime} c_{b}=e^{\prime} c_{a}$ (Figure 10).

Proof. Supposing that a more precise statement $\operatorname{ARH}_{o}\left(a_{b}\right.$, $\left.b_{a}, b_{c}, c_{b}, c_{a}, a_{c}\right)$ is valid, so the statements $\operatorname{Par}\left(c_{b}, c_{a}, o, b_{c}\right)$ and $\operatorname{Par}\left(b_{a}, o, a_{c}, a_{b}\right)$ are valid. From the statements $\operatorname{Par}\left(c_{b}, c_{a}, o, b_{c}\right), d^{\prime} c_{b}=e^{\prime} c_{a}$ there follows $d^{\prime} b_{c}=e^{\prime} o$, which together with $d^{\prime} b_{c}=f^{\prime} b_{a}$ gives the equality $f^{\prime} b_{a}=e^{\prime} o$, and this statement and the statement $\operatorname{Par}\left(b_{a}, o, a_{c}, a_{b}\right)$ imply the equality $f^{\prime} a_{b}=e^{\prime} a_{c}$.

Theorem 10. The statement $\operatorname{ARP}\left(a_{b}, a_{f^{\prime}}, a_{d}, a_{e^{\prime}}, a_{c}\right)$ follows from the statements $\operatorname{ARH}\left(a_{b}, b_{a}, b_{c}, c_{b}, c_{a}, a_{c}\right), \operatorname{ARH}\left(b_{c}, b_{d^{\prime}}\right.$, $\left.d_{b}^{\prime}, d_{c}^{\prime}, c_{d^{\prime}}, c_{b}\right), \operatorname{ARP}\left(b_{c}, b_{d^{\prime}}, b_{e}, b_{f^{\prime}}, b_{a}\right), \quad \operatorname{ARP}\left(c_{b}, c_{d^{\prime}}, c_{f}, c_{e^{\prime}}, c_{a}\right)$, $\operatorname{ARH}\left(b_{a}, b_{f^{\prime}}, f_{b}^{\prime}, f_{a}^{\prime}, a_{f^{\prime}}, a_{b}\right)$, and $\operatorname{ARH}\left(c_{a}, c_{e^{\prime}}, e_{c}^{\prime}, e_{a}^{\prime}, a_{e^{\prime}}, a_{c}\right)$ (Figure 11).

Proof. It is sufficient to prove that the statement $\operatorname{GST}\left(a_{f^{\prime}}, a_{b}, a_{c}, a_{e^{\prime}}\right)$ follows from the statements $\operatorname{ARH}_{o}\left(a_{b}\right.$, $\left.b_{a}, b_{c}, c_{b}, c_{a}, a_{c}\right), \operatorname{HARH}_{d^{\prime}}\left(b_{d^{\prime}}, b_{c}, c_{b}, c_{d^{\prime}}\right), \operatorname{GST}\left(b_{d^{\prime}}, b_{c}, b_{a}, b_{f^{\prime}}\right)$, $\operatorname{GST}\left(c_{d^{\prime}}, c_{b}, c_{a}, c_{e^{\prime}}\right), \operatorname{HARH}_{f^{\prime}}\left(b_{f^{\prime}}, b_{a}, a_{b}, a_{f^{\prime}}\right)$, and $\operatorname{HARH}_{e^{\prime}}\left(c_{e^{\prime}}\right.$, $\left.c_{a}, a_{c}, a_{e^{\prime}}\right)$. Firstly, according to Lemma 8 , the equality $d^{\prime} b_{c}=f^{\prime} b_{a}$ follows from the statements $\operatorname{HARH}_{o}\left(c_{b}, b_{c}, b_{a}, a_{b}\right)$, $\operatorname{HARH}_{d^{\prime}}\left(b_{d^{\prime}}, b_{c}, c_{b}, c_{d^{\prime}}\right), \operatorname{HARH}_{f^{\prime}}\left(b_{f^{\prime}}, b_{a}, a_{b}, a_{f^{\prime}}\right)$, and GST $\left(b_{d^{\prime}}, b_{c}, b_{a}, b_{f^{\prime}}\right)$. Owing to the same lemma, the equality $d^{\prime} c_{b}=e^{\prime} c_{a}$ follows from the statements $\operatorname{HARH}_{o}\left(b_{c}, c_{b}, c_{a}, a_{c}\right)$, $\operatorname{HARH}_{d^{\prime}}\left(c_{d^{\prime}}, c_{b}, b_{c}, b_{d^{\prime}}\right), \operatorname{HARH}_{e^{\prime}}\left(c_{e^{\prime}}, c_{a}, a_{c}, a_{e^{\prime}}\right)$, and $\operatorname{GST}\left(c_{d^{\prime}}\right.$, $c_{b}, c_{a}, c_{e^{\prime}}$).

Now, all requirements of Lemma 9 are satisfied and the equality $f^{\prime} a_{b}=e^{\prime} a_{c}$ follows accordingly.

Finally, according to Lemma 8, the statements $\operatorname{HARH}_{o}\left(b_{a}, a_{b}, a_{c}, c_{a}\right), \operatorname{HARH}_{f^{\prime}}\left(a_{f^{\prime}}, a_{b}, b_{a}, b_{f^{\prime}}\right)$, and $\operatorname{HARH}_{e^{\prime}}$ ($a_{e^{\prime}}, a_{c}, c_{a}, c_{e^{\prime}}$) and equality $f^{\prime} a_{b}=e^{\prime} a_{c}$ imply the statement $\operatorname{GST}\left(a_{f^{\prime}}, a_{b}, a_{c}, a_{e}^{\prime}\right)$.

Figure 10

Figure 11

Figure 12

Figure 13

4. Construction of an Affine Fullerene C_{60} in a GS-Quasigroup

In this section, we are going to construct an affine fullerene C_{60} in a general GS-quasigroup by means of the previously discovered statements about affine regular pentagons and hexagons in a general GS-quasigroup.

Theorem 11. An affine fullerene C_{60} can be constructed in each GS-quasigroup.

Proof. For the sake of clarity, each step of the proof is precisely presented in figures in the GS-quasigroup $\mathbb{C}((1 / 2)(1+\sqrt{5}))$ and each sequence of the proof of the theorem can be followed on the Schlegel diagram (Figure 12).

Let us start with the four given points $b_{a}, b_{c}, c_{b}, b_{d^{\prime}}$. The affine regular hexagons $\operatorname{ARH}\left(a_{b}, b_{a}, b_{c}, c_{b}, c_{a}, a_{c}\right)$ and $\operatorname{ARH}\left(b_{c}, b_{d^{\prime}}, d_{b}^{\prime}, d_{c}^{\prime}, c_{d^{\prime}}, c_{b}\right)$ can be constructed according to Lemma 2.

Owing to Lemma 6, affine regular pentagons $\operatorname{ARP}\left(b_{c}\right.$, $\left.b_{d^{\prime}}, b_{e}, b_{f^{\prime}}, b_{a}\right)$ and $\operatorname{ARP}\left(c_{b}, c_{d}^{\prime}, c_{f}, c_{e^{\prime}}, c_{a}\right)$ can be obtained. If we apply Lemma 2 again, we can get $\operatorname{ARH}\left(b_{a}, b_{f l}, f_{b}^{\prime}, f_{a}^{\prime}, c_{f^{\prime}}, a_{b}\right)$ and $\operatorname{ARH}\left(c_{a}, c_{e^{\prime}}, e_{c}^{\prime}, e_{a}^{\prime}, a_{e^{\prime}}, a_{c}\right)$.

According to Theorem 10, the existence of these obtained affine regular hexagons and affine regular pentagons around an affine regular hexagon will result in the existence of the affine regular pentagon $\operatorname{ARP}\left(a_{b}, a_{f^{\prime}}, a_{d}, a_{e^{\prime}}, a_{c}\right)$ (Figure 13).

According to Lemma 2, the already obtained points $a_{d}, a_{f^{\prime}}, f_{a}^{\prime}$ uniquely determine $\operatorname{ARH}\left(d_{a}, a_{d}, a_{f^{\prime}}, f_{a}^{\prime}, f_{d}^{\prime}, d_{f^{\prime}}\right)$ and then, because of Lemma 4 , the statements $\operatorname{ARH}\left(d_{a}, a_{d}\right.$, $\left.a_{f^{\prime}}, f_{a}^{\prime}, f_{d}^{\prime}, d_{f^{\prime}}\right), \operatorname{ARH}\left(f_{a}^{\prime}, a_{f^{\prime}}, a_{b}, b_{a}, b_{f^{\prime}}, f_{b}^{\prime}\right), \operatorname{ARH}\left(b_{a}, a_{b}, a_{c}\right.$, $\left.c_{a}, c_{b}, b_{c}\right)$, and $\operatorname{ARH}\left(c_{a}, a_{c}, a_{e^{\prime}}, e_{a}^{\prime}, e_{c}^{\prime}, c_{e^{\prime}}\right)$ imply the statement $\operatorname{ARH}\left(e_{a}^{\prime}, a_{e^{\prime}}, a_{d}, d_{a}, d_{e^{\prime}}, e_{d}^{\prime}\right)$. In the same way, the statements $\operatorname{ARH}\left(e_{b}, b_{e}, b_{d^{\prime}}, d_{b}^{\prime}, d_{e}^{\prime}, e_{d^{\prime}}\right), \operatorname{ARH}\left(d_{b}^{\prime}, b_{d^{\prime}}, b_{c}, c_{b}, c_{d^{\prime}}, d_{c}^{\prime}\right), \operatorname{ARH}$ $\left(c_{b}, b_{c}, b_{a}, a_{b}, a_{c}, c_{a}\right)$, and $\operatorname{ARH}\left(a_{b}, b_{a}, b_{f^{\prime}}, f_{b}^{\prime}, f_{a}^{\prime}, a_{f^{\prime}}\right)$ imply $\operatorname{ARH}\left(f_{b}^{\prime}, b_{f^{\prime}}, b_{e}, e_{b}, e_{f^{\prime}}, f_{e}^{\prime}\right)$ and, analogously, the statements $\operatorname{ARH}\left(f_{c}, c_{f}, c_{e^{\prime}}, e_{c}^{\prime}, e_{f}^{\prime}, f_{e^{\prime}}\right), \operatorname{ARH}\left(e_{c}^{\prime}, c_{e^{\prime}}, c_{a}, a_{c}, a_{e^{\prime}}, e_{a}^{\prime}\right), \operatorname{ARH}\left(a_{c}\right.$, $\left.c_{a}, c_{b}, b_{c}, b_{a}, a_{b}\right)$, and $\operatorname{ARH}\left(b_{c}, c_{b}, c_{d^{\prime}}, d_{c}^{\prime}, d_{b}^{\prime}, b_{d^{\prime}}\right) \operatorname{imply} \operatorname{ARH}\left(d_{c}^{\prime}\right.$, $\left.c_{d^{\prime}}, c_{f}, f_{c}, f_{d^{\prime}}, d_{f}^{\prime}\right)$.

Figure 14

Figure 15

This consideration is presented in Figure 14.
These two precisely described procedures will also be used later. It will also be denoted which figure is used for the geometrical presentation of the obtained implications in the GS-quasigroup $\mathbb{C}((1 / 2)(1+\sqrt{5}))$.

Now, according to Theorem 10, the statements ARH $\left(d_{b}^{\prime}, b_{d^{\prime}}, b_{c}, c_{b}, c_{d^{\prime}}, d_{c}^{\prime}\right), \quad \operatorname{ARH}\left(b_{c}, b_{a}, a_{b}, a_{c}, c_{a}, c_{b}\right), \quad \operatorname{ARP}\left(b_{c}, b_{a}\right.$, $\left.b_{f^{\prime}}, b_{e}, b_{d^{\prime}}\right), \quad \operatorname{ARP}\left(c_{b}, c_{a}, c_{e^{\prime}}, c_{f}, c_{d^{\prime}}\right), \quad \operatorname{ARH}\left(b_{d^{\prime}}, b_{e}, e_{b}, e_{d^{\prime}}, d_{e}^{\prime}\right.$, $\left.d_{b}^{\prime}\right)$, and $\operatorname{ARH}\left(c_{d^{\prime}}, c_{f}, f_{c}, f_{d^{\prime}}, d_{f}^{\prime}, d_{c}^{\prime}\right)$ imply $\operatorname{ARP}\left(d_{b}^{\prime}, d_{e}^{\prime}\right.$, $\left.d_{a^{\prime}}^{\prime}, d_{f}^{\prime}, d_{c}^{\prime}\right)$. The statements $\operatorname{ARP}\left(e_{c}^{\prime}, e_{f}^{\prime}, e_{b^{\prime}}^{\prime}, e_{d}^{\prime}, e_{a}^{\prime}\right)$ and $\operatorname{ARP}\left(f_{a}^{\prime}, f_{d}^{\prime}, f_{c^{\prime}}^{\prime}, f_{e}^{\prime}, f_{b}^{\prime}\right)$ can be obtained similarly (Figure 15).

Thanks to Lemma 4, the statements $\operatorname{ARH}\left(e_{d^{\prime}}\right.$, $\left.d_{e}^{\prime}, d_{b}^{\prime}, b_{d^{\prime}}, b_{e}, e_{b}\right), \operatorname{ARH}\left(b_{d^{\prime}}, d_{b}^{\prime}, d_{c}^{\prime}, c_{d^{\prime}}, c_{b}, b_{c}\right), \operatorname{ARH}\left(c_{d^{\prime}}, d_{c}^{\prime}, d_{f}^{\prime}\right.$, $\left.f_{d^{\prime}}, f_{c}, c_{f}\right)$, and $\operatorname{ARH}\left(f_{d^{\prime}}, d_{f}^{\prime}, d_{a^{\prime}}^{\prime}, a_{d^{\prime}}^{\prime}, a_{f}^{\prime}, f_{a^{\prime}}\right)$ imply $\operatorname{ARH}\left(a_{d^{\prime}}^{\prime}\right.$, $\left.d_{a^{\prime}}^{\prime}, d_{e}^{\prime}, e_{d^{\prime}}, e_{a^{\prime}}, a_{e}^{\prime}\right)$. We can find the affine regular hexagons $\operatorname{ARH}\left(b_{e^{\prime}}^{\prime}, e_{b^{\prime}}^{\prime}, e_{f}^{\prime}, f_{e^{\prime}}, f_{b^{\prime}}, b_{f}^{\prime}\right)$ and $\operatorname{ARH}\left(c_{f^{\prime}}^{\prime}, f_{c^{\prime}}^{\prime}, f_{d}^{\prime}, d_{f^{\prime}}, d_{c^{\prime}}, c_{d}^{\prime}\right)$ in the same way (Figure 16).

If we apply Theorem 10, we will discover three new affine regular pentagons (Figure 17). The statement $\operatorname{ARP}\left(d_{f^{\prime}}, d_{c^{\prime}}, d_{b^{\prime}}, d_{e^{\prime}}, d_{a}\right)$ follows from $\operatorname{ARH}\left(d_{f^{\prime}}, f_{d}^{\prime}, f_{a}^{\prime}, a_{f^{\prime}}\right.$, $\left.a_{d}, d_{a}\right), \operatorname{ARH}\left(f_{a}^{\prime}, f_{b}^{\prime}, b_{f^{\prime}}, b_{a}, a_{b}, a_{f^{\prime}}\right), \operatorname{ARP}\left(f_{a}^{\prime}, f_{b}^{\prime}, f_{e}^{\prime}, f_{c^{\prime}}^{\prime}, f_{d}^{\prime}\right)$, $\operatorname{ARP}\left(a_{f^{\prime}}, a_{b}, a_{c}, a_{e^{\prime}}, a_{d}\right), \quad \operatorname{ARH}\left(f_{d}^{\prime}, f_{c^{\prime}}^{\prime}, c_{f^{\prime}}^{\prime}, c_{d}^{\prime}, d_{c^{\prime}}, d_{f^{\prime}}\right), \quad$ and

Figure 16

Figure 17

Figure 18
$\operatorname{ARH}\left(a_{d}, a_{e^{\prime}}, e_{a}^{\prime}, e_{d}^{\prime}, d_{e^{\prime}}, d_{a}\right)$, and similarly we get ARP $\left(e_{d^{\prime}}, e_{a^{\prime}}, e_{c^{\prime}}, e_{f^{\prime}}, e_{b}\right)$ and $\operatorname{ARP}\left(f_{e^{\prime}}, f_{b^{\prime}}, f_{a^{\prime}}, f_{d^{\prime}}, f_{c}\right)$.

Now, we are in a position to use Lemma 4 whose application gives the statements about three new affine regular hexagons (Figure 18). The statements $\operatorname{ARH}\left(b_{d}^{\prime}, d_{b^{\prime}}, d_{e^{\prime}}, e_{d}^{\prime}, e_{b^{\prime}}^{\prime}, b_{e^{\prime}}^{\prime}\right), \operatorname{ARH}\left(e_{d}^{\prime}, d_{e^{\prime}}, d_{a}, a_{d}, a_{e^{\prime}}, e_{a}^{\prime}\right), \operatorname{ARH}$ $\left(a_{d}, d_{a}, d_{f^{\prime}}, f_{d}^{\prime}, f_{a}^{\prime}, a_{f^{\prime}}\right)$, and $\operatorname{ARH}\left(f_{d}^{\prime}, d_{f^{\prime}}, d_{c^{\prime}}, c_{d}^{\prime}, c_{f^{\prime}}^{\prime}, f_{c^{\prime}}^{\prime}\right)$ imply $\operatorname{ARH}\left(c_{d}^{\prime}, d_{c^{\prime}}, d_{b^{\prime}}, b_{d}^{\prime}, b_{c^{\prime}}^{\prime}, c_{b^{\prime}}^{\prime}\right)$. Similarly, we can get

Figure 19
the affine regular hexagons $\operatorname{ARH}\left(a_{e}^{\prime}, e_{a^{\prime}}, e_{c^{\prime}}, c_{e}^{\prime}, c_{a^{\prime}}^{\prime}, a_{c^{\prime}}^{\prime}\right)$ and $\operatorname{ARH}\left(b_{f}^{\prime}, f_{b^{\prime}}, f_{a^{\prime}}, a_{f}^{\prime}, a_{b^{\prime}}^{\prime}, b_{a^{\prime}}^{\prime}\right)$.

If we apply Theorem 10, we will obtain the three new affine regular pentagons $\operatorname{ARP}\left(a_{e}^{\prime}, a_{c^{\prime}}^{\prime}, a_{b^{\prime}}^{\prime}, a_{f}^{\prime}, a_{d^{\prime}}^{\prime}\right)$, $\operatorname{ARP}\left(b_{f}^{\prime}, b_{a^{\prime}}^{\prime}, b_{c^{\prime}}^{\prime}, b_{d}^{\prime}, b_{e^{\prime}}^{\prime}\right)$, and $\operatorname{ARP}\left(c_{d}^{\prime}, c_{b^{\prime}}^{\prime}, c_{a^{\prime}}^{\prime}, c_{e}^{\prime}, c_{f^{\prime}}^{\prime}\right)$ (Figure 19).

Finally, the application of Lemma 3 will allow us to close the complete structure. We have to prove that the points $b_{a^{\prime}}^{\prime}, a_{b^{\prime}}^{\prime}, a_{c^{\prime}}^{\prime}, c_{a^{\prime}}^{\prime}, c_{b^{\prime}}^{\prime}, b_{c^{\prime}}^{\prime}$ are the vertices of an affine regular hexagon.

By applying Lemma 3 we get that the statements $\operatorname{HARH}\left(c_{a^{\prime}}^{\prime}, a_{c^{\prime}}^{\prime}, a_{e}^{\prime}, e_{a^{\prime}}\right), \quad \operatorname{HARH}\left(e_{a^{\prime}}, a_{e}^{\prime}, a_{d^{\prime}}^{\prime}, d_{a^{\prime}}^{\prime}\right), \operatorname{HARH}\left(d_{a^{\prime}}^{\prime}\right.$, $\left.a_{d^{\prime}}^{\prime}, a_{f}^{\prime}, f_{a^{\prime}}\right)$, and $\operatorname{HARH}\left(f_{a^{\prime}}, a_{f}^{\prime}, a_{b^{\prime}}^{\prime}, b_{a^{\prime}}^{\prime}\right)$ imply $\operatorname{HARH}\left(b_{a^{\prime}}^{\prime}, a_{b^{\prime}}^{\prime}\right.$, $\left.a_{c^{\prime}}^{\prime}, c_{a^{\prime}}^{\prime}\right)$.

Analogously, we have that $\operatorname{HARH}\left(a_{b^{\prime}}^{\prime}, b_{a^{\prime}}^{\prime}, b_{f}^{\prime}, f_{b^{\prime}}\right)$, HARH $\left(f_{b^{\prime}}, b_{f}^{\prime}, b_{e^{\prime}}^{\prime}, e_{b^{\prime}}^{\prime}\right), \operatorname{HARH}\left(e_{b^{\prime}}^{\prime}, b_{e^{\prime}}^{\prime}, b_{d}^{\prime}, d_{b^{\prime}}\right)$, and $\operatorname{HARH}\left(d_{b^{\prime}}, b_{d}^{\prime}\right.$, $\left.b_{c^{\prime}}^{\prime}, c_{b^{\prime}}^{\prime}\right)$ imply $\operatorname{HARH}\left(c_{b^{\prime}}^{\prime}, b_{c^{\prime}}^{\prime}, b_{a^{\prime}}^{\prime}, a_{b^{\prime}}^{\prime}\right)$, and $\operatorname{HARH}\left(b_{c^{\prime}}^{\prime}, c_{b^{\prime}}^{\prime}, c_{d}^{\prime}\right.$, $\left.d_{c^{\prime}}\right), \operatorname{HARH}\left(d_{c^{\prime}}, c_{d}^{\prime}, c_{f^{\prime}}^{\prime}, f_{c^{\prime}}^{\prime}\right), \quad \operatorname{HARH}\left(f_{c^{\prime}}^{\prime}, c_{f^{\prime}}^{\prime}, c_{e}^{\prime}, e_{c^{\prime}}^{\prime}\right)$, and $\operatorname{HARH}\left(e_{c^{\prime}}, c_{e}^{\prime}, c_{a^{\prime}}^{\prime}, a_{c^{\prime}}^{\prime}\right)$ imply $\operatorname{HARH}\left(a_{c^{\prime}}^{\prime}, c_{a^{\prime}}^{\prime}, c_{b^{\prime}}^{\prime}, b_{c^{\prime}}^{\prime}\right)$.

These obtained three halves of affine regular hexagons $\operatorname{HARH}\left(b_{a^{\prime}}^{\prime}, a_{b^{\prime}}^{\prime}, a_{c^{\prime}}^{\prime}, c_{a^{\prime}}^{\prime}\right), \operatorname{HARH}\left(c_{b^{\prime}}^{\prime}, b_{c^{\prime}}^{\prime}, b_{a^{\prime}}^{\prime}, a_{b^{\prime}}^{\prime}\right)$, and HARH $\left(a_{c^{\prime}}^{\prime}, c_{a^{\prime}}^{\prime}, c_{b^{\prime}}^{\prime}, b_{c^{\prime}}^{\prime}\right)$ determine the affine regular hexagon $\operatorname{ARH}\left(b_{a^{\prime}}^{\prime}, a_{b^{\prime}}^{\prime}, a_{c^{\prime}}^{\prime}, c_{a^{\prime}}^{\prime}, c_{b^{\prime}}^{\prime}, b_{c^{\prime}}^{\prime}\right)$ (Figure 19). This completes the proof of the theorem.

Thus, we have proved that any affine fullerene C_{60} can be obtained only by applying the golden section.

Conflict of Interests

The authors declare that there is no conflict of interests regarding the publication of this paper.

Acknowledgment

This work is supported by the Ministry of Science, Education and Sports, Republic of Croatia, through Research Grant no. 037-0372785-2759.

References

[1] P. W. Fowler and D. Manolopoulos, An Atlas of Fullerenes, Clarendon Press, Oxford, UK, 1995.
[2] H. W. Kroto, J. R. Heath, S. C. O'Brien, R. F. Curl, and R. E. Smalley, " C_{60} : buckminsterfullerene," Nature, vol. 318, no. 6042, pp. 162-163, 1985.
[3] V. Volenec, "GS-quasigroups," Časopis pro Pěstování Matematiky, vol. 115, no. 3, pp. 307-318, 1990.
[4] Z. Kolar-Begović, "A short direct characterization of GSquasigroups," Czechoslovak Mathematical Journal, vol. 61, no. 1, pp. 3-6, 2011.
[5] V. Volenec, "Geometry of medial quasigroups," Rad Jugoslavenske Akademije Znanosti i Umjetnosti, no. 421, pp. 79-91, 1986.
[6] V. Volenec, Z. Kolar-Begović, and R. Kolar-Šuper, "Affineregular hexagons in the parallelogram space," Quasigroups and Related Systems, vol. 19, no. 2, pp. 353-358, 2011.
[7] V. Volenec and Z. Kolar, "GS-trapezoids in GS-quasigroups," Mathematical Communications, vol. 7, no. 2, pp. 143-158, 2002.
[8] V. Volenec and Z. Kolar-Begović, "Affine regular pentagons in GS-quasigroups," Quasigroups and Related Systems, vol. 12, pp. 103-112, 2004.

Advances in Operations Research $-$

The Scientific World Journal

Advances in
Decision Sciences
= -

Hindawi

Submit your manuscripts at
http://www.hindawi.com

Mathematical Problems in Engineering

Journal of Function Spaces
$\underline{=}$

International Journal of Differential Equations 5

