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The framework as well as the particular algorithms of pattern recognition process is widely adopted in structural health monitoring
(SHM). However, as a part of the overall process of knowledge discovery from data bases (KDD), the results of pattern recognition
are only changes and patterns of changes of data features. In this paper, based on the similarity between KDD and SHM and
considering the particularity of SHM problems, a four-step framework of SHM is proposed which extends the final goal of SHM
from detecting damages to extracting knowledge to facilitate decision making. The purposes and proper methods of each step of
this framework are discussed. To demonstrate the proposed SHM framework, a specific SHM method which is composed by the
second order structural parameter identification, statistical control chart analysis, and system reliability analysis is then presented.
To examine the performance of this SHM method, real sensor data measured from a lab size steel bridge model structure are used.
The developed four-step framework of SHM has the potential to clarify the process of SHM to facilitate the further development of

SHM techniques.

1. Introduction

During the last two to three decades, many science in various
areas have moved from a situation of a lack of (electronically)
readable information into a situation of abundant data. The
problem of extracting information from large masses of
data became more and more important. Also knowledge
became a very precious commodity for data application.
Finding useful information or patterns in raw data is a
rapidly growing area of research and application that builds
on techniques and theories from many fields, including
statistics, databases, pattern recognition and learning, data
visualization, uncertainty modeling, optimization, and high
performance computing. Knowledge discovery in data bases
(KDD) concerns several research areas including data pre-
processing, data modeling and feature extraction, pattern
recognition as well as information visualization, and so
forth [1]. The KDD process generally involves four steps:
data preprocessing, transformation/feature extraction, data
mining, and interpretation/evaluation [2]. The first three
steps of the whole process are a pattern recognition problem
whose results are generally formal patterns, such as clusters

and sets of rules. In order to become knowledge or to be
useful to human decision makers, they have to be interpreted
with respect to the problem considered [1].

In the meanwhile, the structural health monitoring tech-
niques are attracting more and more interests in civil engi-
neering. The process of implementing a damage detection
strategy based on sensor measurements (most generally,
vibration measurements) for infrastructure is referred to
as structural health monitoring (SHM) [3]. This definition
clearly shows that SHM can be seen as a process to extract
knowledge regarding structural working state from vibration
measurements. Therefore, SHM problem has some similari-
ties with KDD. In most recent years, some concepts of KDD
especially the concept of statistical pattern recognition have
been applied to SHM processes and several advanced tech-
niques of pattern recognition can be found the applications
in SHM applications.

In [3], the authors state “the SHM problem is fundamen-
tally one of statistical pattern recognition.” They discussed
SHM as a four-part process: (1) operational evaluation, (2)
data acquisition, fusion, and cleansing, (3) feature extraction
and information condensation, and (4) statistical model



development for feature discrimination. In the meanwhile,
the specific pattern recognition techniques, including neural
network, support vector machines, statistical control chart
analysis, and genetic algorithms have been used for structural
damage assessment [3-8].

The successful applications of the pattern recognition
concept as well as particular pattern recognition methods
have enhanced the advance of SHM research. However, close
comparison of KDD with SHM problem reveals the following
three insufficiencies.

(1) The importance of interpretation/evaluation step of
KDD is omitted in the current SHM framework.
As discussed, the pattern recognition is not a com-
plete knowledge discovery process without inter-
pretation/evaluation step since its results are only
information regarding the pattern of the data. If
the SHM problems are analyzed with only pattern
recognition techniques, the final results are the infor-
mation regarding system changes and the patterns of
these changes. However, SHM is not a pure damage
detection problem. Information regarding the work-
ing state of structural system should be provided to
facilitate the decision making about if/what actions
should be taken to repair the structure.

(2) Although SHM can be seen as a KDD problem,
SHM problems have their own particularities. The
knowledge to be extracted in KDD is the artifi-
cial “intelligence” such as implication or correlation
between data. In SHM, the knowledge we are heading
to is not correlation between data but the state of
the structure. Therefore, the importance of correlating
data with structure states should be emphasized in the
SHM framework which is not an issue in KDD based
on purely statistical analysis.

(3) Some pattern recognition methods have their limita-
tions to be applied on SHM. Some pattern recognition
methods are based on the clearg definition of patterns.
However, in SHM, data from damaged systems are
generally not available. It is not possible to predefine
the patterns of damages without sufficient measure-
ments. These challenges are supplemented by many
practical issues associated with making accurate and
repeatable dynamic response measurements at a lim-
ited number of locations on complex structures often
operating in adverse environments.

To address these issues, this paper starts from the discussion
of SHM problems on the context of the knowledge discovery.
Adopting the KDD concept, in the meanwhile, considering
the particularities of SHM problems, we propose a four-step
framework of SHM: data preprocessing, feature extraction,
feature analysis, and system evaluation. The SHM framework
discussed in this paper assumes the response measure-
ments are available. The data transmission, management, and
retrieval in SHM system are out of the range of this paper. We
shall then present a specific SHM method which is composed
by second-order structural parameter identification as feature
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extraction method, statistical control chart analysis of identi-
fied stiffness for feature analysis step, and system reliability
analysis based on identified stiffness for structural system
evaluation. To demonstrate the performance of the proposed
SHM method, real sensor data measured from a lab size steel
bridge model structure were used in this study. Compared
with the specific method proposed here, the developed four-
step process of SHM will provide a more general framework
for SHM applications in practices.

2. Knowledge of SHM

Knowledge is defined as the fact or condition of knowing
something. To understand what is the specific “knowledge”
that the SHM method should provide, it has to be interpreted
with respect to the goals of SHM. SHM is aimed at facilitating
the decision maker on the structural maintenance and repair.
Usually, the goal of SHM methods can be categorized into
four stages: (1) detecting the existence of damage, (2) locating
the damage, (3) determining the severity of the damage,
and (4) evaluating the remaining capacity of the structure.
Therefore, the output of SHM methods should be the facts
of structural damages and the damaged structure system.

Another important requirement of “knowledge” is that
it should be directly readable and usable. Since the final
knowledge users are the decision makers in SHM, in other
words, the results of SHM methods have to be translated into
the language of the decision makers by directly related to
if/what actions should be taken.

In current practices, most SHM methods involve two
steps. In first step, the data features are extracted from
vibration measurements. Various features have been applied
for structural damage detection including modal proper-
ties (modal frequencies, modal shapes, etc.) and various
mathematical model parameters. In the second step, the
features changes are related to structural system changes by
direct comparison with feature baselines or more advanced
statistical analysis including feature classification. Therefore,
the results of these methods are information about possible
structural damages. The results cannot reach the four-stage
goals of SHM since no information regarding the damaged
structure is provided. In the meanwhile, the results cannot
directly facilitate decision making since the detected damages
are not directly related to if/what actions should be taken.
These methods simplify SHM into pure damage detection
problems; thus, they cannot provide comprehensive knowl-
edge for decision makers. It is necessary to adjust the goal
of SHM from detecting damage to extracting real knowledge
necessary for making decisions.

3. A Four-Step Process of SHM

KDD in computer science is the process of automatically
searching large volumes of data for association rules based
on purely statistical analysis such as information retrieval,
machine learning, and pattern recognition. The process of
knowledge discovery in data bases (KDD) normally contains
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a number of steps, as shown in Figure1 [1, 2]. The intended
goals of individual steps are explained as follows.

(1) Preprocessing: this step is intended to select, clean,
and correct data to facilitate further KDD analysis.
Real data contains noise and has outliers and irrel-
evant information. Data is missing and might be
wrong. Therefore, selecting, cleansing, and correcting
data before knowledge discovery very often not only
facilitate KDD but make it possible.

(2) Transformation/feature extraction: in KDD, this step
is the first step of dimensionality reduction of large-
scale data bases. Features which are relevant for the
goal of the KDD are determined. The space that the
features span has a lower dimension than the data
space. Feature analysis makes the following mining
process most efficient without losing any important
information if the features are most relevant to knowl-
edge to be extracted.

(3) Data mining: this is the actual pattern recognition
step. It extracts patterns represented by data based on
feature analysis. The most common types of patterns
in data are relationships between objects, temporal
sequences, spatial patterns, sets of similar objects,
mathematical laws, and so forth, [9].

(4) Interpretation/evaluation: the results of data mining
are generally formal patterns, such as clusters, sets
of rules, partitions according to multidimensional
attributes. In order to become knowledge or to be
useful to human decision makers, they have to be
interpreted with respect to the problem considered.
In other words, the results have to be translated into
the language of the observer.

Aimed at extracting directly usable knowledge from abun-
dant data to facilitate decision making, SHM problem has
lots of similarity with KDD. The detailed description of KDD
process helps us to review and classify current SHM meth-
ods and to further develop a general framework for SHM
methods. Compared with KDD process, the current two-step
SHM methods mentioned above are only focused on feature
extraction and feature analysis steps. In the meanwhile,
feature analysis very often only contains directly comparison
between features with feature baselines. Therefore, inspired
by the KDD process, it could be expected that the current
SHM methods can be further improved from the following
aspects.

(1) Data preprocessing: data preprocessing has been
incorporated in the SHM methods as a critical step in
the SHM framework proposed by Sohn et al. [3]. The
importance of data preprocessing has been realized in
some extend. Staszewski [10] examines various pre-
processing techniques that enhance feature extraction
and selection. The authors believe that incorporating
data preprocessing step in the SHM method can
improve the efficiency and accuracy of SHM.

(2) Detailed feature analysis: in current SHM methods,
feature extractions are well studied. Various features

including both model-based and nonmodel-based
features are proposed and examined for structural
damage detection. In contrast, the feature analysis
method is relative simple. Features representing local
properties of dataset with limited time window might
be affected by local properties of excitation and
noises, environmental changes, and even unpredicted
factors. Advanced statistical analysis can filter out the
irrelevant factors, and hence, improve the accuracy
of extracted pattern. The advanced statistical pattern
recognition methods are efficient tools to be applied
in this step.

(3) Structural system evaluation: the final results of cur-
rent SHM methods generally are information about
possible damages. The authors believe that the SHM
is not exactly equal to damage detection. Information
regarding damages is not all knowledge which can be
extracted from data to facilitate the decision makers.
Structural system evaluation based on the detected
structural changes can translate the information from
only damage related into system related which might
be directly related to if/what actions should be taken.

On the other hand, although SHM can be seen as a KDD
problem, SHM problems have their own particularities. As
discussed, the knowledge to be extracted in KDD is the
artificial “intelligence” such as implication or correlation
between data. In SHM, the knowledge we are heading to
is the state of the structure. KDD is trying to find out the
patterns of how the displacement and acceleration are related.
SHM is trying to figure out the “health” state of the structure
from which the data are measured. This difference could be
considered from two ways: first, the feature extracted from
original data in SHM should represent not only the data
properties but also the structural properties. For example,
the modal frequencies extracted from vibration data is better
feature for SHM applications than response amplitude since
it is closely related to structural properties. Second, the
classified pattern should be further interpreted to correlate
individual pattern with structural states. The difference of
final knowledge to be extracted between KDD and SHM
determines the difference on their analysis methods. Purely
statistical analysis methods of KDD cannot completely solve
SHM problems. Structural dynamics and structural analysis
techniques are necessary to be incorporated. Therefore, based
on the similarities and differences between KDD and SHM,
taking advantages from both KDD and SHM techniques, the
SHM process can be divided into following four steps.

(1) Data preprocessing: this step is aimed at enhancing
the efficiency and accuracy of the following analysis.
For the efficiency consideration, selecting data which
detailed analysis are possible and necessary to be per-
formed on can release the burden of analysis. In the
meanwhile, selecting data which better satisfies the
assumptions or requirements of the detailed analysis
method can improve the accuracy of the analysis.

(2) Feature extraction: for SHM applications, the
extracted feature should satisfy two requirements:



£
) — (o] —=> [t

Knowledge <(—— | Interpretation <:|

FIGURE 1: The steps of the KDD process.

same as in KDD, the feature should reduce the
dimension of original data. And, the feature should
be sensitive to the structural damage. The widely
studied structural system identification method
could be seen as a feature extraction method
specially fitting the SHM applications. The system
identification methods extract system properties
such as modal frequencies, modal shapes, and
stiffness, from set of vibration measurements. These
features are directly related to the physical properties
of structures. Hence, analyzing these features with
reduced data dimension could efficiently provide
information about structure system.

(3) Feature analysis: damage in SHM can be defined
as changes introduced into a system that adversely
affects its current or future performance [3]. In the
meanwhile, features present the properties of the
system contained in the datasets collected at the par-
ticular moment. Therefore, damage is not meaningful
without a comparison between two different states
of the system [3]. On the other hand, the features
might be affected by various factors such as local
properties of dataset and environmental changes.
Statistical pattern recognition methods are beneficial
not only to confidently reveal the changes but also
classify the change patterns which are related to
details of the changes and the reasons caused these
changes.

(4) System evaluation: as discussed, the final goal of SHM
is to provide information about structural safety to
facilitate decision making. The pattern recognition
procedure consisted by above mentioned three steps
provides information about system changes. Damages
are possible factors to affect system safety, but not
real state of the structural “health” Respecting the
SHM problem, these damage-related pieces of infor-
mation should be further translated into knowledge
about structural working state to help decision mak-
ers understand the damaged structural system and
taking necessary actions. System reliability analysis
and structural performance prediction based on the
updated system properties are possible methods to
evaluate the damaged system.

4. SHM Based on Identified
Structural Stiffness

To demonstrate the proposed four-step framework of SHM,
in this section, a specific SHM method is presented which
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is composed by second-order structural parameter identifi-
cation as feature extraction method, statistical control chart
analysis of identified stiffness for feature analysis step, and
system reliability analysis based on identified stiffness for
structural system evaluation. Details of these methods are
presented as follows.

4.1. Data Preprocessing. As discussed, data preprocessing is
aimed at improving the accuracy and efficiency of further
analysis. Since a PEM-based second-order structural param-
eter identification method is applied in the feature extraction
step, from accuracy consideration, the dataset to be used
should satisfy the assumptions of the identification method.
In the identification method, the structure will be firstly
idealized into a simple dynamic model which can only model
the global modes of the system dynamic properties. The
structural stiffness, mass, and damping ratios correspond-
ing to the idealized model will then be directly identified
from response measurements. Therefore, the dataset to be
identified should contain enough information corresponding
to first several modes of the structure. The response data
dominated by higher modes which cannot be modeled by
the idealized simple model is not suitable for this method.
Hence, in the data preprocessing step, response data should
be selected based on this criterion. In the meanwhile, in a
long-term monitoring system, response data are accumulated
with time. It is not efficient, even not possible to retrieve
and analysis all data. A PCA-based data management and
retrieval method are proposed by authors to select dataset
corresponding to system changes [11]. This method can be
also seen as a data preprocessing method to select data for
further analysis based on efficiency consideration.

4.2. Feature Extraction. In the proposed SHM method, a
time-domain structural system identification method is used
to extract structural stiffness as features from vibration
response measurements in the feature extraction step. This
method can identify second-order structural parameters even
under unknown excitation conditions. The structural identi-
fication method involves the use of PEM method to extract
second-order structural parameters including mass, stiffness
and damping ratios directly from measured vibration data.

The proposed second-order structural identification
method starts with idealizing the original structural into
a simplified dynamic model and, then, expands the state
space model of the simple model into linear models which
have parameters as functions of second-order structural
parameters. Then, PEM method is used to estimate the
unknown second-order model parameters.

The final mathematic models to be identified are as
follows.

When input excitation is available,

N N 2N
Z o (0) - yi = Z Bi (0) - uy_; + Z Vi (0) e (1)

i=0 i=0 i=0
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output only situation:

2N 2N
Z % () yii = Z Vi (0) - ep . 2)
i=0 i=0

The unknown second-order structural parameters to be iden-
tified are denoted as vector 6. To identify model described
in (1), both excitation force and structural response mea-
surements are needed. The whole unknown second order
structural parameters including mass, stiffness, and damping
ratios can be identified simultaneously. The model described
in (2) is based on the Gaussian distributed ambient excita-
tion assumption. Only dynamic responses are necessary to
identify this model. Because of lack of information about
excitation, only part of second-order parameters (mass or
stiffness) can be identified from this model. Based on these
two models, a two-stage SHM application is proposed:
the first stage entails the identification of all second-order
structural parameters of linear structures from controlled
vibration tests with known input. The second stage involves
output-only structural identification which can be applied
to ambient vibration applications with unknown inputs and
limited number of output measurements. In the second stage,
the structural masses identified from stage one are assumed
to be unchanged and only stiffness parameters are identified.
Stiffness parameters are then the final features to be further
analyzed. Damage is located and quantified through the
changes in the identified stiffness coeflicients and system
reliability will be further performed based on the identified
stiffness parameters.

Since the identification method directly extracts second-
order structural parameters as features which are mathe-
matical descriptions of structural physical properties, using
the identified results as features can present comprehensive
knowledge regarding structural damage locations, damage
severity, and remaining capacity of structures. Details about
this identification method are presented in [12].

4.3. Feature Analysis. The statistical control chart analysis of
the identified stiffness is adopted in this step to extract infor-
mation about possible structural damages. As mentioned
in the previous sections, the features used in this method
are structural stiffness which already closely correlated with
structural properties. The feature changes themselves indicate
comprehensive information about damage. It is not necessary
to define complicated pattern corresponding to damage loca-
tions and severities. Therefore, the feature analysis method
used in this method is relatively simple. The only concern
in this stage is then confidently classifying changed stiffness
coeflicient. The system identification methods generally can
only be applied on a set of data with limited time window.
Data from each set may have local properties because of
the limited duration of time window. The features including
aforementioned identified stiffness parameters might fluc-
tuate within a particular range among the datasets even
though they are collected from the same structure. Therefore,
it is necessary to define the confident range of the feature
which can classify the original system from systems with
changes. The statistical control chart analysis method is used

in the proposed SHM method to analyze these features from
statistical point of view. To plot statistical control chart, the
confident range of features must be identified from history
data. Mathematically, to define the feature range with «%
confidence, the upper and lower control limits (denoted as
UCL and LCL resp.,) can be written as

UCL = invnorm(l - %%,ﬁ,SF) ,
N ©)
LCL = invnorm(g%,F, SF),

where invnorm denotes the inverse function of the proba-
bility density function of normal distribution and F and Sj
are the mean value and standard deviation of the identified
stiffness in this application. The above equations are based
on the Normal distribution assumption for the extracted
features from the history measurements. However, it has
been shown that the control limits based on the Normal
distribution assumption can often be successfully used unless
the population is extremely nonnormal [13, 14]. Note that «%
is the confidence value that classifies the system similar to the
original system from which the history measurements were
collected. Overly defined «% will cause higher likelihood
for misclassifying systems with changes. Since the structural
damages are always reflected as stiffness reduction, only
lower control limits of identified stiffness are meaningful for
damage classification.

The final results of this step are then the location and mag-
nitude of the changed stiffness. Hence, the analysis procedure
is performed on the statistical sense. This step also updates
the statistical properties of the changed stiffness coefficient
which could be used for structural reliability analysis in the
next step. Although it is not presented in this paper, the
updated stiffness parameters can also be applied to update the
structural models and more knowledge regarding structural
current state could be acquired through the analysis of the
updated models.

4.4. System Reliability Evaluation. In most of current SHM
methods, the analysis procedure stops at the detection of
damages. The system evaluation after possible damages are
detected is generally omitted. However, to make final deci-
sions from information about damages, the further analysis
is still necessary. The decision makers should be informed
at least how significant the overall system is affected by
these damages. In the proposed SHM method, we use the
identified structural stiffness parameters to update the system
reliability to indicate the severity of damage effects on system
performance and the urgency of that action should be taken.

A reliable system is defined as one that is capable of
operating without failure during a specified period in a
specified environment. Failure is defined as the state in which
the resistance R could not satisfy the demand D of the system.
Probability of failure is then generally used to indicate the
reliability of the system. In real applications, the demand of
the system might be an assembly of different requests. The
system reliability analysis is then a complicated statistical
analysis process depended on a lot of information.
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FIGURE 2: Configuration of the model steel bridge structure.

In this paper, we focus on introducing the framework
of SHM using KDD concept especially on emphasizing the
importance of system evaluation. System reliability analysis
is proposed as one of possible methods to translate the infor-
mation of damages into the knowledge regarding structural
systems which can be directly used by human decision mak-
ers. In stead of studying specific system reliability method, we
adopt simple reliability analysis concept to demonstrate our
ideas.

Since the feature used in this method is structural stiffness
coefficients along a particular direction and the loading
conditions of structure is generally predefined, the structural
demand we defined for the reliable system is simply the
request regarding the response displacement of the structural
system under regular loads. In particular, the demand used in
the demonstrated reliability analysis is D = the displacement
of the center point of the structure under predefined static
load should be smaller than 1/20 of the span of the structure.

The real displacement responses of the structure under
static load can be calculated from predefined load and
identified stiffness as

R=K'-F, (4)

where F is predefined static load of the structure. K is
identified stiffness matrix. The structural resistance is then
the displacement of the center point of the structure which
is the element of R at center degree of freedom: R_. In this
study, both predefined static load and identified stiffness are
random variables. Therefore, real structural resistance R, is
also random variable.

The overall reliability of the system is then indicated by
the probability of system failure:

P(R.-D=0) (5)

which will be calculated by Mento Carlo simulation based on
the statistical properties of the updated stiftness coeflicients
and predefined static load.

5. Experimental Study

5.1. A Model Steel Bridge Structure. To demonstrate the
concept and evaluate the performance of the SHM method
described above, an experimental study is performed on
a model steel bridge structure. The details of this model
structure as well as the dynamic tests are given as follows.
The structure being monitored is a model steel bridge
structure. The steel bridge structure has a total of 24 nodes,
32 short rods with a 1 m length and 12 long rods with 1.414 m
length assembled together using steel tubes, and nodes of
M12 system from the MeroForm Systems. Figure 2 shows the
configuration of the steel bridge structure and its members
and connections. The size of the assembled structure is 1 m x
1 m x 6 m (width, height, and length). The four end nodes in
the lower plane of the steel bridge structure are restrained in
translation direction at the supports. Five steel blocks with
451b (20.4Kg) each are attached to the five lower nodes
along one side of the lower plane to simulate structural mass.
Additional slotted steel stripes are bolted to all seven nodes
along the other side of the lower plane to provide additional
lateral moment resisting stiffness in the transverse direction
of the steel bridge structure. The reason for doing this is to
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FIGURE 3: Configuration of the hardware system for experimental study.

simulate structure damages by loosening the connections of
these steel stripes in subsequent tests.

Since the proposed SHM method is a vibration-based
method, the major parts of the experimental hardware are
related to vibration excitation and vibration response collec-
tion. Figure 3 shows the configuration of this experimental
hardware configuration. A long stroke shaker with a 6” peak-
to-peak stroke and 100 Ibs maximum output force from APS
Dynamics, Inc., was used to excite the steel bridge structure at
its middle node located in the lower plane. Five piezoelectric
accelerometers (Model 393B04 from PCB Piezotronics, Inc.)
were used to measure the acceleration responses of the
steel bridge structure during the entire vibration test. The
accelerometers were attached to the nodes along one side
of the lower plane of the steel bridge structure. Only five
accelerometers were used to measure the responses from
a limited number of the structural nodes on the model
steel bridge, which is aimed to examine the performance of
the proposed SHM method using limited measurements—a
situation often encountered in real civil engineering struc-
tures. The RTMS-2001 real-time data acquisition system
from Digitexx Data Systems Inc. was used for force and
acceleration data recording and broadcasting the sensor data
to Internet for remote data access.

Since the system identification method has to be per-
formed on a set of data, a time window had to be adopted
to divide the continuously measured data into individual
datasets. Each measurement set is denoted as one test in
this study. One test thus defined here includes 1,024 data
samples from each of the five accelerometers and therefore
the entire dataset contains a total of 5,120 data samples. Since
the sampling rate used by the data acquisition system was

200 Hz, the time window for dividing the measurements was
therefore equal to 5.12 seconds.

5.2. Test Procedure. Before applying the proposed SHM
method for knowledge discovery, initial parameters for the
individual methods need to be determined using test data
measured from the original structural system, which serve as
a baseline for future analysis. The parameters that need to be
set up from pretest measurements include the following.

(i) Mass and damping parameters for the steel bridge
structure: as mentioned in above sections, the
adopted second structural system identification
method is a two-stage procedure. In the second stage
which involves output-only identification, mass, and
damping parameters shall become available from
the first stage and are assumed to be unchanged.
Therefore, a well-controlled modal testing must be
conducted to identify the system mass and damping
ratios in the first stage.

(ii) Control limits of identified stiffness parameters: the
identified stiffness parameters will be affected by the
local properties of sensor data due to limited duration
of the time window. Therefore, regressed control
limits from a statistical analysis of pretest data will be
used to enhance the accuracy of feature analysis.

(iii) Statistical properties of stiffness parameters and the
system reliability of original structure: these param-
eters are critical for the system reliability analysis of
original structure.
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TaBLE 1: Identified second-order parameters from well-controlled model testing stage.
Parameter Test no. 1 Test no. 2 Test no. 3 Test no. 4 Test no. 5 Test no. 6 Average
M1 (Kg) 23 25 26 25 27 24 25
M2 (Kg) 30 30 25 31 24 31 29
M3 (Kg) 33 33 38 33 34 37 35
M4 (Kg) 30 30 25 31 26 31 29
M5 (Kg) 23 28 26 22 28 24 25
K1 (N/m) 7488 8813 7795 7992 8233 8938 8210
K2 (N/m) 25892 23752 21853 22004 26453 20696 23442
K3 (N/m) 28172 22252 21534 23398 22201 21243 23133
K4 (N/m) 28059 28442 25560 22136 24709 29241 26358
K5 (N/m) 25571 27927 25180 22984 22117 29703 25580
K6 (N/m) 13204 14813 13969 14946 13445 14123 14083
D1 0.04 0.04 0.05 0.04 0.04 0.04 0.04
D2 0.06 0.05 0.05 0.04 0.05 0.03 0.05
D3 0.06 0.04 0.06 0.05 0.04 0.04 0.05
D4 0.04 0.05 0.05 0.05 0.06 0.04 0.05
D5 0.04 0.03 0.07 0.06 0.06 0.04 0.05
K1 K2 K3 K4 K5 Ko6

To identify the abovementioned parameters beforehand, the
whole test procedure for the steel bridge structure includes
the following three steps.

Step 1. Well-controlled modal testing to identify the mass and
damping ratios of the steel bridge structure.

Step 2. Output-only tests on the original bridge structure to
identify the parameters as discussed above.

Step 3. Real application of SHM method to examine its
performance in different damage scenarios with various
system changes.

5.3. Well-Controlled Modal Testing. For output-only monitor-
ing of stiffness, the mass and damping ratios of the steel bridge
structure need to be identified beforehand in Step 1 by a well-
controlled model testing. A well-controlled model testing
is defined as (i) measurements of the input excitation are
available and must be force measurements; (ii) the colocation
requirement needs to be satisfied; colocation means that there
exists at least one DOF with both a sensor and an actuator.
In this stage, the original steel bridge structure was excited
at the middle node and the input dynamic force was measured
using the load cell. The acceleration responses of the bridge at
five nodes were measured using five accelerometers. A total
of six tests were conducted with 1,024 data samples from
each sensor. The measured dataset was used to identify the
second-order structural parameters of the bridge structure
using the method described above. Therefore, six sets of
second order structural parameters were identified from
these measurements. The average values of mass and damping
ratios of these six groups are taken as the parameters which
will be used in the subsequent online monitoring stage. To
identify the second order structural parameters, the original
steel bridge structure is idealized into a 5-DOF lumped-mass
model shown in Figure 4. A total of 16 unknown parameters

%MMWV@%@W%

FIGURE 4: Idealized lumped-mass model for the steel bridge struc-
ture.

thus need to be identified as second order structural param-
eters including 5 masses, 5 damping ratios, and 6 stiffness
parameters. All 16 unknown parameters can be identified
simultaneously from the measurements in each test.

Table 1 lists the identification results for the original
undamaged bridge structure from the measurements in these
six tests. Figure 5 shows the comparison of the simulated
responses using the identified model and two sets of real mea-
surements in each test. It is seen that the idealized lumped-
mass model with identified second-order parameters can
model the original structure reasonably well. The mismatch
over higher frequency contents in these measurements is
believed to be caused by higher order vibration modes which
go beyond the highest modes of this lumped-mass model.

5.4. Pretests for Parameters Identification. In this step, a
total of 151 tests each with duration of 5.12 seconds were
conducted on the original bridge structure to identify the
abovementioned parameters for further analysis. In these
tests, acceleration responses of the bridge structure were the
only quantity to be measured using a total of 5 accelerometers.

The first parameter to be identified in this step is the
control limits of the identified stiffness coefficients. The
variation of the stiffness values identified from each test
dataset was observed in the pretest identification results,
which was attributed to the local statistical properties of the
input excitation to the system. This shows the importance of
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FIGURE 5: Comparison of two of total six test results (blue solid) and numerical simulation (red dashed) results using identified model.

the control chart analysis in the feature analysis stage. The
objective of setting up the control limits for identified stiffness
parameters is to confidently classify damaged structures from
undamaged structures based on the identified stiffness values.
An identified stiffness value which falls within the confident
range of the undamaged structure implies that the likelihood
for the structure to be damaged is low. Since structural
damages in this study are characterized by stiftness reduction,
only lower limit needs to be determined for our application.
Another approach to analysis damage based on identified
stiffness control chart is to compare the mean value of
identified stiffness results from several test measurements
with the pretest values of corresponding stiffness. Even if
a single identified value cannot be confidently classified
as being damaged using the control limits because of the
variation, mean value of several tests results can enhance
the confidence of classification by comparing mean values.
Therefore, constructing the control limits for stiffness has two
subtasks which include the calculation of lower control limit
and calculation of mean values for the stiffness identified
from the 151 pretest measurements. Figure 6 is the final
control chart regressed from pretests measurements which
can be used for feature analysis in subsequent applications.
Other important parameters to be regressed in this stage
are the statistical distribution of the stiffness parameters and

the reliability analysis of original structure. In this test, since
only limited number of tests were conducted which are not
sufficient for performing accurate Mante Carlo Simulation,
the statistical properties of the identified stiffness parameters
are calculated and the normal distributed random variables of
these parameters are then generated based on their statistical
properties. In particular, we first calculate the mean and
standard deviations of six stiffness parameters from 151 sets
of identified stiffness parameters. Then, 10000 samples of
stiffness parameters are generated based on the assumption
that the stiffness parameters are normal distributed random
variables with determinate mean and standard deviations.
In real applications of SHM practices, especially in on-line
monitoring system where data are accumulating with time,
large number of sets of stiffness might be identified from
available data. It is not necessary to assume the distribution
of stiffness parameters. The reliability analysis could be
performed more accurately.

As mentioned before, the static load of the structure is
assumed to be available in the reliability analysis which is
assumed to be normal distributed random variables with
mean value and standard deviation equal to 2500 N, 250 N,
respectively. The demand to be satisfied is only the midpoint
displacement. The probability of system failure could be
calculated by Monte Carlo Simulation with sample size 10000.
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Figure 7 shows the histogram of the calculated midpoint
displacement by Monte Carlo Simulation based on the iden-
tified stiffness statistical properties. Compared with defined
demand of midpoint displacement as shown in solid line in
Figure 7, the probability of failure of original structure is 0.2%
which is very small.

5.5. Structural Health Monitoring. After setting the afore-
mentioned parameters from the pretest measurements, the
proposed method is ready for structural health monitoring
applications. In this experimental study, various damage
scenarios which were simulated in the steel bridge structure
were conducted to evaluate the performance of the proposed
integrated SHM system. Limited by the paper length, only
4 damage scenarios are presented herein which are corre-
sponding to single damage case, changed damage locations,
multiple damage case, and retrofitted structure case.

(i) Damage scenario no. 1: the steel stripe connection at
Kl location (see Figure 4) was completely disattached
from the primary structure by loosening the bolts.

(ii) Damage scenario no. 2: the steel stripe connection at
K2 location was completely disattached from the pri-
mary structure to simulate changed damage locations.

(iii) Damage scenario no. 3: the steel stripes at K3, K4, and
K5 locations were simultaneously disattached from
the primary structure to simulate the multiple damage
case.

(iv) Damage scenario no. 4: all steel stripes were con-
nected back to the primary structure to simulate the
retrofitted structure case.

In this study, damages to the steel bridge structure were
simulated by loosening the connections between the steel
stripes and the primary structure as described above. Stiffness
reduction is introduced to the particular locations where the
stripe connection was disattached from the primary struc-
ture. Due to the configuration of the steel bridge structure,
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FIGURE 7: Reliability analysis of original structure.

loosening the steel stripe connection at one location would
also influence other steel stripe connections, particularly
those in neighboring spans. This is also verified in the
subsequent tests. For each damage scenario test, a total of
15,360 data samples were continually measured from each
accelerometer attached to the nodes. These measurements
can be divided into 15 tests (15,360 = 15 x 1,024) using a
predefined time window. From hereforth, the results will be
presented in terms of test numbers instead of data sample
numbers. The input excitations in all these damage scenarios
were Gaussian white noise to simulate ambient excitation
in real structures. The discussions of individual damage
scenario are presented as follows.

Damage Scenario No. 1. Figure 8 plots the results from
monitoring the steel bridge structure with damage scenario
no. 1. The first step for data analysis in the proposed SHM
method is data preprocessing. As mentioned in previous
section, the data will be selected based on the criteria of
fitting the system identification method. In particular, the
acceleration responses should contain enough information in
the frequency band around the first few modal frequencies
of the original structure. In this experimental study, we
excited the structure with Gaussian distributed white noise
with frequency bond 0-5 Hz which is close to the frequency
range of the first five modes of the structure. The first five
modal frequencies of the model steel bridge structure are
1.64 Hz, 3.96 Hz, 6.24 Hz, 9.00 Hz, and 11.09 Hz, respectively.
Therefore, the responses are dominated by first five global
modes of the structure. Higher mode responses in the
collected data are less dominated. The collected data were
directly applied for system identification and further analysis.
In practice, since the excitation inputs are not controllable,
the response data should be selected and preprocessed to
satisfy this requirement.

In the second step of the SHM method, the downloaded
data will be analyzed using the second-order structural sys-
tem identification method as described in previous section.
This system identification method directly identifies struc-
tural stiffness from ambient vibration data without the need
for excitation input measurement. The mass and damping
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FIGURE 8: Results of damage scenario no. 1.

ratio identified from well-controlled modal testing were used
for the stiffness identification.

After stiffness parameters were identified from data,
the statistical control chart analysis is then performed on
these identified features to extract information regarding
possible damages. The statistical analysis of the identified
stiffness during the pretest stage provides the confidence
limits for the structural stiffness. An identified stiffness value
lower than the confidence limit will be classified as damage
with 90% confidence. In the meanwhile, comparing the
mean value of the identified stiffness between the original
structure (presented as dashed line) and of damaged structure
(presented as yellow solid line) in Figure 8(a) also provides
an alternative way of damage detection as mentioned earlier.
Figure 10(a) shows the identified stiffness for the six spans
of the steel bridge structure from all 15 test datasets in this
damage scenario. Figure 10(b) shows the normalized occur-
rence frequency for the individual stiffness that is confidently
classified as being damaged in these 15 tests which is indicated
by identified value over the predefined limit. Combining the
results given in these two figures shows that identified K1 was

outside the limits 12 times out of a total 15 and the mean
value of these 15 identified stiffness values was much smaller
than the mean value corresponding to the original structure
as shown by the dashed line. Therefore, we can confidently
conclude that the K1 was damaged. For K2, although only 5
identified results from these 15 tests are confidently classified
as being damaged, other identified values within the limits
also show certain level of reduction compared with the mean
value of the pretest results. Certain occurrence frequencies
of confidently classified as being damaged and the apparent
difference between the average stiffness value of these 15 tests
and that of the 151 pretests indicate that K2 had some smaller
level damage. The reduction of the mean values of identified
stiffness shows that the level of damage in K2 was less severe
than that in KI1. Other stiffness parameters such as K4 cannot
be classified as being damaged since no or only one identified
result out of a total of 15 identified stiffness values went
outside the predefined limits and yet no significant change
was observed in average stiftness values. Therefore, the finally
acquired knowledge is that K1 was severely damaged and K2
was slightly damaged. Since the identified feature was the
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FIGURE 9: Results of damage scenario no. 2.

structural stiffness, the remaining capacity of the damaged
structure may be predicted based on these identified results.
From previous steps, the damage locations as well as the
quantity of stiffness reductions are detected. However, the
system safety, in other words, how the damage affects the
structural system, is still not clear. The structural system
analysis is then necessary to be performed based on the
updated system properties to further interpret the infor-
mation of damages. The selection of particular method for
system analysis based on information provided from first few
steps should consider both the decision maker requirements
and the reality of if the information extracted from first step
is sufficient to support this method. In the proposed SHM
method, the simple reliability analysis procedure described
above is adopted in this step to demonstrate the SHM
framework as well as the importance of this step. More
advanced method could be developed in further study.

The statistical properties of the identified stiffness param-
eters acquired from first few steps were used to update the
reliability analysis described above. Based on the updated

statistical properties of the identified stiffness, 10000 samples
of variables corresponding to six stiffness parameters are
regenerated based on normal distribution assumption. Monte
Carlo Simulation is then performed using these samples.
Figure 8(c) plots the histogram of calculated midpoint dis-
placement of damaged structure. As shown in this figure, the
probability of structural failure is increased to over 11% which
indicates that the damages cause high risks of structural
failure.

Through the whole analysis procedure, the knowledge
provided to decision makers is then the structure is damaged
at K1 and K2 locations. The damaged structure is under high
risks of failure. Urgent actions should be taken to increase
the stiffness K1 about 5000 N/m and the stiffness K2 about
3000 N/m. Clearly, these results could strongly support the
decisions about structural repair.

Damage Scenario No. 2. In this case, damage was simulated
by loosening the connection of the steel stripe at K2 to
validate the SHM method for different damage locations.
Similar analysis procedure of the SHM method to that used in
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FIGURE 10: Results of damage scenario no. 3.

damage scenario no. 1 was applied and results were presented
in Figure 9.

Output-only system identification was performed on the
15 tests data to determine the values of stiffness parameters
of the steel bridge structure. The control chart analysis was
carried out to extract the damage-related knowledge from the
identified stiffness values. Similar to the analysis presented
in damage scenario no. 1, the stiffness reduction of K2 and
its effects on K3 was successfully identified. Compared with
the mean value of K2 before and after the damage, about
15% reduction was observed for the damage introduced by
loosening the K2 connection. The results shown here verified
the effectiveness of the proposed integrated SHM system for
damage detection.

The reliability analysis of this damage scenario is pre-
sented in Figure 9(c). Compared with damage scenario no. 1,
the almost same stiffness reduction quantity at different
locations caused significantly different effects on structure
system. In this damage case, the probability of the structure
failure is only slightly increased. Therefore, the structural
repair is not as urgent as damage scenario 1.

The comparison of damage scenarios no. 1 and no. 2
verified the importance of system analysis step. Damage
detection itself could provide the information regarding
system. The same quantity of damages might cause different
effects on system. Hence, information should be provided to
facilitate the decision makers making correct decisions.

Damage Scenario No. 3. This case is presented to examine
the performance of the proposed SHM method under the
multiple damage situations. The steel stripes at K3, K4,
and K5 locations were all disattached from the primary
structure by completely loosening the connections in this
damage scenario. Again, 15 tests were conducted on the
damaged structure. Acceleration data were collected and
analyzed to effectively identify the damages. As shown in
Figure 10, the reduction in the mean values of K3, K4, and K5
when compared with those of the original structure verified
the effectiveness of the system ID-based damage detection
method. Similar analysis with damage scenario no. 1 on the
identified stiffness control chart can also present that the K2
and K6 are affected by the stiffness reduction at K3 to K5.
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FIGURE 11: Results of damage scenario no. 4.

And the reliability analysis clearly indicates the high risks of
structural failure.

Damage Scenario No. 4. In this case, all disattached steel
stripes were connected back to the primary structure by
tightening the bolts at corresponding connections. In this
way, a scenario which simulates the retrofitted structural
system is created. The performances of the SHM method in
this scenario are presented in Figure 11. The purely feature
extraction and feature analysis results presented in Figures
11(a) and 11(b) show that the structure was restored to its
original state and no stiffness reduction could be confidently
classified. However, the system reliability analysis shows that
the slight changes are still existing in the structure which
increases the structural failure probability. Again, this verified
that the system analysis step can provide more information
which might not be possibly observed from purely pattern
recognition procedure.

6. Conclusion

In this paper, the SHM problem is innovatively discussed
on the context of KDD. By detailed comparison between

SHM and KDD, a four-step SHM framework is proposed
which expands SHM from pattern recognition problem to
KDD problem. This framework emphasizes the importance
of providing system working state-related knowledge to
decision makers and incorporates both the structural system
analysis methods and statistical KDD techniques in the
individual step. Through clarifying the goal and hierarchy of
extracting useful knowledge of SHM problems, the frame-
work has potential to facilitate the further development of
SHM. The experimental validation of the presented specific
SHM method which combined the second-order structural
parameter identification, statistical control chart analysis, and
system reliability analysis shows the needs and advantages of
this SHM framework on providing system knowledge and
incorporating system identification method with statistical
analysis tools.
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