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The proximal-based parallel decomposition methods were recently proposed to solve structured convex optimization problems.
These algorithms are eligible for parallel computation and can be used efficiently for solving large-scale separable problems. In this
paper, compared with the previous theoretical results, we show that the range of the involved parameters can be enlarged while
the convergence can be still established. Preliminary numerical tests on stable principal component pursuit problem testify to the
advantages of the enlargement.

1. Introduction

Consider the constrained convex optimization problemswith
separable objective functions in the following form:

min
𝑥∈X,𝑦∈Y

𝑓 (𝑥) + 𝑔 (𝑦)

s.t. 𝐴𝑥 + 𝐵𝑦 = 𝑏,

(1)

where 𝐴 ∈ R𝑚×𝑛, 𝐵 ∈ R𝑚×𝑝, 𝑏 ∈ R𝑚, X ⊂ R𝑛, and
Y ⊂ R𝑝, are two nonempty, closed, and convex sets and
𝑓 : R𝑛 → R, 𝑔 : R𝑝 → R are convex functions.
Problem of this type arises from a number of fields such
as signal processing, compressed sensing, machine learning,
and semidefinite programming (see, e.g., [1–7] and references
cited therein).

To solve (1), the classical alternating direction method
generates the new iterate via the following scheme:

𝑥𝑘+1 = arg min
𝑥∈X

𝑓 (𝑥) + 𝑔 (𝑦
𝑘)

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴𝑥 + 𝐵𝑦𝑘 − 𝑏 −

1

𝛽
𝜆𝑘
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

,

𝑦𝑘+1 = arg min
𝑦∈Y

𝑓 (𝑥𝑘+1) + 𝑔 (𝑦)

+
𝛽

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴𝑥𝑘+1 + 𝐵𝑦 − 𝑏 −

1

𝛽
𝜆𝑘
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

,

𝜆𝑘+1 = 𝜆𝑘 − 𝛽 (𝐴𝑥𝑘+1 + 𝐵𝑦𝑘+1 − 𝑏) ,

(2)
where 𝜆 ∈ R𝑚 is the Lagrange multiplier associated with the
linear constraint and 𝛽 > 0 is a penalty parameter for the
violation of the linear constraint.

At each iteration, ADM essentially splits the subproblem
of the augmented Lagrangian method into two subproblems
in Gauss-Seidel fashion. The subproblems can be solved in
consecutive order, which makes ADM possible to exploit the
individual structure of 𝑓 and 𝑔. The decomposed subprob-
lems in (2) are often easy when 𝐴 and 𝐵 in (1) are both
identity matrices and the resolvent operators of 𝑓 and 𝑔 have
closed-form solutions or can be efficiently solved up to a
high precision.Here, the resolvent operator of a function (say,
𝜃 R𝑛 → R) is defined by

(𝐼 +
1

𝛽
𝜕𝜃)
−1

(𝜐) = arg min
𝑧∈Z

𝜃 (𝑧) +
𝛽

2
‖𝑧 − 𝜐‖

2, (3)
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where 𝜐 ∈Z and 𝛽 > 0. However, in some cases, both 𝐴 and
𝐵 are not identity matrices; the two subproblems in ADM (2)
are difficult to solve because the evaluation of the following
minimization style

(𝑀𝑇𝑀+
1

𝛽
𝜕𝜃)
−1

(𝑀𝜐) = arg min
𝑧∈Z

𝜃 (𝑧) +
𝛽

2
‖𝑀𝑧 − 𝜐‖

2

(4)

could be costly, where 𝑀 is a given nonidentity matrix, for
example, 𝐴 or 𝐵.

For the purpose of parallel and easy computing, the first
parallel decomposition method [8] (abbreviated as FPDM)
generates the new iterative as follows:

𝑥𝑘+1 = arg min
𝑥∈X

𝑓 (𝑥)

+ 𝛽(𝑥 − 𝑥𝑘)
𝑇

(𝐴𝑇 (𝐴𝑥𝑘 + 𝐵𝑦𝑘 − 𝑏 −
1

𝛽
𝜆𝑘))

+
𝑟

2

󵄩󵄩󵄩󵄩󵄩𝑥 − 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩
2

,

𝑦𝑘+1 = arg min
𝑦∈Y

𝑔 (𝑦)

+ 𝛽(𝑦 − 𝑦𝑘)
𝑇

(𝐵𝑇 (𝐴𝑥𝑘 + 𝐵𝑦𝑘 − 𝑏 −
1

𝛽
𝜆𝑘))

+
𝑠

2

󵄩󵄩󵄩󵄩󵄩𝑦 − 𝑦
𝑘
󵄩󵄩󵄩󵄩󵄩
2

,

𝜆𝑘+1 = 𝜆𝑘 − 𝛽 (𝐴𝑥𝑘+1 + 𝐵𝑦𝑘+1 − 𝑏) ,

(5)

where the parameters 𝑟, 𝑠 are required to satisfy 𝑟 > 2𝛽‖𝐴𝑇𝐴‖
and 𝑠 > 2𝛽‖𝐵𝑇𝐵‖. Here, ‖𝐶‖ denotes the largest eigenvalue
of matrix 𝐶. It is easy to verify that the proximal-based
decomposition method proposed in [9] is a special case of
the FPDM.

When (4) is easy to evaluate for 𝑓 and 𝑔, the second
parallel decomposition method [8] (abbreviated as SPDM)
can be used, which generates the new iterative as follows:

𝑥𝑘+1 = arg min
𝑥∈X

𝑓 (𝑥) +
𝛽

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴𝑥 + 𝐵𝑦𝑘 − 𝑏 −

1

𝛽
𝜆𝑘
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
𝑟

2

󵄩󵄩󵄩󵄩󵄩𝑥 − 𝑥
𝑘
󵄩󵄩󵄩󵄩󵄩
2

,

𝑦𝑘+1 = arg min
𝑦∈Y

𝑔 (𝑦) +
𝛽

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐴𝑥𝑘 + 𝐵𝑦 − 𝑏 −

1

𝛽
𝜆𝑘
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

+
𝑠

2

󵄩󵄩󵄩󵄩󵄩𝑦 − 𝑦
𝑘
󵄩󵄩󵄩󵄩󵄩
2

,

𝜆𝑘+1 = 𝜆𝑘 − 𝛽 (𝐴𝑥𝑘+1 + 𝐵𝑦𝑘+1 − 𝑏) ,

(6)

where the parameters 𝑟, 𝑠 are required to satisfy 𝑟 > 𝛽‖𝐴𝑇𝐴‖
and 𝑠 > 𝛽‖𝐵𝑇𝐵‖.

Note that the subproblems in FPDM and SPDM can be
processed in a parallelized fashion because the first subprob-
lem involving 𝑥 is independent on the second subproblem

involving 𝑦. Thus, FPDM and SPDM are suitable for solving
large-scale distributedmachine learning and big-data-related
optimization problems.

ADM was first described in [10] and is closely related
to many other algorithms, such as augmented Lagrangian
methods, proximal point algorithm [11], and split Bregman
methods [12]. Recently, the convergence of ADM has been
analyzed under certain assumptions (see e.g., [13–16]) and the
direct extension ofADMformultiblock convexminimization
problems has already been proved not necessarily convergent
[17].

In this paper, we study the proximal-based parallel
decomposition methods from the perspective of variational
inequalities. We show that the requirement ranges of the
parameters 𝑟, 𝑠, and 𝛽 can be significantly enlarged. Our
contributions are as follows.

(i) For the FPDM, we show that the requirements of the
step sizes 𝑟, 𝑠, and 𝛽 can be uniformly relaxed by

𝛽
󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩

𝑟
+
𝛽
󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩

𝑠
∈ (0, 1) . (7)

(ii) For the SPDM, we show that the requirements of the
step sizes 𝑟, 𝑠, and 𝛽 can be uniformly relaxed by

𝛽
󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩

𝑟 + 𝛽
󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩
+

𝛽
󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩

𝑠 + 𝛽
󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩
∈ (0, 1) . (8)

(iii) We provide a new application example in machine
learning, that is, stable principal component pursuit
problem. Preliminary numerical experiments testify
to the advantages of the enlargement.

The rest of this paper is organized as follows. In Section 2
we derive a variational reformulation of (1) and summarize
some preliminaries of variational inequalities. In Section 3,
we describe our main theoretical results and analyze their
convergence. We report some numerical results in Section 4
and make some conclusions in Section 5.

2. Preliminaries

2.1. Variational Inequality Characterization. In this section,
we derive a variational reformulation of (1) whichwill be used
in subsequent analysis.

Since the functions 𝑓 and 𝑔 are all assumed to be convex,
by invoking the first-order optimality condition for (1), we
can easily verify that solving (1) amounts to finding a vector
𝜇∗ ∈ Ω of the variational inequality (VI):

(𝜇󸀠 − 𝜇∗)
𝑇

𝐹 (𝜇∗) ≥ 0, ∀𝜇󸀠 ∈ Ω, (9)

with

𝜇 := (
𝑥
𝑦
𝜆
) , 𝐹 (𝜇) := (

𝜕𝑓 (𝑥) − 𝐴𝑇𝜆

𝜕𝑔 (𝑦) − 𝐵𝑇𝜆
𝐴𝑥 + 𝐵𝑦 − 𝑏

) , (10)
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where

Ω = X ×Y ×R𝑚. (11)

The problem (9) is referred to as a structured variational
inequality (SVI) and has been studied extensively both in
the theoretical frameworks and applications. Recently, He et
al. [18, 19] proposed a unified framework of proximal-like
contraction methods for monotone VI. They also construct
the𝑂(1/𝑡) convergence rate of the projection and contraction
methods for VI with Lipschitz continuous monotone oper-
ators [20]. Xu et al. [21] proposed two classes of correction
methods for the SVI in which the mapping 𝐹 does not have
an explicit form. Yuan and Li [22] developed a logarithmic-
quadratic proximal (LQP) based decomposition method by
applying the LQP terms to regularize the ADM subproblems.
Tao and Yuan [23] established the 𝑂(1/𝑡) convergence rate
of ADM with LQP regularization. Bnouhachem et al. [24]
studied a new inexact LQP alternating direction method by
solving a series of related systems of nonlinear equations.

2.2. Some Properties of Variational Inequalities. In this sec-
tion, we summarize some basic knowledge and related
definitions of variational inequalities.

Let𝐺 be a symmetric positive definitematrix; the𝐺-norm
of the vector 𝜇 is denoted by ‖𝜇‖

𝐺
:= √⟨𝜇, 𝐺𝜇⟩. In particular,

when 𝐺 = 𝐼, ‖𝜇‖ := √⟨𝜇, 𝜇⟩ is the Euclidean norm of 𝜇. Let
𝑃
Ω,𝐺
(⋅) be the projection operator ontoΩ under the 𝐺-norm;

that is,

𝑃
Ω,𝐺
(]) = argmin {󵄩󵄩󵄩󵄩𝜇 − ]

󵄩󵄩󵄩󵄩𝐺 | 𝜇 ∈ Ω} . (12)

From the above definition, we have the following well-known
properties:

(𝜇󸀠 − 𝑃
Ω,𝐺
(𝜇󸀠))
𝑇

𝐺(𝜇 − 𝑃
Ω,𝐺
(𝜇󸀠)) ≤ 0

∀𝜇󸀠 ∈ R𝑙, ∀𝜇 ∈ Ω,

󵄩󵄩󵄩󵄩󵄩𝑃Ω,𝐺(𝜇) − 𝑃Ω,𝐺(𝜇
󸀠)
󵄩󵄩󵄩󵄩󵄩𝐺 ≤

󵄩󵄩󵄩󵄩󵄩𝜇 − 𝜇
󸀠
󵄩󵄩󵄩󵄩󵄩𝐺, ∀𝜇, 𝜇󸀠 ∈ R𝑙,

󵄩󵄩󵄩󵄩󵄩𝜇 − 𝑃Ω,𝐺(𝜇
󸀠)
󵄩󵄩󵄩󵄩󵄩
2

𝐺

≤
󵄩󵄩󵄩󵄩󵄩𝜇 − 𝜇

󸀠
󵄩󵄩󵄩󵄩󵄩
2

𝐺

−
󵄩󵄩󵄩󵄩󵄩𝜇
󸀠 − 𝑃
Ω,𝐺
(𝜇󸀠)

󵄩󵄩󵄩󵄩󵄩
2

𝐺

,

∀𝜇󸀠 ∈ R𝑙, ∀𝜇 ∈ Ω.

(13)

The mapping 𝐹 is said to be monotone with respect to Ω
if

(𝜇 − ])𝑇 (𝐹 (𝜇) − 𝐹 (])) ≥ 0, ∀𝜇, ] ∈ Ω. (14)

The following lemma [25, page 267] states an important
result which characterizes a VI by a projection equation.

Lemma 1. LetΩ be a closed convex set inR𝑙 and let 𝐺 be any
positive definite matrix; then 𝜇∗ is a solution ofVI(Ω, 𝐹) if and
only if it satisfies

𝜇∗ = 𝑃
Ω,𝐺
(𝜇∗ − 𝛼𝐺−1𝐹 (𝜇∗)) , ∀𝛼 > 0. (15)

3. Theoretical Results of the Relaxation

In this section, we show that the range of the parameters 𝑟, 𝑠,
and 𝛽 can be enlarged in FPDM and SPDM, which is broader
than the previous theoretical results. We also establish the
global convergence of FPDM and SPDM under the new
conditions for the parameters.

3.1. The Parameters Relaxation of the FPDM. From (5), the
subproblems of FPDM can be, respectively, characterized by
the following VI form: find 𝜇𝑘+1 = (𝑥𝑘+1, 𝑦𝑘+1, 𝜆𝑘+1)𝑇 ∈ Ω
such that

(𝜇󸀠 − 𝜇𝑘+1)
𝑇

{𝐹 (𝜇𝑘+1) + 𝜂
𝐼
(𝜇𝑘+1, 𝜇𝑘) − 𝐺 (𝜇𝑘 − 𝜇𝑘+1)} ≥ 0,

∀𝜇󸀠 ∈ Ω,

(16)

with

𝜂
𝐼
(𝜇𝑘+1, 𝜇𝑘) = 𝛽(

𝐴𝑇 (𝐴 (𝑥𝑘 − 𝑥𝑘+1) + 𝐵 (𝑦𝑘 − 𝑦𝑘+1))

𝐵𝑇 (𝐴 (𝑥𝑘 − 𝑥𝑘+1) + 𝐵 (𝑦𝑘 − 𝑦𝑘+1))

0

) ,

𝐺
𝐼
= (

𝑟𝐼
𝑛

𝑠𝐼
𝑝

𝛽−1𝐼
𝑚

) ,

(17)

where 𝜂
𝐼
(𝜇𝑘+1, 𝜇𝑘) ∈ R(𝑛+𝑝+𝑚) and 𝐺

𝐼
∈ R(𝑛+𝑝+𝑚)×(𝑛+𝑝+𝑚) is

a positive definite matrix.

Lemma 2. For a given 𝜇𝑘 = (𝑥𝑘, 𝑦𝑘, 𝜆𝑘)𝑇, let 𝜇𝑘+1 =

(𝑥𝑘+1, 𝑦𝑘+1, 𝜆𝑘+1)𝑇 be generated by (16) and (17). If

𝑢
𝐼
= √

𝛽
󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩

𝑟
+
𝛽
󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩

𝑠
∈ (0, 1) , (18)

then for any 𝜇∗ = (𝑥∗, 𝑦∗, 𝜆∗)𝑇, one has

(𝜇𝑘+1 − 𝜇∗)
𝑇

𝜂
𝐼
(𝜇𝑘+1, 𝜇𝑘) ≤

𝑢
𝐼

2

󵄩󵄩󵄩󵄩󵄩𝜇
𝑘 − 𝜇𝑘+1

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼

. (19)

Proof. Since 𝐴𝑥∗ + 𝐵𝑦∗ = 𝑏 and 𝛽(𝐴𝑥𝑘+1 + 𝐵𝑦𝑘+1 − 𝑏) =
𝜆𝑘 − 𝜆𝑘+1 one has

(𝜇𝑘+1 − 𝜇∗)
𝑇

𝜂
𝐼
(𝜇𝑘+1, 𝜇𝑘)

= 𝛽(

𝑥𝑘+1 − 𝑥∗

𝑦𝑘+1 − 𝑦∗

𝜆𝑘+1 − 𝜆∗
)

𝑇

×(

𝐴𝑇 (𝐴 (𝑥𝑘 − 𝑥𝑘+1) + 𝐵 (𝑦𝑘 − 𝑦𝑘+1))

𝐵𝑇 (𝐴 (𝑥𝑘 − 𝑥𝑘+1) + 𝐵 (𝑦𝑘 − 𝑦𝑘+1))

0

)

= (𝜆𝑘 − 𝜆𝑘+1)
𝑇

(𝐴 (𝑥𝑘 − 𝑥𝑘+1) + 𝐵 (𝑦𝑘 − 𝑦𝑘+1)) .

(20)
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Applying the Cauchy-Schwarz inequality to the right term,
we get

(𝜇𝑘+1 − 𝜇∗)
𝑇

𝜂
𝐼
(𝜇𝑘+1, 𝜇𝑘)

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝜆𝑘 − 𝜆𝑘+1)

𝑇

(𝐴 (𝑥𝑘 − 𝑥𝑘+1) + 𝐵 (𝑦𝑘 − 𝑦𝑘+1))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

2
{2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝜆𝑘 − 𝜆𝑘+1)

𝑇

𝐴(𝑥𝑘 − 𝑥𝑘+1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
}

+
1

2
{2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝜆𝑘 − 𝜆𝑘+1)

𝑇

𝐵 (𝑦𝑘 − 𝑦𝑘+1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
}

≤
1

2
{

󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩

𝑢
𝐼
𝑟

󵄨󵄨󵄨󵄨󵄨𝜆
𝑘 − 𝜆𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

+
𝑢
𝐼
𝑟

󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨𝐴 (𝑥
𝑘 − 𝑥𝑘+1)

󵄨󵄨󵄨󵄨󵄨
2

}

+
1

2
{

󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩

𝑢
𝐼
𝑠

󵄨󵄨󵄨󵄨󵄨𝜆
𝑘 − 𝜆𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

+
𝑢
𝐼
𝑠

󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨𝐵 (𝑦
𝑘 − 𝑦𝑘+1)

󵄨󵄨󵄨󵄨󵄨
2

}

=
1

2
{(

󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩

𝑢
𝐼
𝑟
+

󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩

𝑢
𝐼
𝑠
)
󵄨󵄨󵄨󵄨󵄨𝜆
𝑘 − 𝜆𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

+
𝑢
𝐼
𝑟

󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨𝐴 (𝑥
𝑘 − 𝑥𝑘+1)

󵄨󵄨󵄨󵄨󵄨
2

+
𝑢
𝐼
𝑠

󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨𝐵 (𝑦
𝑘 − 𝑦𝑘+1)

󵄨󵄨󵄨󵄨󵄨
2

}

≤
1

2
{(

󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩

𝑢
𝐼
𝑟
+

󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩

𝑢
𝐼
𝑠
)
󵄨󵄨󵄨󵄨󵄨𝜆
𝑘 − 𝜆𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

+ 𝑢
𝐼
𝑟
󵄨󵄨󵄨󵄨󵄨𝑥
𝑘 − 𝑥𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

+ 𝑢
𝐼
𝑠
󵄨󵄨󵄨󵄨󵄨𝑦
𝑘 − 𝑦𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

}

=
1

2
{
𝑢
𝐼

𝛽

󵄨󵄨󵄨󵄨󵄨𝜆
𝑘 − 𝜆𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

+ 𝑢
𝐼
𝑟
󵄨󵄨󵄨󵄨󵄨𝑥
𝑘 − 𝑥𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

+ 𝑢
𝐼
𝑠
󵄨󵄨󵄨󵄨󵄨𝑦
𝑘 − 𝑦𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

}

=
𝑢
𝐼

2

󵄩󵄩󵄩󵄩󵄩𝜇
𝑘 − 𝜇𝑘+1

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼

.

(21)

Theorem 3. Let the sequence {𝜇𝑘} be generated by FPDM (16)
and (17). If

𝑢
𝐼
= √

𝛽
󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩

𝑟
+
𝛽
󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩

𝑠
∈ (0, 1) , (22)

then one has

󵄩󵄩󵄩󵄩󵄩𝜇
𝑘+1 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼

≤
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼

− (1 − 𝑢
𝐼
)
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘 − 𝜇𝑘+1

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼

, ∀𝜇∗ ∈ Ω∗.

(23)

Proof. Consider

󵄩󵄩󵄩󵄩󵄩𝜇
𝑘+1 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼

=
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘+1 − 𝜇𝑘 + 𝜇𝑘 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼

(24)

=
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼

− 2(𝜇𝑘 − 𝜇∗)
𝑇

𝐺
𝐼
(𝜇𝑘 − 𝜇𝑘+1)

+
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘+1 − 𝜇𝑘

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼

.

(25)

On the other hand, by setting 𝜇󸀠 = 𝜇∗ in (16), we have

(𝜇𝑘+1 − 𝜇∗)
𝑇

𝐺(𝜇𝑘 − 𝜇𝑘+1) ≥ (𝜇𝑘+1 − 𝜇∗)
𝑇

𝐹 (𝜇𝑘+1)

+ (𝜇𝑘+1 − 𝜇∗) 𝜂
𝐼
(𝜇𝑘+1, 𝜇𝑘) .

(26)

Using the fact that 𝐹 is a monotone operator, we have

(𝜇𝑘+1 − 𝜇∗)
𝑇

𝐹 (𝜇𝑘+1) ≥ (𝜇𝑘+1 − 𝜇∗)
𝑇

𝐹 (𝜇∗) ≥ 0. (27)

With rearrangement of the term (26) and using (27), we
derive that

(𝜇𝑘 − 𝜇∗)
𝑇

𝐺(𝜇𝑘 − 𝜇𝑘+1) ≥ (𝜇𝑘 − 𝜇𝑘+1)
𝑇

𝐺(𝜇𝑘 − 𝜇𝑘+1)

+ (𝜇𝑘+1 − 𝜇∗) 𝜂
𝐼
(𝜇𝑘+1, 𝜇𝑘) .

(28)

Substituting (28) into (24), we get

󵄩󵄩󵄩󵄩󵄩𝜇
𝑘+1 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼

≤
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼

− 2 (𝜇𝑘+1 − 𝜇∗) 𝜂
𝐼
(𝜇𝑘+1, 𝜇𝑘)

−
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘+1 − 𝜇𝑘

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼

.

(29)

With Lemma 1, substituting (19) into (29), we get

󵄩󵄩󵄩󵄩󵄩𝜇
𝑘+1 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼

≤
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼

− (1 − 𝑢
𝐼
)
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘 − 𝜇𝑘+1

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼

, (30)

which completes the proof.

Remark 4. Compared to the requirement of the parameters
𝑟, 𝑠, 𝛽 in [8], we now allow the step sizes 𝑟, 𝑠, 𝛽 to be
chosen according to rule (7). In fact, the restriction on 𝑟 and
𝑠 proposed in [8] is

𝑟 > 2𝛽
󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩 , 𝑠 > 2𝛽

󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩 , (31)

which is a special case of the rule (18), since

𝛽
󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩

𝑟
+
𝛽
󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩

𝑠
<
𝛽
󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩

2𝛽
󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩
+
𝛽
󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩

2𝛽
󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩
= 1; (32)

that is, 𝑢
𝐼
∈ (0, 1). Hence, the requirement on the parameters

is significantly relaxed.
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3.2. The Parameters Relaxation of the SPDM. In this sub-
section, we extend our analysis to the SPDM. From (5), the
subproblems of SPDM can be characterized by the following
VI form: find 𝜇𝑘+1 = (𝑥𝑘+1, 𝑦𝑘+1, 𝜆𝑘+1)𝑇 ∈ Ω such that

(𝜇󸀠 − 𝜇𝑘+1)
𝑇

{𝐹 (𝜇𝑘+1) + 𝜂
𝐼𝐼
(𝜇𝑘+1, 𝜇𝑘) − 𝐺 (𝜇𝑘 − 𝜇𝑘+1)} ≥ 0,

∀𝜇󸀠 ∈ Ω,

(33)

with

𝜂
𝐼𝐼
(𝜇𝑘+1, 𝜇𝑘) = 𝛽(

𝐴𝑇 (𝐴 (𝑥𝑘 − 𝑥𝑘+1) + 𝐵 (𝑦𝑘 − 𝑦𝑘+1))

𝐵𝑇 (𝐴 (𝑥𝑘 − 𝑥𝑘+1) + 𝐵 (𝑦𝑘 − 𝑦𝑘+1))

0

) ,

𝐺
𝐼𝐼
= (

𝑟𝐼
𝑛
+ 𝛽

󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩
𝑠𝐼
𝑝
+ 𝛽

󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩
𝛽−1𝐼
𝑚

),

(34)

where 𝜂
𝐼𝐼
(𝜇𝑘+1, 𝜇𝑘) ∈ R(𝑛+𝑝+𝑚) and 𝐺

𝐼𝐼
∈ R(𝑛+𝑝+𝑚)×(𝑛+𝑝+𝑚) is

a positive definite matrix.

Lemma 5. For a given 𝜇𝑘 = (𝑥𝑘, 𝑦𝑘, 𝜆𝑘)𝑇, let 𝜇𝑘+1 =

(𝑥𝑘+1, 𝑦𝑘+1, 𝜆𝑘+1)𝑇 be generated by (33) and (34). If

𝑢
𝐼𝐼
= √

𝛽
󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩

𝑟 + 𝛽
󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩
+

𝛽
󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩

𝑠 + 𝛽
󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩
∈ (0, 1) , (35)

then for any 𝜇∗ = (𝑥∗, 𝑦∗, 𝜆∗)𝑇 one has

(𝜇𝑘+1 − 𝜇∗)
𝑇

𝜂
𝐼𝐼
(𝜇𝑘+1, 𝜇𝑘) ≤

𝑢
𝐼𝐼

2

󵄩󵄩󵄩󵄩󵄩𝜇
𝑘 − 𝜇𝑘+1

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼𝐼

. (36)

Proof. Analogically, we have

(𝜇𝑘+1 − 𝜇∗)
𝑇

𝜂
𝐼𝐼
(𝜇𝑘+1, 𝜇𝑘)

= (𝜆𝑘 − 𝜆𝑘+1)
𝑇

(𝐴 (𝑥𝑘 − 𝑥𝑘+1) + 𝐵 (𝑦𝑘 − 𝑦𝑘+1)) .

(37)

Applying the Cauchy-Schwarz inequality to the right term,
we get

(𝜇𝑘+1 − 𝜇∗)
𝑇

𝜂
𝐼𝐼
(𝜇𝑘+1, 𝜇𝑘)

≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝜆𝑘 − 𝜆𝑘+1)

𝑇

(𝐴 (𝑥𝑘 − 𝑥𝑘+1) + 𝐵 (𝑦𝑘 − 𝑦𝑘+1))
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

2
{2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝜆𝑘 − 𝜆𝑘+1)

𝑇

𝐴(𝑥𝑘 − 𝑥𝑘+1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
}

+
1

2
{2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
(𝜆𝑘 − 𝜆𝑘+1)

𝑇

𝐵 (𝑦𝑘 − 𝑦𝑘+1)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
}

≤
1

2
{

󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩

𝑢
𝐼𝐼
(𝑟 + 𝛽

󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩)

󵄨󵄨󵄨󵄨󵄨𝜆
𝑘 − 𝜆𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

+
𝑢
𝐼𝐼
(𝑟 + 𝛽

󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩)

󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨𝐴 (𝑥
𝑘 − 𝑥𝑘+1)

󵄨󵄨󵄨󵄨󵄨
2

}

+
1

2
{

󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩

𝑢
𝐼𝐼
(𝑠 + 𝛽

󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩)

󵄨󵄨󵄨󵄨󵄨𝜆
𝑘 − 𝜆𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

+
𝑢
𝐼𝐼
(𝑠 + 𝛽

󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩)

󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨𝐵 (𝑦
𝑘 − 𝑦𝑘+1)

󵄨󵄨󵄨󵄨󵄨
2

}

=
1

2
{(

󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩

𝑢
𝐼𝐼
(𝑟 + 𝛽

󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩)
+

󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩

𝑢
𝐼𝐼
(𝑠 + 𝛽

󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩)
)

×
󵄨󵄨󵄨󵄨󵄨𝜆
𝑘 − 𝜆𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

+
𝑢
𝐼𝐼
(𝑟 + 𝛽

󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩)

󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨𝐴 (𝑥
𝑘 − 𝑥𝑘+1)

󵄨󵄨󵄨󵄨󵄨
2

+
𝑢
𝐼𝐼
(𝑠 + 𝛽

󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩)

󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨𝐵 (𝑦
𝑘 − 𝑦𝑘+1)

󵄨󵄨󵄨󵄨󵄨
2

}

≤
1

2
{(

󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩

𝑢
𝐼𝐼
(𝑟 + 𝛽

󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩)
+

󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩

𝑢
𝐼𝐼
(𝑠 + 𝛽

󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩)
)

×
󵄨󵄨󵄨󵄨󵄨𝜆
𝑘 − 𝜆𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

+ 𝑢
𝐼𝐼
(𝑟 + 𝛽

󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩)
󵄨󵄨󵄨󵄨󵄨𝑥
𝑘 − 𝑥𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

+ 𝑢
𝐼𝐼
(𝑠 + 𝛽

󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩)
󵄨󵄨󵄨󵄨󵄨𝑦
𝑘 − 𝑦𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

}

=
1

2
{
𝑢
𝐼𝐼

𝛽

󵄨󵄨󵄨󵄨󵄨𝜆
𝑘 − 𝜆𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

+ 𝑢
𝐼𝐼
(𝑟 + 𝛽

󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩)
󵄨󵄨󵄨󵄨󵄨𝑥
𝑘 − 𝑥𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

+ 𝑢
𝐼𝐼
(𝑠 + 𝛽

󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩)
󵄨󵄨󵄨󵄨󵄨𝑦
𝑘 − 𝑦𝑘+1

󵄨󵄨󵄨󵄨󵄨
2

}

=
𝑢
𝐼𝐼

2

󵄩󵄩󵄩󵄩󵄩𝜇
𝑘 − 𝜇𝑘+1

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼𝐼

.

(38)

Theorem 6. Let the sequence {𝜇𝑘} be generated by SPDM (33)
and (34). If

𝑢
𝐼𝐼
= √

𝛽
󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩

𝑟 + 𝛽
󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩
+

𝛽
󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩

𝑠 + 𝛽
󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩
∈ (0, 1) , (39)

then one has
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘+1 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼𝐼

≤
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼𝐼

− (1 − 𝑢
𝐼𝐼
)
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘 − 𝜇𝑘+1

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼𝐼

,

∀𝜇∗ ∈ Ω∗.

(40)

Proof . Consider
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘+1 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼𝐼

=
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘+1 − 𝜇𝑘 + 𝜇𝑘 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼𝐼

(41)

=
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼𝐼

− 2(𝜇𝑘 − 𝜇∗)
𝑇

𝐺
𝐼𝐼
(𝜇𝑘 − 𝜇𝑘+1)

+
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘+1 − 𝜇𝑘

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼𝐼

.

(42)
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On the other hand, by setting 𝜇󸀠 = 𝜇∗ in (33), we have

(𝜇𝑘+1 − 𝜇∗)
𝑇

𝐺(𝜇𝑘 − 𝜇𝑘+1) ≥ (𝜇𝑘+1 − 𝜇∗)
𝑇

𝐹 (𝜇𝑘+1)

+ (𝜇𝑘+1 − 𝜇∗) 𝜂
𝐼𝐼
(𝜇𝑘+1, 𝜇𝑘) .

(43)

By using the monotonicity of 𝐹, we have

(𝜇𝑘+1 − 𝜇∗)
𝑇

𝐹 (𝜇𝑘+1) ≥ (𝜇𝑘+1 − 𝜇∗)
𝑇

𝐹 (𝜇∗) ≥ 0. (44)

With rearrangement of the term (43), we derive that

(𝜇𝑘 − 𝜇∗)
𝑇

𝐺(𝜇𝑘 − 𝜇𝑘+1) ≥ (𝜇𝑘 − 𝜇𝑘+1)
𝑇

𝐺(𝜇𝑘 − 𝜇𝑘+1)

+ (𝜇𝑘+1 − 𝜇∗) 𝜂
𝐼𝐼
(𝜇𝑘+1, 𝜇𝑘) .

(45)

Substituting (45) into (41), we get

󵄩󵄩󵄩󵄩󵄩𝜇
𝑘+1 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼𝐼

≤
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼𝐼

− 2 (𝜇𝑘+1 − 𝜇∗) 𝜂
𝐼𝐼
(𝜇𝑘+1, 𝜇𝑘)

−
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘+1 − 𝜇𝑘

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼𝐼

.

(46)

With Lemma 2, substituting (36) into (46), we get

󵄩󵄩󵄩󵄩󵄩𝜇
𝑘+1 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼𝐼

≤
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘 − 𝜇∗

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼𝐼

− (1 − 𝑢
𝐼𝐼
)
󵄩󵄩󵄩󵄩󵄩𝜇
𝑘 − 𝜇𝑘+1

󵄩󵄩󵄩󵄩󵄩
2

𝐺𝐼𝐼

,

(47)

which completes the proof.

Remark 7. Compared to the requirement of the parameters 𝑟,
𝑠, 𝛽 in [8], we now allow the step sizes 𝑟, 𝑠, 𝛽 to be chosen
according to the rule (8). In fact, the restriction on 𝑟 and 𝑠
proposed in [8] is

𝑟 > 𝛽
󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩 , 𝑠 > 𝛽

󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩 , (48)

which is a special case of the rule (35), since

𝛽
󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩

𝑟 + 𝛽
󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩
+

𝛽
󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩

𝑠 + 𝛽
󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩
<
𝛽
󵄩󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩󵄩

2𝛽
󵄩󵄩󵄩󵄩𝐴
𝑇𝐴
󵄩󵄩󵄩󵄩
+
𝛽
󵄩󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩󵄩

2𝛽
󵄩󵄩󵄩󵄩𝐵
𝑇𝐵
󵄩󵄩󵄩󵄩
= 1;

(49)

that is, 𝑢
𝐼𝐼
∈ (0, 1). Hence, the requirement on the parameters

is significantly relaxed.

3.3. The Convergence. In this subsection, we give the main
convergence theorem of the FPDMand SPDMunder the new
required parameters conditions.

Theorem 8. The sequence {𝜇𝑘} generated by the FPDM (resp.,
SPDM) under the conditions (18) (resp., (35)) converges to some
solution 𝜇∗, which is a solution of SVIs (9).

Proof. Theorem 3 (resp., Theorem 6) means that the
sequence {𝜇𝑘} generated is Fejér monotone with respect
to the solution set Ω∗ and the assertion follows immediately
by using the property of Fejér monotonicity.

4. Numerical Experiments

In this section, we report the sensitivity of the involved
parameters 𝑟, 𝑠,𝛽 of FPDMon the stable principal component
pursuit problem (SPCP). Since SPDM is the extended version
of FPDM and the sensitivity results of SPDM are similar to
those of FPDM, we omit the numerical results of SPDM for
the sake of succinctness.The problem tested is from Example
2 of [26]. Codes were all written in Matlab 2009b and all
programs were run on HP notebook with Intel Core CPU 2.0
GHZ and 2G memory.

SPCP arising from compressed sensing seeks to decom-
pose a given observation matrix 𝑀 into the sum of three
matrices:𝑀 := 𝐿 + 𝑆 + 𝑍, where 𝐿 is a nonnegative and low-
rank matrix, 𝑆 is a sparse matrix, and𝑍 is a noise matrix.The
model of SPCP can be cast as

min
𝐿,𝑆,𝑍

‖𝐿‖
∗
+ 𝜌‖𝑆‖

1
+I (‖𝑍‖

𝐹
≤ 𝜎) +I (𝐿 ≥ 0)

s.t. 𝐿 + 𝑆 + 𝑍 = 𝑀,

(50)

where ‖ ⋅ ‖
∗
is the so-called nuclear norm (the sum of all

singular values), ‖ ⋅ ‖
1
is the 𝑙

1
norm, andI(⋅) is an indicator

function.
Following the procedure described in [26], by introduc-

ing an auxiliary variable𝐾, grouping 𝐿 and 𝑆 as one big block
[𝐿; 𝑆], and grouping𝑍 and𝐾 as another big block [𝑍;𝐾], (50)
can be reformulated as the standard form of (1) as follows:

min
𝐿,𝑆,𝑍,𝐾

‖𝐿‖
∗
+ 𝜌‖𝑆‖

1
+I (‖𝑍‖

𝐹
≤ 𝜎) +I (𝐾 ≥ 0)

s.t. (
𝐼 𝐼
𝐼 0

)(
𝐿
𝑆
) + (

𝐼 0
0 −𝐼

)(
𝑍
𝐾
) = (

𝑀
0
) .

(51)

Then the largest singular value of the coefficient matrix of
[𝐿; 𝑆] is √2.618. The largest singular value of the coefficient
matrix of [𝑍;𝐾] is 1. For a better illustration, we denote 𝜏

1
=

2.618, 𝜏
2
= 1.

FPDM (5) applied to (51) yields the following iterative
scheme:

𝐿𝑘+1

= argmin‖𝐿‖
∗

+
𝑟

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐿 − 𝐿𝑘

−
1

𝑟
(Λ𝑘
1
+ Λ𝑘
2
− 𝛽 (2𝐿𝑘 + 𝑆𝑘 + 𝑍𝑘 − 𝐾𝑘 −𝑀))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

,

(52a)
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𝑆𝑘+1 = argmin 𝜌‖𝑆‖
1

+
𝑟

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑆 − 𝑆𝑘 −

1

𝑟
(Λ𝑘
1
− 𝛽 (𝐿𝑘 + 𝑆𝑘 + 𝑍𝑘 −𝑀))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

,

(52b)

𝑍𝑘+1 = argminI (‖𝑍‖
𝐹
≤ 𝜎)

+
𝑠

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑍 − 𝑍𝑘 −

1

𝑠
(Λ𝑘
1
− 𝛽 (𝐿𝑘 + 𝑆𝑘 + 𝑍𝑘 −𝑀))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

,

(52c)

𝐾𝑘+1 = argminI (𝐾 ≥ 0)

+
𝑠

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝐾 − 𝐾𝑘 +

1

𝑠
(Λ𝑘
2
− 𝛽 (𝐾𝑘 − 𝐿𝑘))

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐹

,

(52d)

Λ𝑘+1
1
= Λ𝑘
1
− 𝛽 (𝐿𝑘+1 + 𝑆𝑘+1 + 𝑍𝑘+1 −𝑀) , (52e)

Λ𝑘+1
2
= Λ𝑘
2
− 𝛽 (𝐿𝑘+1 − 𝐾𝑘+1) . (52f)

There are twomain advantages of FPDMapplied to SPCP.
First, all the generated minimizations in (52a)–(52d) have
closed-form solutions. Second, the subproblems (52a)–(52d)
are highly parallel, making FPDM appealing for parallel or
distributed computing. Now, we elaborate on the strategy of
solving the resulting subproblems at each iteration.

(i) The 𝐿-subproblem (52a) amounts to evaluate the
proximal operator of the nuclear norm function and is given
by the matrix shrinkage operation

𝐿𝑘+1

:= MatShrink(𝐿𝑘 + 1
𝑟
(Λ𝑘
1
+ Λ𝑘
2

− 𝛽 (2𝐿𝑘 + 𝑆𝑘 + 𝑍𝑘 − 𝐾𝑘 −𝑀)) ,
1

𝑟
) ,

(53)

where the matrix shrinkage operator MatShrink(𝑀, 𝜉) (𝜉 >
0) is defined as

MatShrink (𝑀, 𝜉) := 𝑈Diag (max {𝜎 − 𝜉, 0}) 𝑉𝑇, (54)

and 𝑈Diag(𝜎)𝑉𝑇 is the SVD of matrix𝑀.
(ii) The closed-form solution of 𝑆-subproblem (52b) can

be given by the 𝑙
1
shrinkage operation:

𝑆𝑘+1 := Shrink(𝑆𝑘 + 1
𝑟
(Λ𝑘
1
− 𝛽 (𝐿𝑘 + 𝑆𝑘 + 𝑍𝑘 −𝑀)) ,

𝜌

𝑟
) ,

(55)

where the 𝑙
1
shrinkage operator Shrink(𝑀, 𝜉) is defined as

[Shrink (𝑀, 𝜉)]
𝑖𝑗
:=
{{
{{
{

𝑀
𝑖𝑗
− 𝜉, if 𝑀

𝑖𝑗
> 𝜉

𝑀
𝑖𝑗
+ 𝜉, if 𝑀

𝑖𝑗
< −𝜉

0, if 󵄨󵄨󵄨󵄨󵄨𝑀𝑖𝑗
󵄨󵄨󵄨󵄨󵄨 ≤ 𝜉.

(56)

(iii) The 𝑍-subproblem (52c) amounts to projecting the
matrix𝑊𝑘 := 𝑀 + (1/𝛽)Λ𝑘

1
− (𝐿𝑘 + 𝑆𝑘) onto the Euclidean

ball ‖𝑍‖
𝐹
≤ 𝜎, whose closed-form solution is given by

𝑍𝑘+1 :=
𝑊𝑘

max {1, 󵄩󵄩󵄩󵄩𝑊𝑘
󵄩󵄩󵄩󵄩𝐹/𝜎}

. (57)

(iv) The 𝐾-subproblem (52d) amounts to projecting the
matrix 𝐿𝑘−(1/𝛽)Λ𝑘

2
onto the the nonnegative orthant, whose

closed-form solution is given by

𝐾𝑘+1 := max {𝐿𝑘 − 1
𝛽
Λ𝑘
2
, 0} . (58)

For detailed analytical methods of (52a)–(52d), the reader is
referred to, for example, [26, 27].

In our experiment, we generate the data of (50) randomly
in the same way as [26]. For given 𝑛, 𝑟 < 𝑛, the 𝑛 × 𝑛 rank-
𝑟 matrix 𝐿∗ was generated by 𝐿∗ = 𝑅

1
𝑅𝑇
2
, where 𝑅

1
and 𝑅

2

are 𝑛 × 𝑟 random matrices whose entries are independently
and identically (i.i.d.) uniformly distributed in [0, 1]. Note
that, in this experiment, 𝐿∗ is a componentwise nonnegative
and low-rank matrix we want to recover. The support of the
sparse matrix 𝑆∗ was chosen uniformly and randomly, and
the nonzero entries of 𝑆∗ were i.i.d. uniformly in the interval
[−500, 500].The entries ofmatrix𝑍∗ for noisewere generated
as i.i.d. Gaussian with standard deviation 10−4.

As in [26], we set𝑀 := 𝐿∗ +𝑆∗ +𝑍∗; we chose 𝜌 := 1/√𝑛.
The initial iterate for FPDM is 𝐿0 = 𝐾0 = −𝑀, 𝑆0 = 𝑍0 =
0, Λ0
1
= Λ0
2
= 0. The stopping criterion is set as

resid := ‖𝐿 + 𝑆 + 𝑍 −𝑀‖𝐹
‖𝑀‖
𝐹

< 𝜖
𝑟
, (59)

where 𝜖
𝑟
is the tolerance set as 𝜖

𝑟
= 10−4. We denoted

Rank
𝑟
:= 𝑟/𝑛 so that the rank of 𝐿∗ is 𝑛 ∗ Rank

𝑟
and

Card
𝑟
:= cardinality(𝑆∗)/(𝑛2) so that the cardinality of 𝑆∗

is 𝑛2 ∗ Card
𝑟
. For some cases of dimension 𝑚, we report

the iteration numbers (Iter.), relative error of the low-rank
matrix 𝐿(rel

𝐿
), relative error of the sparse matrix 𝑆(rel

𝑆
), and

CPU times in seconds (CPU(s)), where the relative errors are
defined as

rel
𝐿
:=

󵄩󵄩󵄩󵄩𝐿 − 𝐿
∗󵄩󵄩󵄩󵄩𝐹

‖𝐿∗‖
𝐹

, rel
𝑆
:=

󵄩󵄩󵄩󵄩𝑆 − 𝑆
∗󵄩󵄩󵄩󵄩𝐹

‖𝑆∗‖
𝐹

. (60)

For each instance, we randomly created ten examples, so the
results were averaged over ten runs.

The computational results are presented in Table 1. For a
different instance, the value of 𝛽, 𝑟, and 𝑠 chosen to satisfy the
condition (7), respectively. It can be seen that if we choose
𝑟 a little smaller than 2𝛽‖𝐴𝑇𝐴‖ and 𝑠 a little larger than
2𝛽‖𝐵𝑇𝐵‖, the numerical performance of FPDMwith the new
selected parameters shows better than the case, where 𝑟 =
2𝛽‖𝐴𝑇𝐴‖, 𝑠 = 2𝛽‖𝐵𝑇𝐵‖.

5. Conclusions

In this paper, we show that the requirement ranges on the
involved parameters of the proximal-based parallel decom-
position methods can be significantly enlarged. We prove
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Table 1: Numerical results for stable principal component pursuit problem.

𝑛 𝑟 𝑠 Iter. rel
𝐿

rel
𝑆

CPU (s) 𝑟 𝑠 Iter. rel
𝐿

rel
𝑆

CPU (s)
𝛽 = 0.01, Rank

𝑟
= 0.01, Card

𝑟
= 0.01

50 2𝛽𝜏
1

2𝛽𝜏
2

97 9.01𝑒 − 003 2.89𝑒 − 005 0.3 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 101 9.18𝑒 − 003 2.87𝑒 − 005 0.3

100 2𝛽𝜏
1

2𝛽𝜏
2

78 5.71𝑒 − 003 6.16𝑒 − 005 1.1 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 76 6.57𝑒 − 003 5.11𝑒 − 005 1.0

150 2𝛽𝜏
1

2𝛽𝜏
2

81 3.52𝑒 − 003 4.65𝑒 − 005 3.2 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 77 3.75𝑒 − 003 5.19𝑒 − 005 2.9

200 2𝛽𝜏
1

2𝛽𝜏
2

81 3.60𝑒 − 003 5.53𝑒 − 005 6.6 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 76 3.61𝑒 − 003 6.56𝑒 − 005 5.9

300 2𝛽𝜏
1

2𝛽𝜏
2

83 2.33𝑒 − 003 5.97𝑒 − 005 20.4 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 82 2.57𝑒 − 003 5.31𝑒 − 005 19.4

𝛽 = 0.02, Rank
𝑟
= 0.01, Card

𝑟
= 0.01

50 2𝛽𝜏
1

2𝛽𝜏
2

181 8.42𝑒 − 003 2.37𝑒 − 005 0.5 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 180 8.39𝑒 − 003 2.36𝑒 − 005 0.5

100 2𝛽𝜏
1

2𝛽𝜏
2

105 8.47𝑒 − 003 2.03𝑒 − 005 1.4 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 106 8.21𝑒 − 003 2.34𝑒 − 005 1.4

150 2𝛽𝜏
1

2𝛽𝜏
2

127 5.06𝑒 − 003 2.09𝑒 − 005 4.7 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 126 5.05𝑒 − 003 2.14𝑒 − 005 4.5

200 2𝛽𝜏
1

2𝛽𝜏
2

93 4.73𝑒 − 003 1.87𝑒 − 005 7.2 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 91 4.79𝑒 − 003 2.67𝑒 − 005 7.0

300 2𝛽𝜏
1

2𝛽𝜏
2

84 3.10𝑒 − 003 3.37𝑒 − 005 20.3 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 85 3.13𝑒 − 003 2.63𝑒 − 005 20.2

𝛽 = 0.01, Rank
𝑟
= 0.02, Card

𝑟
= 0.02

50 2𝛽𝜏
1

2𝛽𝜏
2

84 1.14𝑒 − 002 5.10𝑒 − 005 0.2 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 85 1.24𝑒 − 002 3.92𝑒 − 005 0.2

100 2𝛽𝜏
1

2𝛽𝜏
2

79 5.76𝑒 − 003 5.40𝑒 − 005 1.2 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 76 5.71𝑒 − 003 5.02𝑒 − 005 1.1

150 2𝛽𝜏
1

2𝛽𝜏
2

82 3.55𝑒 − 003 5.99𝑒 − 005 3.6 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 81 3.80𝑒 − 003 4.90𝑒 − 005 3.4

200 2𝛽𝜏
1

2𝛽𝜏
2

84 2.90𝑒 − 003 6.70𝑒 − 005 7.3 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 83 2.92𝑒 − 003 5.81𝑒 − 005 7.1

300 2𝛽𝜏
1

2𝛽𝜏
2

91 2.18𝑒 − 003 5.42𝑒 − 005 22.8 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 90 2.33𝑒 − 003 4.85𝑒 − 005 22.5

𝛽 = 0.01, Rank
𝑟
= 0.03, Card

𝑟
= 0.03

50 2𝛽𝜏
1

2𝛽𝜏
2

99 9.31𝑒 − 003 3.09𝑒 − 005 0.3 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 101 9.33𝑒 − 003 2.99𝑒 − 005 0.3

100 2𝛽𝜏
1

2𝛽𝜏
2

83 4.89𝑒 − 003 5.03𝑒 − 005 1.4 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 81 5.28𝑒 − 003 4.53𝑒 − 005 1.3

150 2𝛽𝜏
1

2𝛽𝜏
2

86 3.19𝑒 − 003 5.84𝑒 − 005 3.8 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 84 3.22𝑒 − 003 5.68𝑒 − 005 3.7

200 2𝛽𝜏
1

2𝛽𝜏
2

91 2.82𝑒 − 003 5.67𝑒 − 005 8.5 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 90 2.78𝑒 − 003 4.92𝑒 − 005 8.4

300 2𝛽𝜏
1

2𝛽𝜏
2

115 3.47𝑒 − 003 1.88𝑒 − 005 30.8 1.9𝛽𝜏
1

1.9𝛽𝜏
2
/0.9 116 3.52𝑒 − 003 1.85𝑒 − 005 29.0

the global convergence of the new scheme under the new
conditions. Preliminary numerical experiments on the stable
principal component pursuit problem testify to the advan-
tages of the enlargement.
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