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Abstract: In the Lesser Caucasus three main domains are distinguished from SW to NE: (1) the
autochthonous South Armenian Block (SAB), a Gondwana-derived terrane; (2) the ophiolitic
Sevan—Akera suture zone; and (3) the Eurasian plate. Based on our field work, new stratigraphical,
petrological, geochemical and geochronological data combined with previous data we present new
insights on the subduction, obduction and collision processes recorded in the Lesser Caucasus. Two
subductions are clearly identified, one related to the Neotethys subduction beneath the Eurasian
margin and one intra-oceanic (SSZ) responsible for the opening of a back-arc basin which
corresponds to the ophiolites of the Lesser Caucasus. The obduction occurred during the Late Con-
iacian to Santonian and is responsible for the widespread ophiolitic nappe outcrop in front of the
suture zone. Following the subduction of oceanic lithosphere remnants under Eurasia, the collision
of the SAB with Eurasia started during the Paleocene, producing 1) folding of ophiolites, arc and
Upper Cretaceous formations (Transcaucasus massif to Karabakh); 2) thrusting toward SW; and 3)
a foreland basin in front of the belt. Upper—Middle Eocene series unconformably cover the three
domains. From Eocene to Miocene as a result of the Arabian plate collision with the SAB to
the South, southward propagation of shortening featured by folding and thrusting occurred all
along the belt. These deformations are sealed by a thick sequence of unconformable Miocene to
Quaternary clastic and volcanic rocks of debated origin.

The Mesozoic ophiolites of the Lesser Caucasus
belong to the Tethyan ophiolitic suture zone
(Knipper 1975; Adamia et al. 1981; Zakariadze
et al. 1983; Knipper et al. 1986) (Fig. 1). Conse-
quently the Lesser Caucasus mountain belt recorded
Mesozoic and Cenozoic geodynamic evolutions
related to the closure of the Northern Neotethys
ocean (Sengér & Yilmaz 1981; Adamia et al
1981; Dercourt et al. 1986; Ricou 1994; Nikishin

et al. 1998; Yilmaz et al. 2000; Stampfi et al.
2001; Robertson 2002; Golonka 2004). In this
context, the NW—SE trending Sevan—Akera suture
zone extends on nearly 400 km, north of the Sevan
Lake from Amassia to the Nagorno-Karabagh
region. To the SE of this region it is covered by
Quaternary deposits along the Araks valley
(Fig. 2). The outcrops of this arched zone reach a
maximum width of 25 km and are characterized



//doc.rero.ch

http

East European Platform

45"

SN

Scythian Platform

G
a’“

A

1 (1 1

I'o of '
25°E an'e 25°E
D Platform

- European margin (Pontides) 9

] A
w'e 4sE 5058

500 km CACC : Central anatolian crystalline complex
KM : Kirsehir massif

- European margin including magmatic are : Pontides, Somkheto-Karabakh MM : Menderes massif

- Lesser Caucasus units including ophiolites
@ Metamorphic massifs

- Sakarya accreted terrane
[DID] Tauride—Anatolides. South Armenian accreted terranes

E Iran acereted terrane during Eo-Cimmenian orogeny

Tauride=Anatolides with obducted ophiolites and
Peri arabic units (Lycian nappes) including ophiolites

- Suspected oceanic crust

SM : Sakarya massif

IAES : [zmir - Ankara - Erzinkan suture
NAF : North Anatolian fault

ZAF : East Anatolian fault

G reater Caucasus

LC : Lesser Caucasus

SA - South armenian block

V' : Van Lake
S : Sevan Lake
R : Rezaiyeh Lake

Fig. 1. Structural sketch map of the Tauride— Anatolides, Caucausus and Iranian belts. Location of Figure 2 is indicated.

by many discontinuous massifs, exposing ultraba-
sites, gabbros, basalts and pelagic sedimentary
rocks (Knipper 1975; Gevorkyan & Gevorkyan
2003; Aghamalyan 2004; Melikyan 2004) (Fig. 2).
The location of this ophiolitic zone between
Eurasia and the Daralagez continental terrane or
South Armenian Block (SAB; a continental terrane
of Gondwanian origin, Knipper & Khain 1980;
Monin & Zonenshain 1987) suggests either an
allochthonous unit or a real suture zone within the
Lesser Caucasus belt. According to Aghamalyan
(1996, 2004), the Sevan—Akera ophiolitic zone

corresponds to a suture zone where Eurasian and a
microplate plates have joined together. However,
other outcrops of ophiolites (the Vedi and Zangezur
ophiolites) are known southwestward of the Sevan—
Akera zone (Fig. 2). Consequently the ophiolites of
the Lesser Caucasus could correspond to several
sutures zones (Aslanyan & Satian 1977) or only
one reflecting a complex west-Pacific type evolution
of the Neotethys Ocean east of the Erzincan suture
zone (Eastern Anatolia, Turkey) and west of the
Iran ophiolitic ones (Knipper 1975; Adamia et al.
1981; Lordkipanidze et al. 1988; Yilmaz et al. 2000).
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Fig. 2. Structural map of the Lesser Caucasus, modified from Nalivkin (1976) and including our observations.

A, Variscan Khrami massif and its Carboniferous volcano-sedimentary cover (Georgia); B, Variscan Loki Massif
(Georgia); C, Zayemchay Valley (Azerbaijan); D, Gochkarchay Valley (Azerbaijan); E, Yasamal Valley (Azerbaijan);
F, Kurakchay Valley (Azerbaijan), all these locations are discussed in the text.

In the Lesser Caucasus the apparent southwest-
ward obduction of oceanic lithosphere on the
South Armenian Block (Knipper 1975; Knipper &
Khain 1980; Monin & Zonenshain 1987) occurred

during the Late Cretaceous (Sokolov 1977;
Knipper & Khain 1980). It was classically admitted
that the obduction was directly related to the col-
lision between the SAB and Eurasia. As a result
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the Eurasian plate overthrusted the ophiolites south-
wards (Adamia et al. 1977, 1981).

As for many examples around the world, in such
structural setting, occurrences of ophiolites feature
the obduction and collision stages of geodynamic
evolution of mountain belts. Where the suture zone
units have been preserved from metamorphism due
to the collision, they may give significant informa-
tion on the initial stages as the geodynamic setting
of their formation and the subduction.

This belt was deformed by superimposed
tectonics which makes it difficult to decipher each
structure and consequently the geodynamic pro-
cesses from which they resulted. Accordingly, the
main debated subjects on the Lesser Caucasus are:
1) the occurrence or not of three main ophiolitic

zones corresponding for some authors to three
main sutures zones; 2) the modalities and timing
of collision stages between the SAB and Eurasia,
including the verging of continental subduction
and age of its triggering; and 3) the origin of
the widespread magmatic activity that occurred
during Eocene time and then from the Oligocene—
Miocene to the Quaternary. New investigations
were deemed necessary to solve these questions
all related to the geodynamic evolution of the
Neotethys Ocean and its closure.

According to new field surveys (mapping and
acquisition of structural data) and new analytic
data (Ar/Ar dating, geochemistry, micropalaeonto-
logical dating: Tables 1 and 2) obtained thanks
to the MEBE programme support, we discuss

Table 1. Upper Cretaceous Nannofossils dating with (WGS84) GPS locations

Location Sample Latitude Longitude  Elevation Age Nannofossil assemblages
number m
Corollithion exiguum, Eiffellithus
turriseiffeli, Eprolithus
floralis, Manivitella
Vedi Valley AR S 16 N 39°96551 E 44°92178 1392 Late Cenomanian pemmatoidea, Podorhabdus

AR 1405 N 40°32581 E 45°70898
AR 1705 N 40°32581 E 45°70898
AR 2105 N40°32921 E 45°72668
AR 2205 N40°32921 E 45°72668
AR 94 05 N 40°32461 E 45°69376
AR 100 05 N 40°32461 E 45°69376

Avazan Valley
North Sevan
Lake

AR 63 05 N 39°96291 E 44°94482
AR 64 05 N 39°96291 E 4494482
AR 6505 N 39°96291 E 44°94482
AR 67 05 N 39°96291 E 44°94482
AR 7205 N 39°93349 E 45°01987
AR 7305 N 39°93349 E 45°01987

Vedi Valley

Avazan valley
NE Sevan Lake AR 2005 N 40°32529 E 45°71949

Dali Valley
North Sevan AR 3905 N40°48414 E 45°42111
Lake

AR 0105 N40°51028 E 45°37118

Artanish Valley
North Sevan
Lake

AR 04 05 N 40°51456 E 45°37415

albianus, Prediscosphaera
cretacea, Watznaueria
barnesae, W. biporta

2291 Watznaueria barnesae,

2291 Micula staurophora

2459 Eiffellithus turriseffeli,

2459 Eiffellithus eximius

2242 Eprolithus floralis,

2242 Prediscosphaera cretacea
Santonian Zygodiscus diplogrammus,

1385 Marthasterites furcatus

1385 Tranolithus orionatus,

1385 Reinhardtites anthophorus

1385 Quadrum gartneri,

ig}g Lucianorhabdus cayeuxii

Watznaueria barnesae,

2371 Reinhardtites anthophorus

Micula staurophora,
Lucianorhabdus cayeuxii
Eiffellithus eximius,

Late Santonian .
Prediscosphaera cretacea

2118 Lithastrinus grillii,

Marthasterites furcatus
Quadrum gartneri, Broinsonia
parca expansa

Gartnerago obliquum,
Eiffellithus eximius
Eiffellithus turriseiffeli,

2021 Early Campanian Micula staurophora

Prediscosphaera cretacea,
Broinsonia parca

Arkhangelskiella cymbiformis,
Broinsonia parca, Eiffellithus

2092 Late Campanian eximius, Quadrum gothicum,

Q. trifidum, Reinhardtites
anthophorus
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Table 2. Paleocene—Eocene Nannofossils dating with (WGS84) GPS locations

Location Sample Latitude Longitude
number

Elevation Age

Nanofossil assemblages
m

AR 0305 N40°51343 E 45°37745
Artanish valley

North Sevan

Lake AR 0705 N40°51812 E 45°37207
AR 08 05 N 40°52080 E 45°36939

AR 54 05 N 39°93931 E 44°86781

Khosrov valley

AR 101 05 N 40°00623 E 44°90870
AR 107 05 N 39°98047 E 44°88994

Coccolithus pelagicus,
Sphenolithus radians

Sphenolithus moriformis,
Dictyococcites dictyodus

2048 Laisl:]‘-:' ?gene’ Reticulofenestra umbilica,

Cyclococcolithus formosus

Cyclicargolithus floridanus,
Chiasmolithus oamaruensis

2236 Late—Middle Coccolithus pelagicus,
2308 Eocene Sphenolithus radians
to Late Sphenolithus moriformis,
Eocene Dictyococcites dictyodus
Reticulofenestra umbilica,
Cyclococcolithus formosus
Cyclicargolithus floridanus

1127 Late Coccolithus pelagicus,
Paleocene Ericsonia subpertusa
NP 5 Chiasmolithus danicus,
Fasciculithus tympaniformis
Cruciplacolithus tenuis
1564 Early Coccolithus pelagicus,

1460 Paleocene Ericsonia subpertusa
NP 3 Cruciplacolithus tenuis,
Zygodiscus sigmoides

Chiasmolithus danicus

here some key points allowing us to clarify
the subduction, obduction and collision processes
all along the Sevan—Akera suture zone. Moreover
we present a new interpretation for the structure of
the Lesser Caucasus belt along a NE-SW cross-
section.

General structural setting

As presented on the structural sketch map (Fig. 2)
and the NE-SW trending cross-section (Fig. 3)
summarizing previous data (Nalivkin 1976) and
our observations, three main lithostructural domains
can be distinguished in the Lesser Caucasus, from
NE to SW: 1) Eurasia; 2) the Sevan—Akera suture
zone; and 3) the South Armenian Block (SAB).
This structural framework was previously proposed
by Milanovski (1968). The main difference between
the Milanovski’s section and ours is the occurrence
of ophiolitic nappes (the Vedi ophiolites) in front of
the Sevan—Akera ophiolitic zone (Fig. 3). Satian
et al. (1979, 2005) consider the Vedi ophiolites
as remnants of a small palaeco-ocean. Knipper &
Sokolov (1976) and Sokolov (1977) provided evi-
dence for an allochthon position of the ophiolitic unit
on the base of structural data. Others differences
concern the occurrence of post-Eocene reverse and
thrust faults which accommodated shortening in
the basement of the SAB and the Sevan—Akera
ophiolitic zone (Figs 2 & 3).

Evidence for subduction processes

Subduction along the Eurasian margin. As docu-
mented by previous studies performed on the
Lesser Caucasus the subduction of the Tethys is
evidenced by a thick and mainly calcalkaline vol-
canogenic and volcanoclastic series dated as
Bajocian to Santonian (e.g. Adamia et al. 1981 for
a review). At this period of time the northern
Lesser Caucasus was characterized by an island
arc domain called the Somkheto-Karabakh Island
Arc (Knipper 1975; Adamia er al. 1977, 1987,
Ricou et al. 1986).

The basement formations are quite similar to
those known all along the Eurasian margin. Indeed
they are exposed in three Variscan metamorphic
massifs in Georgia (Transcaucasian massif): the
Khrami (A on Fig. 2), Loki (B on Fig. 2) and
Dzirula salients (Kazakhashvili 1950; Adamia
1968; Kekelia & Khutsishvili 1980; Adamia et al.
1983, 1987; Adamia 1984; Shengelia er al. 1989;
Abezadze et al. 2002). In the Khrami massif the
Carboniferous volcanoclastic series unconformably
overlie the Variscan metamorphic basement
(Adamia 1968, 1984; Adamia er al. 1983). This
volcanogenic-sedimentary formation is transgres-
sively overlain by the Liassic, Upper Jurassic—
Lower Cretaceous and Cenomanian sediments and
volcanogenic series. Upper Palaeozoic metamorphic
rocks are also described in the Azerbaijan part of
the Northeast Lesser Caucasus flank (Nalivkin
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1976) (see mark C on Fig. 2). We studied the Meso-
zoic volcanogenic series in four valleys near Ganca
(Azerbaijan) (Fig. 2) from west to east: Zayemchay
(C on Fig. 2), Gochkarchay (D on Fig. 2), Yasamal
(E on Fig. 2), Kurakchay (F on Fig. 2). These obser-
vations allow us to present a synthetic stratigraphic
log of the Eurasian margin of the northeastern part
of Lesser Caucasus (Fig. 4). Bajocian—Bathonian
formations (+2400 m) present a basal conglo-
merate on the Variscan basement (see mark A on
Fig. 2) and upwards volcanoclastic series, sand-
stones, marl with Ammonites and Cancellophycus,
basalts, volcanoclastic turbidites and andesite on
top. This series indicates a major magmatic activity
during the Middle Jurassic (Maghakyan et al. 1985;
Lordkipanidze et al. 1988). The Oxfordian stage is
composed of a transgressive sequence with con-
glomerate, siltstones, mudstones and reef limestones
(Fig. 4). The Kimmeridgian features massive
intrusions (granodiorites, gabbros, quartz-diorites,
plagiogranites) (Melkonian 1976; Lordkipanidze
et al. 1988). The gabbroic Dachkasan intrusion is
responsible for the metamorphism of limestones
into white marbles (Fig. 4). The intrusions caused
many ore-deposits: 1) Middle and Upper Jurassic
epigenetic copper and barite-polymetallic deposits;
2) Middle Jurassic gold-bearing porphyry copper
deposits; 3) Upper Jurassic iron skarn deposits;
and 4) Lower Cretaceous porphyry copper deposits
(Kekelia et al. 2004; Melkonian & Akopyan 2006;
Babazadeh et al. 2007). Coniacian formations
unconformably overlie (unconformity U2, mark E
on Fig. 2) the Upper Jurassic intrusions and Lower
Cretaceous sedimentary rocks that are very much

reduced in thickness in that part of the belt
(Fig. 4). The Coniacian stage consists from bottom
to top of a red conglomerate, sandstones and reef
limestones indicating a shallow water environment
at that time. A similar palacoenvironment is also
featured by the Santonian formations. They are
characterized by a transgressive sequence (con-
glomerate, sandstones and limestones) including
prismatic basalt flows. In some places, the series
contains on its top pillowed and massive basalt
lava flows. Consequently the magmatic arc was
still active during this period of time along this
part of the Eurasian margin. The end of magmatic
activity occurred in the Campanian to Maastrichtian
stages. The formations are made of thin layered
pelagic limestones with some carbonates turbidites.

The compiled lithostratigraphic log (Fig. 4)
characterizes an arc-type evolution of the active
Eurasian margin from Bajocian to Late Jurassic all
along the Lesser Caucasus northern flank. In this
part of the Eurasian margin some ages of volcano-
genic series (Late Cretaceous) are younger than in
the northwestern part (Transcaucasian massif,
Georgia). The southeastward younging of magmatic
ages may result from migration of the magmatic
arc during the Late Cretaceous.

On this basis we suggest that an oceanic plate
subducted northward (if we exclude any major
rotation since this time) beneath the FEurasian
plate. At least it is well evidenced from Bajocian
to Santonian (100 Ma), with younger ages present
to the SE. This oceanic plate can be correlated to
the northern Neotethys part or to one marginal
basin related to an intra-oceanic subduction. In
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Fig. 4. Synthetic lithostratigraphic log of the Eurasian margin in the Lesser Caucasus (Armenia and Azerbaijan).

order to test these hypotheses we present below new
evidences for an intra-oceanic subduction in the
Neotethys domain during these times.

Evidence for an intra-oceanic subduction

According to petrological and geochemical data
from volcanites, Lordkipanidze et al. (1988)

suggested a Middle Jurassic Marianas-type subduc-
tion in the Lesser Caucasus region. New evidence
for an intra-oceanic subduction is described in
detail in a companion paper (Rolland ez al. 2010),
consequently we point out and summarize here the
main results.

The northwestern part of the Sevan—Akera
suture zone (SW of the Stepanavan town, Fig. 2)
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is characterized by tectonic units outcropping
within a nappe anticline in which the core is
made of blueschist slices (Aghamalyan 1981,
2004; Galoyan et al. 2007; Galoyan 2008;
Rolland et al. 2007). The blueschist units protoliths
correspond to unroofed sediments along a subduc-
tion zone. The HP-LT metamorphism was dated
90-80Ma by K-Ar methods (Aghamalyan
1998). Further, it was found to be a two-stage evol-
ution using Ar/Ar dating technique (on phengites),
with HP-LT stage at 94-90 Ma followed by a
retrograde Green Schist/epidote amphibolite meta-
morphism during exhumation in the Late Creta-
ceous (71-74 Ma, Ar/Ar on phengites, Rolland
et al. 2007, 2010). The blueschist unit is over-
thrusted by unmetamorphosed ophiolites, Late Jur-
assic in age (Danelian et al. 2007). In that area and
in the other ophiolitic zones of the Lesser Caucasus
(Sevan—Akera, Vedi), this geodynamical setting is
also well documented by the magmatic evolution of
the ophiolites. Petrologically and geochemically
(major, trace, REE and isotopic geochemistry)
these ophiolites are characterized by a slight
island arc signature (Rolland ez al. 2009). Such geo-
chemical features are typical of oceanic crust
formed in a back-arc setting (Galoyan 2008;
Galoyan et al. 2009). Above the ophiolites, an
Upper Cretaceous calc-alkaline volcanic series is
evidenced, lying on a sedimentary unconformity
marked by Albian conglomerates and limestones
(Aghamalyan 1998; Galoyan et al. 2007). The geo-
chemical data, including isotopic Sr—Nd compo-
sitions, obtained on these lavas indicate a volcanic
arc-type series on top of the ophiolites (Galoyan
et al. 2007, 2009; Galoyan 2008; Rolland et al.
2009). Moreover, the structural position of the
Stepanavan blueschists unit in the core of a nappe
anticline overthrusted by ophiolites and arc series
suggests an intra-oceanic subduction context in
the stage preceding collision of the SAB with the
Eurasian margin.

According to these structural, petrological and
geochemical results one can suggest that this part
of the Neotethys Ocean was, at least from Middle
Jurassic to Campanian in age, featured by an intra-
oceanic subduction to its south and a subduction
below the Eurasian continental plate to the north.
These new results are significant constrains to the
geodynamic processes evolution of the Lesser
Caucasus at these periods of time.

Obduction modalities

As previously described by other works, several
ophiolitic series are found in North and Central
Armenia (Fig. 2). They have slightly different
structures as a result of their lithologic and structural

settings, but are thought to be remnants of a single
obducted sequence (see Rolland ef al. 2010). The
ophiolitic series of the North Sevan Lake, Amassia
and Stepanavan (Fig. 2) (Sevan—Akera ophiolites)
(Knipper 1975; Adamia et al. 1977; Adamia et al.
1980; Maghakyan et al. 1985; Adamia et al. 1987)
are found along the main suture joining the SAB
and the Eurasian margin, while the Vedi ophiolites
are an allochthonous nappe thrusted over the SAB
(Knipper & Sokolov 1977; Sokolov 1977; Adamia
et al. 1981). The Zangezur ophiolites located
between the Sevan—Akera suture zone and the
Vedi ophiolites correspond to some slivers of ophio-
lites unroofed along thrust faults during collision
(Fig. 2) (Aslanyan & Satian 1977, 1982; Knipper
& Khain 1980).

One of the main characteristics of these ophioli-
tic rocks is the very low grade and even, in most
cases, the absence of any metamorphism related to
subduction/collision stages. The main parts of the
ophiolitic units are very well preserved excepted
in some shear zones, especially at the base of
the obducted sequence, in which some low green-
schist facies metamorphic crystallisations occur.
The ophiolites record a low metamorphic grade
imprint related to heterogeneous hydrothermal
alteration dating from oceanic stages (Rolland
et al. 2010). Even in the Stepananvan area, the
main ophiolitic body is unmetamorphosed. There,
its rests on a tectonic mélange mainly composed
of palaeo-accretionary prism blueschist facies
rocks (Rolland et al. 2007).

The obduction event is well documented in the
Vedi area (Southeast of Yerevan, Armenia)
(Figs 2 & 5), where the frontal obduction contact
is exposed (Figs 6 & 7). In that part of the Lesser
Caucasus, ophiolitic rocks are thrusted over plat-
form series of the SAB (Sokolov 1977). In order
to describe the obduction modalities it is important
to identify at first the nature of the autochthon. Is
this autochthon a part of the Eurasian margin or
does it correspond to an exotic terrane originating
from a southerly position in the Neotethys domain?

The SAB autochthon

In the Lesser Caucasus, the SAB (also called
Daralagez continental terrane) is mainly exposed
in Armenia and corresponds of a Proterozoic
metamorphic basement, an incomplete Palaeozoic
sedimentary succession, Triassic and some Jurassic
formations in Nakhijevan province (Azerbaijan),
Upper Cretaceous sedimentary series, Paleocene
to Oligocene detrital and volcanogenic rocks,
Miocene volcanogenic rocks and Plio-Quaternary
volcanites (Nalivkin 1976) (Figs 3 & 5).

The Proterozoic basement is made of metamor-
phic rocks characterized by gneisses, micaschists
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and leucogranite intrusions. It is well exposed NE of
Yerevan, in the Dzarkuniatz massif (Aghamalyan
1998) (Fig. 2). The Palaeozoic rocks of the SAB
in Armenia are mainly localized in the southwestern
part of the country (Figs 2 & 5). From bottom to
top, the following succession of sedimentary
rocks has been distinguished (Paffenholtz 1959;
Karyakin 1989).

ey

€]
3

Lower (7) Cretaceous to Turonian series Vedi ophiolites
WN{iddlc Bathonian to
Callovian)

E Devonian and Carboniferous formations

Upper Devonian series (Frasnian—Famennian)
composed of at least 1000 m thick detrital
rocks including quartzites, sandstones and
argillites.

500-700 m  thick Carboniferous  reef
limestones.

A Permian platform type section composed
of 500-1500 m thick black limestones and
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marls with occurrences of bitumen. As the
Upper Devonian formations they could rep-
resent a source rock for hydrocarbon. They
disconformably overlie the Devonian and Car-
boniferous formations. Some syn-sedimentary
normal faults occur in the sequence.

The contact of the sedimentary cover with the
basement is unknown in these areas (Figs 5 & 6).
The metasedimentary rocks exposed in the Dzarku-
niatz massif could belong to the Proterozoic or to
the Upper Devonian-Permian formations. Normal
faults are suspected in the Devonian-Carboniferous
formations as deduced by the geometry of the
bedding within the Cenozoic structures (fold),
(Fig. 5 and cross-section Fig. 6).

Lower Triassic rocks are conformably overlying
on the Upper Permian limestones (Fig. 5). The series
are composed of thin layered conodont rich lime-
stones (Grigorian 1990), which evolve upward to
detrital series composed of sandstones, black silt-
stones and mudstones of Late Triassic age. The
thickness of the Triassic formations ranges from
700 to 900 m.

In Armenia, rocks from the Jurassic period are
unknown in the southern part of the SAB. However,
tens of kilometres southeastward in Nakhijevan
(Azerbaijan) and in Iran (south to Araks valley)
(Fig. 5), 500 m thick Lower and Middle Jurassic are
described on top of the Upper Triassic section (Lord-
kipanidze et al. 1988). Palacomagnetic data from
Middle Jurassic alkaline basalts and from Aalenian
to Bajocian sediments indicate a palaeo-latitude of
21.5°N + 3.7° during this period of time (Bazhenov
et al. 1996). The sedimentary sequence is character-
istic of a platform containing Ammonites, Briachio-
podes and Pelecypodes (Bazhenov et al. 1996).

Cenomanian and Turonian carbonates uncon-
formably overlie the previous formations (Fig. 6).
They are composed of thick reef limestones with
some thin marl intercalations (Eghoyan 1955;
Paffenholtz 1959; Sokolov 1977; Hakobyan 1978).
In Vedi Area, the reef limestones are overlain
upward by a Upper Cenomanian flysch (new
dating by nannofossils, sample AR S 16, Table 1)
thicker southward than northward (Sokolov 1977)
and by a Upper Coniacian—Santonian olistostrome
(Fig. 8) (Eghoyan 1955; Rengarten 1959; Hakobyan
1976, and ages we obtained from nannofossils,
samples AR 63 05, AR 64 05, AR 65 05 and AR
67 05, Table 1) made of ophiolitic blocks contained
in a muddy matrix (Fig. 4).

According to the stratigraphic and lithological
data of the SAB, in comparison with the Eurasian
characteristics (Fig. 4) the SAB clearly differs
from the Eurasian margin. This is also evidenced
by tectonic phases recorded in the SAB and the
Eurasian margin basement.
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The SAB metamorphic basement is Proterozoic
(Aghamalyan 1969, 1978, 1998; Belov & Sokolov
1973), the Eurasian margin is mainly Variscan
(Adamia er al. 1983; Adamia 1984, Zakariadze
et al. 1998). The Palaeozoic series of the SAB
mainly consist of platform-type carbonates whereas
the sedimentary successions overlying the Eurasian
crystalline basement are metamorphic schists dating
back to the Visean and older. Moreover we do not
find any sign of rifting all along the Eurasian margin
series which could explain a drift to the south of
the SAB after the Variscan orogeny. The palaeo-
magnetic data indicate a southerly palaeo-latitude
of the SAB during the Early and Middle Jurassic
(Barzhenov et al. 1996). All these data argue for a
Gondwanian origin of the SAB located during
Middle Jurassic, 2000 km south of its present
location (Barzhenov et al. 1996).

Ophiolitic unit

This ophiolitic sequence outcrops within a folded
klippe (Figs 2, 5 & 8). According to the palaeonto-
logical data (Radiolarians), the Vedi ophiolites are
mainly Middle Jurassic (Middle to Late Bajocian)
(Danelian et al. 2008, 2010) and Late Jurassic
(Danelian et al. 2010) and probably Early Creta-
ceous in age (Belov et al. 1991). The geochemistry
undertaken on the oceanic crust indicates an
N-MORB origin (Galoyan et al. 2007, 2009;
Galoyan 2008; Rolland et al. 2009, 2010) and
some basalts located on top of the previous ones
are signs of an alkaline component (Tsameryan
et al. 1988; Galoyan 2008). The geochemical com-
positions and the fact that peridotites, gabbros and
plagiogranites were on the ocean-floor together
(the radiolarites cover all these rocks) (Galoyan
et al. 2008) indicate a slow-spreading oceanic
crust, put in place in a back-arc domain, and over-
lain by a hot-spot series (see Rolland et al. 2010
for a synthesis).

According to previous works, the whole ophioli-
tic sequence was interpreted as an ophiolitic mel-
ange (Sokolov 1977; Zakariadze et al. 1983). In
contrast, we distinguish ophiolitic units comprising
of preserved slices of oceanic crust thrusted over
the Upper Coniacian—Santonian olistostrome of
the SAB reworking the ophiolites (Figs 6 & 8).

On top of the ophiolites, we observed reef-type
sediments, OIB lavas and arc-type volcanic rocks
(andesites lava flows), which unconformably cover
the pillow-lavas (Fig. 8). These intra-oceanic arc-
type volcanic series have been evidenced from
geochemical data (Galoyan et al. 2007, 2009;
Galoyan 2008).

An Upper Coniacian to Santonian transgressive
series disconformably overlies the ophiolitic Vedi
unit. This transgressive series is characterized
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upwards by breccias and conglomerates, which
rework ophiolitic rocks and the Cenomanian—
Turonian autochthonous limestones (Fig. 7). The
conglomeratic formation grades laterally into reef
limestones composed of Upper Coniacian Hippur-
ites fossils. Green mudstones, siltstones and thin
turbiditic layered reef limestones with some pink
levels overlie the reef limestones (Fig. 7). Late
Coniacian—Santonian ages of the green mudstones
were obtained by nannofossils (samples AR 72 05,
AR 73 05, Table 1).

One can note that in the Vedi area the Campa-
nian and Maastrichtian are rare or missing. This indi-
cates erosion or non-deposition due to the obduction
uplift starting during the Late Coniacian and
ongoing during Campanian to Maastrichtian times.

Moreover, the HP metamorphism of the Stepa-
navan Blueschist unit is dated at 94—-90 Ma and its
exhumation at 74—71 Ma (Rolland et al. 2007).
This exhumation is ascribed to the underthrusting
of the SAB continental lithosphere still attached to
the subducted slab below the oceanic crust section
during the first stage of the obduction process. In
this case, unroofing the Blueschist unit within the
subduction channel could be the result of driven
forces conducted by the low density of the
continental crust.

In summary the back-arc basin is thrusted over
the SAB during Late Coniacian—Early Santonian
time, as evidenced by 1) the ophiolitic olistostrome

age; and 2) the occurrence at the same time of reef
limestones on top of the ophiolites which suggest
a shallow marine environment indicating uplift of
the oceanic crust along the obduction thrust. This
obduction stage was still active during Campanian
and Maastrichtian explaining the absence or the
pauce of sedimentation in the Vedi area south of
Lesser Caucasus.

Collision

The collision stages in the Lesser Caucasus are not
well known. This is mainly due to superimposed
tectonics which occurred in this region from Late
Cretaceous to present. The first aim of our studies
was to clearly identify the timing of collision
triggering or more exactly that of the continental
subduction of the SAB. Major unconformities and
structures were dated allowing the reconstruction
of the tectonic evolution of this collision event.

Beginning of the collision between
SAB and Eurasia

Along the Sevan— Akera suture zone North of Sevan
Lake, late-Middle to Upper Eocene nummulitic
series unconformably overlie the ophiolite units,
the Eurasian margin and the SAB (Unconformity U2)
(Figs 2, 9 & 10). According to these stratigraphic
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data the onset of the collision between the SAB and  Upwards, the series is characterized by thick volca-
Eurasia occurred before the late-Middle Eocene. In  nic layers made of andesitic and trachytic lavas
detail the unconformable sedimentary deposits are  (Fig. 10). The late-Middle to Late Eocene age (NP
characterized upward by conglomerates reworking  18) of the base of this formation was obtained by
Upper Cretaceous pelagic limestones, ophiolites nannofossiles (samples AR-03-05, AR-07-05 and
and Lower Eocene andesites. Sandstones and num-  AR-08-05, Table 2). In the western part of North
mulitic limestones overlie the conglomerate. The Sevan area this volcano-sedimentary series uncon-
sedimentary succession of few tens of metres thick-  formably overlies thick (maximum 2000 m thick)
ness is interbeded with andesitic lava flows. Lower to Middle Eocene calcalkaline volcanogenic
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series mainly made of andesite, trachyte, rhyolites
and sandstones (Lordkipanidze et al. 1988).

This is still well expressed on the Eurasian
margin in Armenia and Azerbaijan where the late-
Middle Eocene formations unconformably cover
the Middle Jurassic to Upper Cretaceous formations
(Fig. 2). Consequently the late-Middle Eocene
deposition occurred after a period of erosion. The
sedimentary products of this erosion event have to
be found southwestward.

Syn-collisional basin

The Paleocene is not well expressed in the area of
the Sevan—Akera suture zone. Danian sandstones
have been described (Abovyan 1961; Sokolov
1977) but they are not clearly exposed all along
the suture zone. In this part of the belt the Paleocene
time is characterized by uplift, erosion and folding.
Cross-sections and maps from the suture zone in
North Sevan area (Figs 3, 9 & 10) illustrate well
Paleocene folds unconformably covered by the late-
Middle Eocene nummulitic sandstones and lime-
stones. There, the Campanian pelagic limestones
that overlie the ophiolites unit are folded (Fig. 10).

Nevertheless to the south in the Vedi area the
Paleocene detrital series disconformably overlie
the obducted ophiolites and the SAB. These for-
mations are well developed and characterized by
thick molassic deposits (more than 1000 m in thick-
ness) (Figs 5 & 6). The detrital sequences are made,
from bottom to top, of conglomerates, sandstones,
greywackes, siltstones, marls and some algae lime-
stones interlayers. The detrital series mainly
reworked the ophiolites and the SAB autochthon.
The Paleocene age of this formation was obtained
by nannofossils (samples AR-54-05, AR-101-05,
AR-107-05, Table 2) and are in agreement with
the previous dating (Nalivkin 1976). The Paleocene
basin to the south has to be considered as a foreland
basin in front of a collisional belt located to the north
(Figs 2,5 & 6).

Structures and deformation related to
the SAB collision

In Vedi area, N130°E trending folds deform the
Palaeozoic to Santonian formations of the SAB,
the ophiolites and the foreland basin (Fig. 5). Paleo-
cene to Oligocene molasses covering the ophiolites
are deformed by ramp anticlines (Fig. 6). As a
result of the southwestward folding propagation,
Eocene and Oligocene series are deposited with
onlap relationships over the Palaeozoic—Mesozoic
anticline cores (Fig. 6). The anticline cores are
made of Palaeozoic formations from the SAB. For
example, to the SE part of Vedi area the Oligocene
formations unconformably cover the Permian.
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The corresponding tectonic phase is due to the
southwestward propagation of the collisional defor-
mation. These types of structures, featured by folds
and ramps are related to décollement levels within
the Devonian series and the ophiolites (serpenti-
nites) (Fig. 6).

In contrast, the Miocene volcanic rocks seal the
structures related to this deformation phase (Uncon-
formity U3), as they appear to be monoclinal
(Fig. 5). As a result the folding event can be brack-
eted between the Oligocene and Miocene periods.
More precision on the age of these Neogene series
is needed to accurately constrain the age range of
the NE—SW shortening event responsible to folding.
The disconformity (U4) of the Plio-Quaternary
volcanites on the Miocene volcanic and sedimentary
rocks is well exposed in this area (Figs 5, 6 & 8).

The structural interpretation on Figure 6 takes
into account the occurrence of reactivated normal
faults in the Palaeozoic series and a crustal-scale
active fault (the Garni Fault: a currently dextral
strike—slip fault, Rebai et al. 1993; Philip et al.
2001) precisely located at the anticline axis of the
main structure (Figs 5 & 6). This interpretation is
in favour of inherited structures within the SAB
basement which have been reactivated during the
Cenozoic, and still currently active faults (Philip
et al. 2001; Karakhanian er al. 2004; Avagyan
et al. 2005).

In the north area of the Sevan Lake two main
unconformities have been observed. The first one
(U1) corresponds to the deposition of the Upper
Cretaceous pelagic series over the ophiolitic
sequence (Fig. 10). We dated these formations by
nannofossil assemblages from Late-Coniacian to
Late Campanian (Avazan and Artanish valleys,
Table 1). The Maestrichtian would be present in
some parts (Nalivkin 1976). The second one (U2),
described above corresponds to the deposition of
the late-Middle to Late Eocene series over deformed
ophiolites and Late Cretaceous formations (Figs 9 &
10). N50—80°E trending folds deform the Campa-
nian pelagic limestones and are related to a short-
ening event that occurred before the deposition of
Nummulitic sediments. Moreover, N120—130°E
trending reverse faults and thrusts cross-cut the
Upper Eocene series all along the North Sevan
Lake from Artanish to Zod (Figs 9, 10 & 11).
These structures also occur all along the suture
zone from the Transcaucasus massif to the Kara-
bakh (Fig. 2) and in front of the belt from Transcau-
casus domain to the southeastward end of the Lesser
Caucasus in Armenia and Nakhijevan.

Timing of the collision stages

According to the stratigraphical and structural data
the collision between SAB and Eurasia started
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during the Paleocene as evidenced by the formations
of a foreland basin in the southeastern part of the
belt and by the folding and uplift of the Sevan— Akera
suture zone. Following this uplift and erosion phase
itis very probable that during Early Eocene the north
flank of the suture zone and the Eurasian margin sub-
sided, resulting in deposition of Lower Eocene detri-
tal rocks and magmatism. Nevertheless uplift to the
South, along the suture zone, and subsidence to the
north along the southern Eurasian margin must
have been coeval, resulting in a huge erosional
surface on which late-Middle Eocene shallow marine
sediments were deposited. Some normal faults in the
Upper Eocene volcanites were reactivated as post
Eocene thrust faults are present in the North Sevan
Lake area (e.g. Fig. 10, cross-section B).

During the Paleocene to late-Middle Eocene in
the southern (Armenian) part, a flexural molassic
basin covered the obducted ophiolite and related
structures, and was progressively deformed along
thrusts and décollement faults developing a
fold-and-thrust belt type until the Miocene (Fig. 6).
Some of the normal faults within the SAB Palaeo-
zoic formations and the basement have been reacti-
vated as reverse faults (Fig. 6). We presume that
these faults were normal faults responsible for
titled blocks of the north SAB passive margin.

The Miocene epoch corresponds to a drastic
transition in the deformation style of the belt. As
clearly evidenced by the Vedi area cross-section,
folding is stopped and a huge erosion surface
marks the transition (Figs 2, 3, 5 & 6). However,
strain field evolved, and the shortening direction
changed from NE-SW to NNW-SSE (Avagyan
et al. 2005). This shift in strain direction produced
reactivation of the main N130°E trending previous
structures as left-lateral strike—slip faults with a
reverse component. Since then deformation has
remained with similar features, which resulted in
the opening of NW —SE elongated volcanic clusters
in the main shortening direction, and in a general
uplift of the area (Karakhanian er al. 2004;
Avagyan et al. 2005, 2010).

Geodynamic evolution and discussion

According to the new results presented above and
with the help of numerous previous data mainly
acquired during the Soviet period we can propose
a new geodynamic model of the Lesser Caucasus
evolution since the Late Jurassic (Fig. 12).

Middle Jurassic to Coniacian

According to palaeomagnetic data (Bazhenov et al.
1996) the SAB was located 2000 km south of
its present position during the Middle Jurassic.
Moreover from Middle Jurassic to Late Coniacian,
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two main subduction zones are responsible for: (1)
the huge magmatic activity on the Eurasian active
margin (Somkheto-Karabakh Island arc); (2) the
calcalkaline magmatism on top of the oceanic
lithosphere which have been obducted since Late
Coniacian; and (3) occurrence of Blueschist unit
(94-90 Ma). From the overall geometry, we can
suspect a subduction towards the NW beneath the
Eurasian margin, but the preceding stages of
intra-oceanic subduction may be featured by differ-
ent orientations. Based on stretching lineations,
mineral HP-LT mineral lineations and senses of
shear in the Stepanavan Blueschist unit, Rolland
et al. (2007) suggest an east-verging intra-oceanic
subduction zone. However this direction could
have been rotated during collision. Whatever in
this hypothesis the ophiolites of the Lesser Caucasus
belongs to a marginal basin opened in back-arc
position within the Neotethys Ocean (lherzolite
ophiolite type [LOT] ophiolites, low spreading
rate, Galoyan 2008; Galoyan et al. 2009; Rolland
et al. 2009). All these results and the geochemical
characteristics of the oceanic basalts evidence a
SSZ type for the intra-oceanic subduction zone
(Rolland et al. 2009).

On the Eurasian margin we have observed a pre-
Coniacian erosional surface and disconformity of
Coniacian and Santonian arc-type series character-
ized by a basal reddish conglomerate reworking
the island arc series and their Upper Jurassic intru-
sions. Consequently during the Early Cretaceous an
active erosion event took place, which resulted in
the unroofing of plutons of the magmatic arc (Azer-
baijan, mark E on Fig. 2). This erosion event is the
result of significant uplift and denudation during
the Early Cretaceous. The reasons for such a
change in the Eurasian active margin strain field
could be the subduction of the spreading ridge of
the back-arc basin (see Fig. 12) or the entrance in
the subduction zone of an oceanic plateau or an
intra-oceanic ridge, which is suspected from the
geochemical analysis of alkaline basalt on the
ophiolites (Galoyan et al. 2007; Galoyan 2008;
Rolland et al. 2009).

Coniacian to Paleocene

From the Coniacian to the Paleocene the intra-
oceanic subduction (SSZ) evolved to a continental
subduction of the SAB beneath the intra-oceanic
arc and the marginal basin (Fig. 12). This event is
supported by HP-LT metamorphism at 94—90 Ma
of oceanic formations within an accretionary
prism identified in the Stepanavan area (Fig. 2)
(Rolland et al. 2007; Galoyan 2008). This step
conducts around 5 Ma later to the obduction of the
ophiolites over the SAB. This is well evidenced
by: 1) the ophiolites uplift evidenced by the Upper
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Fig. 11. Photographs of the post Eocene thrust faults in the northern Sevan Lake area; location of photo A shown on

Figures 9 and 10, location of photo B shown on Figure 9.

Coniacian—Santonian reef limestone deposits on
top of them in Vedi Area; 2) the coeval olistostrome
formation beneath the ophiolitic thrust (Vedi
and Sevan areas, Figs 8 & 9) and overlying
Cenomanian—Turonian flysch of the SAB.
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The Campanian—Maastrichtian formations are
absent in the belt’s frontal part, while they are
present as pelagic sediments on the ophiolites of
the Sevan—Akera zone. This lateral variation is
ascribed to the southern frontal part’s uplift
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Fig. 12. Geodynamic model of the evolution of the Lesser Caucasus from Late Jurassic to present (see explanations in

the text).

produced by the southward obduction thrust propa-
gation and by a remnant oceanic crust covered
by pelagic limestones to the north. The southern
slope of this remnant oceanic crust (on the back of
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the obduction unit) was characterized by a north-
ward dipping evidenced by north verging slumps
within the Campanian pelagic deposits (Fig. 10
cross-section A). During the same time one notes
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the exhumation of the Blueschist unit along the
previous intra-oceanic subduction zone (Rolland
et al. 2007).

Paleocene to Lower Miocene

The occurrence of a foreland basin in front of the
belt and the folding and erosion of the Sevan—Akera
ophiolitic zone suggest the entrance of the SAB in
the subduction zone below the Eurasian margin
since the Paleocene, pulled by the dense eclogitized
oceanic slab to which it is still attached.

Due to the low density of the SAB continental
crust entering in the subduction contact under the
Eurasian margin, the continental subduction pro-
duces: 1) the uplift, shortening, folding and erosion
of the obducted unit on the SAB (The Sevan—Akera
zone); 2) the thrusting and folding of the Eurasian
margin formations; and 3) the southwestward trans-
port of the erosional products to the flexural basin
in the belt front.

The Lower to Middle Eocene magmatism on the
Sevan—Akera suture zone (Lordkipanidze et al.
1988) could correspond to the first stage of a slab
retreat triggered by the continental subduction and
the break off of the continental lithospheric sub-
ducted mantle. Thermo-mechanical physical model-
ling has evidenced this mechanism (Boutelier ef al.
2003, 2004). But more studies on the geochemical
analysis of this magmatism must to be performed
in order to test this model for the Lesser Caucasus
region.

One prominent result of this study is that the time
of oceanic closure, indicated by the late-Middle
Eocene unconformity on the SAB, the suture
zone and the Eurasian margin clearly pre-dates
this epoch. Therefore, the huge magmatic activity
occurring from Late Eocene to Miocene (Lordkipa-
nidze et al. 1988; Karapetian et al. 2001) has to be
explained in this collisional context. We suggest
that the slab retreat and break off processes lead
to an asthenospheric upwelling below the suture
zone (Fig. 12). This mechanism could explain the
location of magmatism all along the Lesser Cauca-
sus. However, some geochemical studies would be
necessary to test this assumption.

Upper Miocene to present

The continental subduction seems to be stopped but
deformations still occur. The Arabian plate col-
lision with the SAB to the South (in the Bitlis
region, Oberhinsli er al. 2010 for a review), is
responsible for the strain field’s reorganisation
(Philip et al. 2001; Avagyan et al. 2005 and refer-
ences herein). This produces the reactivation of
the thrusts as strike—slip faults and the opening
of volcanic clusters (Avagyan et al. 2005). Due
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to the collision, one may explain the widespread
magmatic activity by partial melting of overthick-
ened continental crust (Mitchell & Westaway
1999; Karapetian et al. 2001). Another possibility
could be a slab break off process beneath Eastern
Anatolia (Faccenna et al. 2006; Lei & Zhao
2007). However, this second hypothesis does not
seem appropriate to explain all the magmatic
activity known in the Lesser Caucasus and
Greater Caucasus regions, which are relatively far
from Eastern Anatolia. Another solution could be
that of asthenospheric upwelling (if this one has
actually existed) producing significant weakening
of the SAB continental lithospheric mantle,
which begins its delamination. This could explain
the magmatism and uplift of the Lesser Caucasus
since Pliocene time. The question if whether asth-
enosphere upwelling is related or totally unrelated
to the lithosphere-scale plate tectonic processes
remains open.

Conclusions

The results coming out from studies undertaken in
the Lesser Caucasus region allow to clarify the
main questions on its tectonic and geodynamic
evolutions.

(1) The Sevan—Akera suture zone represents the
only suture of the belt. The other ophiolitic
units (Vedi and Zangezur, Fig. 2) correspond
to ophiolitic nappes due to the obduction of
oceanic crust over the SAB or to tectonic
slivers reworked by the Upper Oligocene—
Lower Miocene thrusts and reverse faults.
The collision stage has significantly deformed
the initial obduction contact by folding and
thrusting and then more recently by strike—
slip faulting. Consequently all the identified
ophiolitic units in the Lesser Caucasus have
been remobilized and outcrop today thanks
to these collisional structures, as in the cores
of anticlines (Sevan Lake, Stepanavan areas)
(Figs 2 & 9) or in synclinal klippes (Vedi
area) (Fig. 6) or as slivers along thrust faults
(Zangezur and Amassia areas) (Fig. 2). In
our interpretation of the structure of the
Lesser Caucasus the ophiolites are continuous
from Central to North Armenia, deep below
the Sevan Lake (Fig. 3). The consequence of
this structure is that the SAB is underthrusted
below this huge ophiolite sliver, and may con-
tinue also below the Sevan Lake. This point
is important in terms of natural resources
because of the hydrocarbon potential of source
rocks in the SAB Palaeozoic section. Indeed
these source rocks could be capped by
the allochthonous ophiolites, which could
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represent an overscreen under the Sevan Lake
and the neighbouring regions.

(2) The onset of collision or the continental sub-
duction of the SAB below the Eurasian margin
is dated as Paleocene. This process occurred
around 20 Ma later than the obduction (Late
Coniacian—Santonian, 88-83 Ma) of the
marginal basin over the SAB. It led to the
uplift of the Sevan—Akera suture zone, its
folding, erosion and to the transfer of detrital

materials in a flexural basin in front of the
belt, above the obduction structures. From
late-Middle Eocene to Miocene all the belt is
deformed by thrusts and reverse faults in the
internal part (Transcaucaus to Karabakh,
Fig. 2) and by N130°E trending fold and
thrust belt at the chain front. One can note
an evolution from thin-skin to thick-skin tec-
tonics in front mainly due to the reactivation
of the previous normal faults in the SAB

Central Iran
block

83-72 Ma

Seuth Armenian
Block Central Iran
Taurides-Anatolides

£ \K

aastrichtian
2-65 Ma

Ypresian
53-46 Ma

African plate and terranes

AL

Oceanic lithosphere

Rlrasian platy - Basins :| Obducted ophiolites
of Gondwanian origin |:] Back-arc basin
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Fig. 13. Campanian, Maestrichrian and Ypresian palaeotectonic maps of the Lesser Caucasus region and its

neighbouring areas (modified from Barrier & Vrielynck 2008).
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basement at depth (Vedi and Southeast
Armenia area, Figs 2 & 3).

(3) The widespread Eocene to recent magmatic
activity is the result of various, still enigmatic
processes. The Eocene magmatic activity
occurred after the onset of the collision. Con-
sequently it cannot be directly related to the
oceanic subduction processes except for the
Adjara-Trialet massif in Georgia considered
as a back-arc basin due to a oceanic subduc-
tion of a small remnant oceanic lithosphere
NW of the Sevan—Akera Suture zone
(Adamia et al. 1981; Barrier & Vrielynck
2008). We suggest the possibility of a slab
retreat and a break off allowing the rising of
the asthenospheric mantle, which could have
heated the overthickened continental crust
(Fig. 12). The Miocene to recent magmatic
activity seems to be related to 1) a possible
asthenosphere upwelling beneath the suture
zone after the break off and, 2) strain field
reorganization at these times due to the
Arabian plate collision with the SAB produ-
cing opening of volcanic clusters along main
inherited faults (Karakhanian et al. 2004;
Avagyan et al. 2005, 2010).

The Lesser Caucasus is a key area to understand
lateral connections with the Taurides—Anatolides to
the west and the Iranian regions to the East. Indeed,
as demonstrated by Stocklin (1974) and developed
by Zanchi et al. (2009) the Eo-Cimmerian orogen
is discontinuously exposed along the northern side
of the Alborz Mountains of north Iran below the sili-
ciclastic deposits of the Shemshak Group (Late
Triassic—Jurassic). However, a thick comparable
Shemshak-type basin is unknown in the Lesser
Caucasus. In this belt the contact between the
Upper Triassic detrital series and the Lower Triassic
carbonates formations is not well exposed. A
complete sequence has been described in the
Nakhijevan part of the Lesser Caucasus (Barzenov
et al. 1995). Nevertheless, no evidence of
Eo-Cimmerian orogeny has been found in the
Lesser Caucasus. These features conduct to expect
in the study area a major stratigraphic and structural
limit. Consequently, the oriental border of the con-
tinental blocks of Taurides—Anatolides and South
Armenian Block of Gondwanian origin need to be
clarified. This block collided with Eurasia during
Paleocene Eocene times. According to the MEBE
palaeotectonic map (Fig. 13) (Barrier & Vrielynck
2008) the passage between Lesser Caucasus and
NW Iran (NW Alborz and Tabriz-Saveh) would be
then a syntax similar to those delimiting India col-
liding with Asia, but it remains to be demonstrated.
One way to explain the problems is the existence
of NE-SW orientated Araks strike—slip fault,
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suggested as an oriental border of Lesser Caucasus
(Fig. 1). But if this fault has a recent expression, it
is not sure that it was present at the beginning of
the collision between the South Armenian Block
and Eurasia.

New interpretations allow some points to be
studied in more detail, particularly the origin of
the widespread collisional magmatism and the con-
nections with the Iranian belt, which remain to this
day a subject of debate.
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