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Mathematical modelling of blood flow
through a tapered overlapping stenosed artery
with variable viscosity

G.C. Shit∗, M. Roy and A. Sinha
Department of Mathematics, Jadavpur University, Kolkata, India

Abstract. This paper presents a theoretical study of blood flow through a tapered and overlapping stenosed artery under the
action of an externally applied magnetic field. The fluid (blood) medium is assumed to be porous in nature. The variable viscosity
of blood depending on hematocrit (percentage volume of erythrocytes) is taken into account in order to improve resemblance to
the real situation. The governing equation for laminar, incompressible and Newtonian fluid subject to the boundary conditions
is solved by using a well known Frobenius method. The analytical expressions for velocity component, volumetric flow rate,
wall shear stress and pressure gradient are obtained. The numerical values are extracted from these analytical expressions and
are presented graphically. It is observed that the influence of hematocrit, magnetic field and the shape of artery have important
impact on the velocity profile, pressure gradient and wall shear stress. Moreover, the effect of primary stenosis on the secondary
one has been significantly observed.
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Nomenclature

z Axial distance
r Radial distance
R(z) Arterial wall
d Distance from inlet of onset of stenosis
u Axial velocity component
ū Non-dimensional axial velocity
µ(r) Coefficient of viscosity of blood at a radial

distance r

µ0 Viscosity coefficient for plasma
h(r) Hematocrit at a distance r

H Maximum hematocrit at the center of the
arterial segment

m(≥2) Shape parameter of hematocrit
R0 Radius of the pericardial surface of the

normal portion of the arterial segment

∗Corresponding author: G.C. Shit, Department of Mathematics,
Jadavpur University, Kolkata-700032, India. Tel.: +91 33 2457 2716;
Fax: +91 33 2414 6414; E-mail: gopal iitkgp@yahoo.co.in.

l Length between throat of two stenoses
L Length of arterial segment
B0 Magnetic field strength
σ Electrical conductivity
k Porous permeability parameter
M Hartmann number
p Blood pressure
d̄p
dz

Non-dimensional axial pressure gradient
Q Volumetric flow rate
Q̄ Non-dimensional volumetric flow rate
τR Wall Shear stress
τ̄ Non-dimensional wall shear stress

1. Introduction

Many cardiovascular diseases such as due to the
arterial occlusion is one of the leading cause of death
world wide. The partial occlusion of the arteries due to
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stenotic obstruction not only restrict the regular blood
flow but also characterizes the hardening and thick-
ening of the arterial wall. However, the main cause
of the formation of stenosis is still unknown but it
is well established that the fluid dynamical factors
play an important role as to further development of
stenosis. Therefore, during the past few decay several
studies were conducted by Young [1], Young and Tsai
[2, 3] to understand the effects of stenosis on blood
flow through arteries. Tu and Deville [4] investigated
pulsatile flow of blood in stenosed arteries.

Since blood has a complex rheological characteris-
tics, it behaves like different fluid model under different
biological and structural conditions. In this connec-
tion MacDonald [5] remarked that vessels of radius
greater than 0.025 cm, blood may be considered as a
homogeneous Newtonian fluid and on the other hand
Caro et al. [6, 7] observed that normal arterial blood
flow at high shear-rates blood behaves like a Newto-
nian fluid. Misra and Chakravarty [8] and Shit and
Roy [9] put forwarded a mathematical analysis for
the unsteady flow of blood through arteries having
stenosis, in which blood was treated as a Newtonian
viscous incompressible fluid. Some experimental stud-
ies of Liepsch [10, 11] indicated that at low shear-rates
blood may behaves as non-Newtonian fluid, even in
large arteries. Also it is well known that, blood being a
suspension of red blood cells in plasma, behaves like a
non-Newtonian fluid at low shear rates as reported in
[12, 13]. Furthermore, Misra and Shit [14, 15] studied
in two different situations on the blood flow through
arterial stenosis by treating blood as a non-Newtonian
(Herschel-Bulkley) fluid model with or without con-
sidering slip effect. Moreover, Tian et al. [16] studied
on the pulsatile non-Newtonian flow past a stenosed
artery with atherosclerosis. Chen et al. [17] inves-
tigated the non-Newtonian effects of blood flow on
haemodynamics in distal vascular graft anastomoses.

The hemodynamics associated with a single stenotic
lesion are significantly affected by the presence of a
second lesion. In many situations there are evidences
of the occurrence of the multiple or overlapping steno-
sis such as the patients of angiogram. Misra et al. [18]
conducted a theoretical study for the effects of mul-
tiple stenosis. An experimental study of blood flow
through an arterial segment having multiple stenoses
were made by Talukder et al. [19]. The effects of over-
lapping stenosis through an arterial stenosis have been
successfully carried out analytically as well as numer-
ically by Chakravarty and Mandal [20] and Layek et

al. [21] respectively. However, all these studies are
restricted in the consideration of both the externally
applied magnetic field as well as the porous medium.
Therefore, our motivation is to consider these two
effects in addition to the the variable viscosity of blood
depending on hematocrit.

Since blood is electrically conducting fluid, its flow
characteristics is influenced by the application of mag-
netic field. If a magnetic field is applied to a moving
and electrically conducting fluid, it will induce elec-
tric as well as magnetic fields. The interaction of
these fields produces a body force per unit volume
known as Lorentz force, which has significant impact
on the flow characteristics of blood. Such an analysis
may be useful for the reduction of blood flow dur-
ing surgery and Magnetic Resonance Imaging (MRI).
The effect of magnetic field on blood flow has been
analyzed theoretically and experimentally by many
investigators [22–25] under different situations. Shit
and his co-investigators [26–30] explored variety of
flow behaviour of blood in arteries by treating New-
tonian/ non-Newtonian model in the presence of a
uniform magnetic field.

Very recently, the studies of blood flow through
porous medium has gained considerable attention to
the medical practitioners/clinicians because of its enor-
mous changes in the flow characteristics. The capillary
endothelium is, in turn, covered by a thin layer lining
the alveoli, which has been treated as a porous medium.
Dash et al. [31] considered the Brinkman equation to
model the blood flow when there is an accumulation
of fatty plaques in the lumen of an arterial segment
and artery-clogging takes place by blood clots. They
considered the clogged region as a porous medium.
Bhargava et al. [32] studied the transport of pharmaceu-
tical species in laminar, homogeneous, incompressible,
magneto-hydrodynamic, pulsating flow through two-
dimensional channel with porous walls containing
non-Darcian porous materials. Misra et al. [27, 33]
presented a mathematical model as well as numeri-
cal model for studying blood flow through a porous
vessel under the action of magnetic field, in which the
viscosity varies in the radial direction.

Hematocrit is the most important determinant of
whole blood viscosity. Therefore, blood viscosity and
vascular resistance (due to the presence of stenosis)
affect total peripheral resistance to blood flow, which
is abnormally high in the primary stage of hyperten-
sion. Again hematocrit is a blood test that measures
the percentage of red blood cells present in the whole



G.C. Shit et al. / Mathematical modelling of blood flow through a tapered overlapping stenosed artery with variable viscosity 187

blood of the body. The percentage of red blood cells
in adult human body is approximately 40–45% [34].
Red blood cells may affect the viscosity of whole blood
and thus the velocity distribution depends on the hema-
tocrit. So blood can not be considered as homogeneous
fluid [21]. Due to the high shear rate near the arterial
wall, the viscosity of blood is low and the concentra-
tion of red blood cells is high in the central core region.
Therefore, blood may be treated as Newtonian fluid
with variable viscosity particularly in the case of large
blood vessels.

The present study is motivated towards a theoreti-
cal investigation of blood flow through a tapered and
overlapping stenosed artery in the presence of mag-
netic field. The study pertains to a situation in which
the variable viscosity of blood depending upon hema-
tocrit is taken into consideration. The present model
is designed in such a way that it could be applicable
to both converging/diverging artery depending on the
choice of tapering angle α. Thus, the study will answers
the question of mechanism of further deposition of
plaque under various aspects.

2. Mathematical modelling of the problem

We consider the laminar, incompressible and
Newtonian flow of blood through axisymmetric two-
dimensional tapered and overlapping stenosed artery.
Any material point in the fluid is representing by the
cylindrical polar coordinate (r, θ, z), where z measures
along the axis of the artery and that of r and θ measure
along the radial and circumferential directions respec-
tively. The mathematical expression that corresponds
to the geometry of the present problem is given by

R(z) = R0

[
1.0 − 11.0

32.0
l3(z − d)

+47.0

48.0
l2(z − d)2 − l(z − d)3

+(1.0/3.0)(z − d)4
]
a(z)

where d ≤ z ≤ d + 3l

2
= R0a(z) else where (1)

where the onset of the stenosis is located at a dis-
tance d from the inlet, 3l

2 the length of the overlapping
stenosis and l representing the distance between two

critical height of the stenoses. The expression fora(z) is
responsible for the artery to be converging or diverging
depending on tapering angle α has the form

a(z) = 1 + z tan(α). (2)

We assumed that blood is incompressible, suspen-
sion of erythrocytes in plasma and has uniform dense
throughout but the viscosity µ(r) varies in the radial
direction. According to Einstein’s formula for the vari-
able viscosity of blood taken to be

µ(r) = µ0 [1 + βh(r)] , (3)

where µ0 is the coefficient of viscosity of plasma, β is
a constant (whose value for blood is equal to 2.5) and
h(r) stands for the hematocrit. The analysis will be
carried out by using the following empirical formula
for hematocrit given by in Lih [36]

h(r) = H

[
1 −

(
r

R0

)m]
, (4)

in which R0 represents the radius of a normal arterial
segment, H is the maximum hematocrit at the center
of the artery and m(≥ 2) a parameter that determines
the exact shape of the velocity profile for blood. The
shape of the profile given by Equation (4) is valid only
for very dilute suspensions of erythrocytes, which are
considered to be of spherical shape. We assumed that
the blood flow takes place in the axial direction only
so that all the flow quantities are independent of z and
thereby dR(z)

dz
becomes negligibly small.

According to our considerations, the equation that
governs the flow of blood under the action of an exter-
nal magnetic field through porous medium may be put
as

∂p

∂z
− 1

r

∂(rµ(r) du
dr

)

∂r
+ σB2

0u + µ(r)

k̄
u = 0, (5)

where u denotes the (axial) velocity component of
blood, p the blood pressure, σ the electrical conduc-
tivity, k̄ the permeability of the porous medium and B0
is the applied magnetic field strength. In Equation (5),
the first term indicates the axial pressure gradient, sec-
ond term is the viscous force, third term represents
the magnetic body force per unit volume and last term
comes into play due to porous medium.

To solve our problem, we use no-slip boundary con-
dition at the arterial wall, that is,

u = 0 at r = R(z). (6)
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Further we consider axi-symmetric boundary condi-
tion of axial velocity at the mid line of the artery as

∂u

∂r
= 0 at r = 0. (7)

3. Analytical solution

In order to simplify our problem, let us introduce the
following transformation

ξ = r

R0
(8)

With the use of the transform defined in (8) and the
Equations (3) and (4), the governing Equation (5)
reduces to

1

ξ

∂

∂ξ

[
ξ(a1 − a2ξ

m)
∂u

∂ξ

]

−M2u − 1

k
(a1 − a2ξ

m)u = R2
0

µ0

∂p

∂z
(9)

with a1 = 1 + a2, a2 = βH , k = k̄

R2
0

and M2 =
σ(B0R0)2

µ0
.

Similarly the boundary conditions transformed into

u = 0 at ξ = R(z)

R0
(10)

and
∂u

∂ξ
= 0 at ξ = 0 (11)

The Equation (9) can be solved subjected to the
boundary conditions (10) and (11) using the Frobe-
nius method. For this, of course, u has to be bounded
at ξ = 0. Then only admissible series solution of the
Equation (9) will exists and can put in the form

u = K

∞∑
i=0

Aiξ
i + R2

0
dp
dz

4a1µ0

∞∑
i=0

Biξ
i+2, (12)

where K, Ai and Bi are arbitrary constants.
To find the arbitrary constant K, we use the no-slip

boundary condition (10) and obtained as

K = − R2
0

dp
dz

4a1µ0

∞∑
i=0

Bi

(
R
R0

)i+2

∞∑
i=0

Ai

(
R
R0

)i
. (13)

Substituting the value of u from Equation (12) into
Equation (9) and we get

K

[ ∞∑
i=0

i(i − 1)(a1 − a2ξ
m)Aiξ

i−2

+
∞∑
i=0

i(a1 − (m − 1)a2ξ
m)Aiξ

i−2

−
(
M2 + a1

k

) ∞∑
i=0

Aiξ
i +

∞∑
i=0

a2

k
Aiξ

i+m

]

+ R2
0

dp
dz

4a1µ0

[ ∞∑
i=0

(i + 1)(i + 2)(a1 − a2ξ
m)Biξ

i

+
∞∑
i=0

(i + 2)(a1 − (m − 1)a2ξ
m)Biξ

i

−
(
M2 + a1

k

) ∞∑
i=0

Biξ
i+2 +

∞∑
i=0

a2

k
Biξ

i+m+2

]

= R2
0

dp
dz

4a1µ0
(14)

Equating the coefficients of K and other part in Equa-
tion (14) we have,

∞∑
i=0

i(i − 1)(a1 − a2ξ
m)Aiξ

i−2

+
∞∑
i=0

i(a1 − (m − 1)a2ξ
m)Aiξ

i−2

−
(
M2 + a1

k

) ∞∑
i=0

Aiξ
i

+
∞∑
i=0

a2

k
Aiξ

i+m = 0 (15)

and
∞∑
i=0

(i + 1)(i + 2)(a1 − a2ξ
m)Biξ

i

+
∞∑
i=0

(i + 2)(a1 − (m − 1)a2ξ
m)Biξ

i

−
(
M2 + a1

k

) ∞∑
i=0

Biξ
i+2

+
∞∑
i=0

a2

k
Biξ

i+m+2 = 1 (16)
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Now, the expressions for Ai+1 and Bi+1 are obtained
by equating the coefficients of ξi−1 and ξi+1 from both
side of Eqs. (15) and (16) respectively and can be put
in the form

Ai+1 = a2(1 + i)2Ai+1−m − m(i + 1)a2Ai+1−m + (M2 + a1
k

)Ai−1 − a2
k

Ai−1−m

a1(1 + i)2 (17)

Bi+1 = a2(3 + i)2 − m(i + 3)a2Bi+1−m + (M2 + a1
k

)Bi−1 − a2
k

Bi−1−m

a1(3 + i)2 (18)

with

A0 = B0 = 1. (19)

Finally the coefficients Ai and Bi are obtained using the
boundary condition (11) and the recurrence relations

(17) and (18). Substituting the expression for K in the
Equation (12), we have

u = − R2
0

dp
dz

4a1µ0

[∞∑
i=0

Bi( R
R0

)i+2
∞∑
i=0

Aiξ
i −

∞∑
i=0

Biξ
i+2

∞∑
i=0

Ai

(
R
R0

)i
]

∞∑
i=0

Ai

(
R
R0

)i
. (20)

The average velocity u0 has the form

u0 = − R2
0

8µ0

(
dp

dz

)
0
, (21)

where ( dp
dz

)0 is the pressure gradient of the flow field
in the normal artery in the absence of magnetic field.
The non-dimensional expression for u is given by

ū = u

u0
= 2

a1

dp
dz(
dp
dz

)
0

[∞∑
i=0

Bi

(
R
R0

)i+2 ∞∑
i=0

Aiξ
i −

∞∑
i=0

Biξ
i+2

∞∑
i=0

Ai

(
R
R0

)i
]

∞∑
i=0

Ai

(
R
R0

)i
. (22)

The volumetric flow rate across the arterial segment is
given by

Q =

R
R0∫

0

2πR0ξu(ξ) dξ. (23)

Substituting u from Equation (20) into Equation (23)
and then integrating with respect to ξ, we obtain

Q = −πR3
0

dp
dz

2a1µ0

[
∞∑
i=0

Bi

(
R
R0

)i+2 ∞∑
i=0

Ai

(
R
R0

)i+2

(i+2) −
∞∑
i=0

Bi

(
R
R0

)i+4

(i+4)

∞∑
i=0

Ai

(
R
R0

)i

]
∞∑
i=0

Ai

(
R
R0

)i
. (24)

If Q0 be the volumetric flow rate in the normal por-
tion of the artery, in the absence of magnetic field and
porosity effect, then

Q0 = −πR3
0

8µ0

(
dp

dz

)
0
. (25)

Therefore, the non-dimensional volumetric flow rate
has the following form
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Q̄ = Q

Q0
= 4 dp

dz

a1

(
dp
dz

)
0

[
∞∑
i=0

Bi

(
R
R0

)i+2 ∞∑
i=0

Ai

(
R
R0

)i+2

(i+2) −
∞∑
i=0

Bi

(
R
R0

)i+4

(i+4)

∞∑
i=0

Ai

(
R
R0

)i

]
∞∑
i=0

Ai

(
R
R0

)i
. (26)

If the flow is steady and no outward/inward flow takes
place through the arterial segment, then the mass flux is
constant and hence Q̄ = 1. The expression for pressure
gradient from (26) can be put as

(
dp

dz

)
=

dp
dz(
dp
dz

)
0

= a1

4

∞∑
i=0

Ai

(
R
R0

)i

[
∞∑
i=0

Bi

(
R
R0

)i+2 ∞∑
i=0

Ai

(
R
R0

)i+2

(i+2) −
∞∑
i=0

Bi

(
R
R0

)i+4

(i+4)

∞∑
i=0

Ai

(
R
R0

)i

] . (27)

The wall shear stress on the endothelial surface is given
by

τR =
[
−µ(r)

du

dr

]
r=R(z)

. (28)

Substituting u from Equation (20) into Equation (28),
we obtain

τR

=
dp
dz

R0

[
1 + βH

{
1 −

(
R
R0

)m}]
4a1

[∞∑
i=0

Bi

(
R
R0

)i+2 ∞∑
i=0

iAi

(
R
R0

)i−1 −
∞∑
i=0

(i + 2)Bi

(
R
R0

)i+1 ∞∑
i=0

Ai

(
R
R0

)i
]

∞∑
i=0

Ai

(
R
R0

)i
. (29)

If τN = −R0
2 ( dp

dz
)0 be the shear stress at the normal

portion of the arterial wall, in the absence of magnetic
field, the non-dimensional form of the wall shear stress
is given by

τ̄ = τR

τN

= 1

2a1

(
dp

dz

)[
1 + βH

(
1 −

(
R

R0

)m)]

1
∞∑
i=0

Ai

(
R
R0

)i

[ ∞∑
i=0

Bi

(
R

R0

)i+2 ∞∑
i=0

iAi

(
R

R0

)i−1

−
∞∑
i=0

(i + 2)Bi

(
R

R0

)i+1 ∞∑
i=0

Ai

(
R

R0

)i
]

. (30)

4. Results and discussion

In the previous section we have obtained analytical
expressions for different flow characteristics of blood

through porous medium under the action of an external
magnetic field. In this section we are to discuss the flow
characteristics graphically with the use of following
valid numerical data which is applicable to blood. The
following numerical values to the parameters involve
in the present problem are considered as available in
the scientific literatures [20, 27, 37].

l = 2.0, d = 0.5, α = 0.09, H = 0.2, m = 2,

k = 0.25, β = 2.5, L = 5, M = 2.5,

Figure 2 indicates the different locations of the
stenosis in the axial direction. In Fig. 2, z = 0.5 and
z = 3.5 correspond to the onset and outset of the steno-
sis and z = 1 and z = 3 represent the throat of the
primary stenosis and secondary stenosis respectively.
It is interesting to note from this figure that z = 2 is
the location where further deposition takes place and
hence it is known as overlapping stenosis.

The variation of axial velocity at different axial posi-
tion along the radial direction are shown in Fig. 3. We
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Fig. 1. Schematic diagram of the model geometry.

Fig. 2. Locations of the points z=0.5, 1.0, 2.0, 3.0, 3.5.

observe from this figure that the velocity is maximum at
the central line of the vessel for all position of z. Among
all these positions, the velocity is high at the throat of
the primary stenosis and low at the onset of the overlap-
ping stenosis. However, the central line velocity at the
throat of secondary stenosis is about 30% less than the
primary stenosis. But the central line velocity at z = 2

Fig. 3. Velocity distribution in the radial direction at different axial
position z, when H = 0.2, M = 2.5, β = 2.5, α = 0.09 and k =
0.25.

Fig. 4. Variation of axial velocity along axial direction for different
values of l, when H = 0.2, M = 2.5, α = 0.09 and k = 0.25.

(between the throat of two stenosis) suddenly falls
about 55% than that of secondary one. This observation
may leads to the flow circulation zone and may causes
further deposition of plaque. Figure 4 depicts the vari-
ation of axial velocity for different length between
the throat of two stenoses. It has been observed that
the velocity at the throat of the stenoses significantly
increases with the increase of l. Thus, the effect of
the shape of stenosis has important role on the flow
characteristics. Similar is the observation from Fig. 5
that the axial velocity decreases as the tapering angle
α increases. Figure 6 illustrates the variation of axial
velocity at the throat of the secondary stenosis for dif-
ferent values of the Hartmann Number M. We observe
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Fig. 5. Variation of axial velocity at z = 2.0 for different values of
α, when H = 0.2, M = 2.5, β = 2.5, and k = 0.25.

Fig. 6. Velocity distribution at z = 2.0 for different values of M,
when H = 0.2, β = 2.5, α = 0.09 and k = 0.25.

Fig. 7. Variation of axial velocity for different values of the perme-
ability parameter k at z = 2.0, when H = 0.2, M = 2.5, β = 2.5
and α = 0.09.

that the axial velocity significantly decreases at the cen-
tral line of the artery with the increase of the magnetic
field strength. While the velocity in the vicinity of the
arterial wall increases with the increasing values of M

in order to maintain constant volumetric flow rate. It is
also well known that when a magnetic field is applied
in an electrically conducting fluid (hence for blood)
there arises Lorentz force, which has a tendency to slow
down the motion of the fluid. It has been observed from
Fig. 7 that the axial velocity near the central line of the
channel increases with the increase of the permeability
parameter k, while the trend is reversed in the vicinity
of the arterial wall. This phenomena is noticed because
of the permeability parameter k is depend as the recip-
rocal of the permeability of the porous medium. Figure
8 gives the distribution of axial velocity for different
values of the hematocrit H . We note from Fig. 8 that
the axial velocity decreases at the core region of the
artery with the increase of hematocrit level H , whereas
the opposite trend is observed in the peripheral region.
This fact lies within the hematocrit as the blood vis-
cosity is high in the core region due to the aggregation
of blood cells rather than low viscosity in the plasma
near the arterial wall.

Figures 9–12 illustrate the variation of pressure gra-

dient d̄p
dz

along the length of the stenosis for different
values of the physical parameters of interest. Figure 9
shows that the axial pressure gradient increases with
the increase of magnetic field strength. We have already
observed that the Lorentz force has reducing effect
of blood velocity, so as more pressure is needed to
pass the same amount of fluid under the action of an
external magnetic field. However, the opposite trend is
observed in the case of porous permeability parameter
k as shown in Fig. 10. It has been seen from Fig. 11
that the pressure gradient increases with the increase
of the hematocrit H . It indicates from this figure that
when the aggregation of blood cells increase at the
core region that is hematocrit H is high, more pressure
gradient is needed to pass the same amount of fluid
through the stenotic region. These results are coherent
with those reported in [35], wherein they mentioned
that the greater blood viscosity caused by higher hema-
tocrit and the consequent increased resistance to blood
flow appear the most reasonable causes underlying the
association between hematocrit and blood pressure. It
is interesting to note from these three figures that the
magnitude of the pressure gradient is high enough at the
throat of the primary stenosis than that of the secondary
one. But from Fig. 12, we observed that at the throat
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Fig. 8. Variation of axial velocity in the radial direction for different
values of H at z = 2.0, when M = 2.5, β = 2.5, α = 0.09 and k =
0.25.

Fig. 9. Variation of pressure gradient ( d̄p
dz

) for different values of M

when H = 0.2, β = 2.5, α = 0.09 and k = 0.25.

of secondary stenosis, the pressure gradient is high in
comparison to the throat of the primary stenosis. This
happens due to the increasing of the tapering angle α.
Therefore, in the case of diverging artery more pres-
sure is needed as the flow advances in the downstream
direction.

Figures 13 and 14 give the distribution of the wall
shear stress for different values of the hematocrit H and
tapering angle α. We observe from Fig. 13 that the wall
shear stress increases as the hematocrit H increases.
One can note from this figure that the wall shear stress is
low at the throat of the secondary stenosis as well as at
the downstream of the artery. It is generally well known
that at the low shear stress region mass transporta-

Fig. 10. Variation of pressure gradient ( d̄p
dz

) with z for different values
of k when H = 0.2, M = 2.5, β = 2.5, when α = 0.09.

Fig. 11. Variation of pressure gradient ( d̄p
dz

) for different values of
H when M = 2.5, β = 2.5, α = 0.09 and k = 0.25.

Fig. 12. Variation of pressure gradient ( d̄p
dz

) with z for different values
of α when H = 0.2, M = 2.5, β = 2.5, and k = 0.25.
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Fig. 13. Distribution of wall shear stress τ̄ along with z for different
values of H when k = 0.25, M = 2.5, β = 2.5, and α = 0.09.

Fig. 14. Distribution of wall shear stress τ̄ along with z for different
values of α when H = 0.2, β = 2.5, M = 2.5 and k = 0.25.

tion takes place and thereby occurs further deposition.
However, it is interesting to note from Fig. 14 that
the wall shear stress decreases significantly with the
increasing values of the tapering angle α. Moreover,
the magnitude of the wall shear stress is same at both
the throat of the stenosis in the absence of tapering
angle α. Therefore, we may conclude that there is a
chance of further deposition at the downstream of the
diverging artery.

5. Conclusions

A theoretical study of blood flow through overlap-
ping stenosis in the presence of magnetic field has been
carried out. In this study the variable viscosity of blood

depending on hematocrit and the blood has been treated
as the porous medium. The problem is solved analyt-
ically by using the Frobenius method. The effects of
various key parameters including the tapering angle α,
percentage of hematocrit H , the magnetic field and per-
meability parameter k are examined. The main findings
of the present study may be listed as follows:

• The effect of primary stenosis on the secondary
one is significant in case of diverging artery (α >

0).
• The flow velocity at the central region decreases

gradually with the increase of magnetic field
strength.

• The permeability parameter k has an enhancing
effect on the flow characteristics of blood.

• At the core region, the axial velocity decreases
with the increase of the percentage of hemat-
ocrit H .

• The hematocrit and the blood pressure has a linear
relationship as reported in [35].

• The lower range of hematocrit may leads to the
further deposition of cholesterol at the endothe-
lium of the vascular wall.

• Hematocrit contributes to the regulation of blood
pressure.

Finally we can conclude that further potential improve-
ment of the model are anticipated. Since the hematocrit
positively affects blood pressure, further study should
examine the other factors such as diet, tobacco, smok-
ing, overweight etc. from a cardiovascular point of
view. Moreover on the basis of the present results, it can
be concluded that the flow of blood and pressure can be
controlled by the application of an external magnetic
field.
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