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Let Ω be a smoothly bounded pseudoconvex domain in C3 and assume that 𝑧
0
∈ 𝑏Ω is a point of finite 1-type in the sense of

D’Angelo. Then, there are an admissible curve Γ ⊂ Ω ∪ {𝑧
0
}, connecting points 𝑞

0
∈ Ω and 𝑧

0
∈ 𝑏Ω, and a quantity 𝑀(𝑧,𝑋),

along 𝑧 ∈ Γ, which bounds from above and below the Bergman, Caratheodory, and Kobayashi metrics in a small constant and large
constant sense.

1. Introduction

Let Ω be a smoothly bounded domain in C𝑛 and let 𝑋 be
a holomorphic tangent vector at a point 𝑧 in Ω, and let us
denote the Bergman, Caratheodory, and Kobayashi metrics
at 𝑧 by 𝐵

Ω
(𝑧; 𝑋), 𝐶

Ω
(𝑧; 𝑋), and𝐾

Ω
(𝑧; 𝑋), respectively. When

Ω is a strongly pseudoconvex domain in C𝑛, the optimal
boundary behavior of the above metrics is well understood.
For weakly pseudoconvex domains of finite type in C𝑛,
several authors found some results about these metrics. But
in each case, the lower bounds are different from the upper
bounds [1–5]. In [6], Catlin got optimal estimates in a small
constant and large constant sense for pseudoconvex domains
of finite type in C2. For pseudoconvex domains of finite type
in C𝑛, the first author and Herbort extended Catlin’s result
to the case that the Levi-form at 𝑧

0
has corank one [7, 8] or

homogeneous finite diagonal type near 𝑧
0
∈ 𝑏Ω [9, 10].

To estimate the above invariant metrics, we need a com-
plete geometric analysis near 𝑧

0
∈ 𝑏Ω of finite type, and then

we construct a family of plurisubharmonic functions with
maximal Hessian near 𝑏Ω. However, this construction is
really technical and known only for special types of domains
mentioned above, but not for arbitrary pseudoconvex
domains of finite type in C𝑛, even for 𝑛 = 3 case. Meanwhile,
it is useful to understand the behavior of a holomorphic

function near 𝑧
0
∈ 𝑏Ω if we have precise estimates of the

invariant metric along some curves.
In the sequel, we let Ω be a smoothly bounded pseudo-

convex domain in C3 with smooth defining function 𝑟 and
let 𝑧

0
∈ 𝑏Ω. Let M(𝑧

0
) = (1,𝑚,𝑚

3
) be Catlin’s multitype

[11]. Thus, 𝑚 = 𝑇BG(𝑧0) is the type in the sense of “Bloom-
Graham.” If 𝑚

3
= Δ

1
(𝑧

0
), then Ω is an ℎ-extensible domain

[12] and Herbort [10] got an estimate in this case. Here,
Δ

𝑞
(𝑧

0
) denotes finite 𝑞-type in the sense of D’Angelo. Thus,

we assume that 𝑚 ≤ 𝑚
3
< Δ

1
(𝑧

0
). Regular finite 1-type at

𝑧
0
∈ 𝑏Ω is the maximum order of vanishing of 𝑟 ∘ 𝛾 for all

one complex dimensional regular curves 𝛾, 𝛾(0) = 𝑧
0
and

𝛾
󸀠
(0) ̸= 0. We denote the regular finite 1-type at 𝑧

0
by𝑇reg

Ω
(𝑧

0
).

Note that 𝑇reg
Ω
(𝑧

0
) is a positive integer and 𝑇reg

Ω
(𝑧

0
) ≤ Δ

1
(𝑧

0
).

Assuming that 𝑇reg
Ω
(𝑧

0
) = 𝜂 < ∞, there exist coordinate

functions 𝑧 = (𝑧
1
, 𝑧

2
, 𝑧

3
) defined in a neighborhood 𝑉 of 𝑧

0

such that 𝑧
0
= 0 and |𝜕𝑟/𝜕𝑧

3
| ≥ 𝑐

0
on𝑉 for a uniformconstant

𝑐
0
> 0, and |𝑟(𝑧

1
, 0, 0)| vanishes to order 𝜂, and (𝜕𝑟/𝜕𝑧

2
)(0) =

0 (Theorem 2.1 in [13]). With these coordinates at hand, set

𝐿
𝑘
=

𝜕

𝜕𝑧
𝑘

− (
𝜕𝑟

𝜕𝑧
3

)

−1
𝜕𝑟

𝜕𝑧
𝑘

𝜕

𝜕𝑧
3

:=
𝜕

𝜕𝑧
𝑘

+ 𝑒
𝑘 (𝑧)

𝜕

𝜕𝑧
3

,

𝑘 = 1, 2,

𝐿
3
=

𝜕

𝜕𝑧
3

.

(1)
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Then, 𝑒
𝑘
(0) = 0, 𝑘 = 1, 2, and {𝐿

1
, 𝐿

2
, 𝐿

3
} form a basis of

C𝑇(1,0)
(𝑉) provided 𝑉 is sufficiently small. For any integer 𝑗,

𝑘 > 0, set

L
𝑗,𝑘
𝜕𝜕𝑟 (𝑧) = 𝐿

2
⋅ ⋅ ⋅ 𝐿

2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑗−1)times

𝐿
2
⋅ ⋅ ⋅ 𝐿

2⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑘−1)times

𝜕𝜕𝑟 (𝑧) (𝐿
2
, 𝐿

2
) (𝑧) (2)

and define

𝐶
𝑙 (𝑧) = max {󵄨󵄨󵄨󵄨󵄨L𝑗,𝑘

𝜕𝜕𝑟 (𝑧)
󵄨󵄨󵄨󵄨󵄨
: 𝑗 + 𝑘 = 𝑙} . (3)

Let𝑋 = 𝑎
1
𝐿

1
+ 𝑎

2
𝐿

2
+ 𝑎

3
𝐿

3
be a holomorphic tangent vector

at 𝑧 ∈ Ω and set

𝑀(𝑧;𝑋) =
󵄨󵄨󵄨󵄨𝑎1
󵄨󵄨󵄨󵄨 |𝑟 (𝑧)|

−1/𝜂
+
󵄨󵄨󵄨󵄨𝑎2
󵄨󵄨󵄨󵄨

𝑚

∑

𝑙=2

(
𝐶

𝑙
(𝑧)

|𝑟 (𝑧)|
)

1/𝑙

+
󵄨󵄨󵄨󵄨𝑎3
󵄨󵄨󵄨󵄨 |𝑟 (𝑧)|

−1
.

(4)

Let Γ ⊂ Ω∪ {𝑧
0
} be the admissible curve defined in (20). Our

main result is as follows.

Theorem 1. Let Ω ⊂⊂ C3 be a smoothly bounded pseudocon-
vex domain and assume 𝑧

0
∈ 𝑏Ω is a point of finite 1-type in

the sense of D’Angelo; that is, Δ
1
(𝑧

0
) < ∞. Then, there exist a

neighborhood 𝑉 about 𝑧
0
, an admissible curve Γ ⊂ Ω ∪ {𝑧

0
}

connecting 𝑞
0
∈ Ω and 𝑧

0
, and positive constants 𝑐 and 𝐶 such

that, for all 𝑋 = 𝑎
1
𝐿

1
+ 𝑎

2
𝐿

2
+ 𝑎

3
𝐿

3
at 𝑧 ∈ 𝑉 ∩ Γ ∩ Ω,

𝑐𝑀 (𝑧;𝑋) ≤ 𝐵
Ω
(𝑧; 𝑋) ≤ 𝐶𝑀(𝑧;𝑋)

𝑐𝑀 (𝑧;𝑋) ≤ 𝐶Ω (𝑧; 𝑋) ≤ 𝐶𝑀(𝑧;𝑋)

𝑐𝑀 (𝑧;𝑋) ≤ 𝐾
Ω
(𝑧; 𝑋) ≤ 𝐶𝑀(𝑧;𝑋) .

(5)

To prove Theorem 1, we use special coordinates con-
structed in Section 2 of [13]. Thus, there is a special direction
𝑑, |𝑑| = 1, so that, for each 𝛿 > 0, the two-dimensional slice
𝐷

𝛿
:= {(𝑧

2
, 𝑧

3
); 𝑟(𝑑𝛿

1/𝜂
, 𝑧

2
, 𝑧

3
) < 0} becomes a pseudoconvex

domain of finite type inC2, whose type is less than or equal to
𝑚 = 𝑇BG(𝑧0). We then apply the method which holds for the
domains of finite type in C2 as in [6]. To avoid the difficulty
to push out the domain in 𝑧

1
-direction, we use a bumping

theorem of Cho [14].

2. Special Coordinates

Let Ω ⊂ C3 and 𝑧
0
∈ 𝑏Ω be as in Section 1. We may assume

that 𝑧
0
= 0. In this section, we consider special coordinates

defined near 𝑧
0
∈ 𝑏Ω and then construct “balls” which are of

maximal size on which 𝑟(𝑧) changes by no more than some
prescribed number 𝛿 > 0. In the following, we let 𝛼 = (𝛼

1
, 𝛼

2
)

and 𝛽 = (𝛽
1
, 𝛽

2
) be multi-indices with respect to 𝑧󸀠

= (𝑧
1
, 𝑧

2
)

variables. In Theorem 2.1 of [13], You constructed special
coordinates which represent the local geometry of 𝑏Ω near
𝑧
0
.

Theorem 2. Let Ω be a smoothly bounded pseudoconvex
domain in C3 with smooth defining function 𝑟 and assume

𝑇
𝑟𝑒𝑔

Ω
(0) = 𝜂 < ∞, 0 ∈ 𝑏Ω. Then, there is a holomorphic

coordinate system 𝑧 = (𝑧
1
, 𝑧

2
, 𝑧

3
) about 0 such that

(1) 𝑟 (𝑧) = Re 𝑧
3
+

𝜂

∑

|𝛼|+|𝛽|=𝑚

|𝛼|,|𝛽|>0

𝑎
𝛼,𝛽
𝑧
󸀠𝛼
𝑧
󸀠𝛽

+ O (
󵄨󵄨󵄨󵄨𝑧3
󵄨󵄨󵄨󵄨 |𝑧| +

󵄨󵄨󵄨󵄨󵄨
𝑧
󸀠󵄨󵄨󵄨󵄨󵄨

𝜂+1

) ,

(2) |𝑟 (𝑡, 0, 0)| ≲ |𝑡|
𝜂
,

(6)

where 𝑧󸀠
= (𝑧

1
, 𝑧

2
) and where

𝑎
𝛼,𝛽

̸= 0 𝑓𝑜𝑟𝑠𝑜𝑚𝑒 𝛼, 𝛽 𝑤𝑖𝑡ℎ 𝛼
1
= 𝛽

1
= 0, 𝛼

2
+ 𝛽

2
= 𝑚.

(7)

Remark 3. (1) The second condition in (6) and the property
(7) say that 𝑟(𝑧) vanishes to order 𝜂 along 𝑧

1
axis and order𝑚

along 𝑧
2
axis.These properties are crucial for the construction

of maximal polydiscs 𝑄
𝑐𝛿
(𝑧

𝛿
) contained inΩ.

(2)There aremuchmore terms (mixedwith 𝑧
1
and 𝑧

2
and

their conjugates) in the summation part of (6) compared to
the ℎ-extensible domain cases.

According to Proposition 2.6 andRemark 2.7 of [13], there
are pairs of integers (𝑝], 𝑞]), ] = 1, . . . , 𝑁, such that the terms
satisfying 𝛼

1
+ 𝛽

1
= 𝑝] and 𝛼2

+ 𝛽
2
= 𝑞] with 𝛼2

> 0 and
𝛽

2
> 0 are dominant terms in the summation part of (6).

Also, there is a small constant 𝑎
0
> 0 and a fixed direction 𝑑,

|𝑑| = 1, in 𝑧
1
direction, such that, for each fixed 𝛿 > 0 and for

all 𝑧
1
satisfying |𝑧

1
−𝑑𝛿

1/𝜂
| < 𝑎

0
𝛿
1/𝜂, those major terms in the

summation part of (6) satisfy
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕
𝑞]

𝜕𝑧
𝛼
2

2
𝜕𝑧

𝛽
2

2

𝑟 (𝑧
1
, 0, 0)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≈
󵄨󵄨󵄨󵄨𝑧1
󵄨󵄨󵄨󵄨

𝑝]
≈ 𝛿

𝑝]/𝜂, (8)

where 𝛼
2
+ 𝛽

2
= 𝑞] and where 𝛼

2
> 0 and 𝛽

2
> 0.

Now, let us fix 𝑧
1
with |𝑧

1
− 𝑑𝛿

1/𝜂
| < 𝑎

0
𝛿
1/𝜂 and consider

the two-dimensional slice 𝐷
𝑧
1

:= {(𝑧
2
, 𝑧

3
) : 𝑟(𝑧

1
, 𝑧

2
, 𝑧

3
) < 0}.

For each 𝑧 = (𝑧
1
, 0, 𝑧

3
) near 𝑏Ω, set 𝜋(𝑧) = (𝑧

1
, 0, 𝑒

𝛿
) :=

𝑧̃
1

∈ 𝑏Ω, where 𝜋(𝑧) is the projection of 𝑧 onto 𝑏Ω

along 𝑧
3
direction. On 𝐷

𝑧
1

, following the argument in two-
dimensional case as in the proof of Proposition 1.1 in [6], we
construct special coordinates 𝜁 = (𝜁

1
, 𝜁

2
, 𝜁

3
) = (𝑧

1
, 𝑧

2
, 𝜁

3
)

about 𝑧̃
1
so that, in terms of new coordinates, there are no

pure terms in 𝑧
2
variable in the expression of 𝑟(𝑧) in (6).

Proposition 4. For each fixed 𝑧̃
1
= (𝑧

1
, 0, 𝑒

𝛿
) ∈ 𝑉 ∩ 𝑏Ω,

there exists a holomorphic coordinate system 𝑧 = Φ
𝑧̃
1

(𝜁) =

(𝑧
1
, 𝑧

2
, Φ

3
(𝜁)), 𝜁 = (𝜁

1
, 𝜁

2
, 𝜁

3
) = (𝑧

1
, 𝑧

2
, 𝜁

3
), where Φ

3
(𝜁) is

defined by

Φ
3 (𝜁) = 𝑒𝛿 + (

𝜕𝑟

𝜕𝑧
3

(𝑧̃
1
))

−1

× (
𝜁
3

2
−

𝑚

∑

𝑙=2

𝑐
𝑙
(𝑧̃

1
) 𝜁

𝑙

2
−
𝜕𝑟

𝜕𝑧
2

(𝑧̃
1
) 𝜁

2
)

:= 𝑒
𝛿
+ 𝑑

0
(𝑧̃

1
) 𝜁

3
+

𝑚

∑

𝑙=1

𝑑
𝑙
(𝑧̃

1
) 𝜁

𝑙

2
,

(9)
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and the function 𝜌, given by 𝜌(𝑧
1
, 𝜁

󸀠󸀠
) := 𝑟 ∘ Φ

𝑧̃
1

(𝑧
1
, 𝜁

󸀠󸀠
), 𝜁󸀠󸀠 =

(𝜁
2
, 𝜁

3
), satisfies

𝜌 (𝑧
1
, 𝜁

󸀠󸀠
) = Re (Φ

3 (𝜁)) +

𝑚

∑

𝑗+𝑘=2

𝑗,𝑘>0

𝑎
𝑗,𝑘
(𝑧̃

1
) 𝜁

𝑗

2
𝜁
𝑘

2
+ 𝐸 (𝜁) , (10)

where

𝐸 (𝜁) = O(
󵄨󵄨󵄨󵄨Φ3

(𝜁)
󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨 +

𝑁

∑

]=1

󵄨󵄨󵄨󵄨𝑧1
󵄨󵄨󵄨󵄨

1+𝑝] 󵄨󵄨󵄨󵄨𝜁2
󵄨󵄨󵄨󵄨

𝑞]
+
󵄨󵄨󵄨󵄨𝜁2
󵄨󵄨󵄨󵄨

𝑚+1
) .

(11)

In view of (6) and (8), the major terms in (10) are
𝑎
𝑗,𝑘
(𝑧̃

1
)𝜁

𝑗

2
𝜁
𝑘

2
where 𝑗 + 𝑘 = 𝛼

2
+ 𝛽

2
= 𝑞] for some 𝛼

2
and

𝛽
2
with 𝛼

2
> 0 and 𝛽

2
> 0. Also, from (8), it follows that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑎
𝑗,𝑘
(𝑧̃

1
) 𝜁

𝑗

2
𝜁
𝑘

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≈
󵄨󵄨󵄨󵄨𝑧1
󵄨󵄨󵄨󵄨

𝑝] 󵄨󵄨󵄨󵄨𝑧2
󵄨󵄨󵄨󵄨

𝑞]
, (12)

and these terms control the error terms |𝑧
1
|
1+𝑝] |𝜁

2
|
𝑞] in 𝐸(𝜁).

As in Section 1 in [6], set

𝐴
𝑙
(𝑧̃

1
) = max {󵄨󵄨󵄨󵄨󵄨𝑎𝑗,𝑘 (𝑧̃1)

󵄨󵄨󵄨󵄨󵄨
; 𝑗 + 𝑘 = 𝑙} , 𝑙 = 2, . . . , 𝑚, (13)

and for each sufficiently small 𝛿 > 0, we set

𝜏 (𝑧̃
1
, 𝛿) = min{( 𝛿

𝐴
𝑙
(𝑧̃

1
)
)

1/𝑙

; 2 ≤ 𝑙 ≤ 𝑚} . (14)

Thus, for all 𝑧
1
with |𝑧

1
− 𝑑𝛿

1/𝜂
| < 𝑎

0
𝛿
1/𝜂, it follows from (8)

and (14) that

𝜏 (𝑧̃
1
, 𝛿) ≲ (

𝛿

󵄨󵄨󵄨󵄨𝑧1
󵄨󵄨󵄨󵄨

𝑝]
)

1/𝑞]

, ] = 1, . . . , 𝑁, (15)

and hence the summation part of (10) is dominated by 𝐶𝛿.
For each 𝑧̃ = (𝑧

1
, 0, 𝑧

3
) near 𝑏Ω, set 𝜁 = Φ

−1

𝑧̃
1

(𝑧̃) =

(𝑧
1
, 0, 𝜁

3
), whereΦ

𝑧̃
1

is the function defined in Proposition 4.
For each small 𝑒 > 0, set

𝑅
𝑒𝛿
(𝜁) = {𝜁 :

󵄨󵄨󵄨󵄨𝜁1 − 𝑧1
󵄨󵄨󵄨󵄨 < 𝑒𝛿

1/𝜂
,
󵄨󵄨󵄨󵄨𝜁2
󵄨󵄨󵄨󵄨 < 𝑒𝜏 (𝑧̃1, 𝛿) ,

󵄨󵄨󵄨󵄨󵄨
𝜁
3
− 𝜁

3

󵄨󵄨󵄨󵄨󵄨
< 𝑒𝛿} ,

𝑄
𝑒𝛿 (𝑧̃) = {𝑧 : 𝑧 = Φ𝑧̃

1
(𝜁) , 𝜁 ∈ 𝑅𝑒𝛿

(𝜁)} .

(16)

For each 𝜎 > 0, let Ω
𝜎
= {𝑧; 𝑟(𝑧) < 𝜎} and define

𝑆 (𝜎) = {𝑧 ∈ 𝑉 : −𝜎 < 𝑟 (𝑧) ≤ 𝜎}

𝑆
−
(𝜎) = {𝑧 ∈ 𝑉 : −𝜎 < 𝑟 (𝑧) ≤ 0} ,

(17)

and set 𝑧̃𝛿
= (𝑑𝛿

1/𝜂
, 0, 𝑒

𝛿
) ∈ 𝑏Ω, where 𝑧

1
is replaced by

𝑑𝛿
1/𝜂 in 𝑧̃

1
= (𝑧

1
, 0, 𝑒

𝛿
). The following theorem is about

the existence of plurisubharmonic function with maximal
Hessian. In [6], for the domains in C2, Catlin constructed
the functions with maximal Hessian on the strip 𝑆(𝛿) ∩ 𝑉.
However, for regular finite type pseudoconvex domains in
C3, we show that the functions have maximal Hessian on
each ball 𝑄

𝑏𝛿
(𝑧̃

𝛿
) and this will suffice to prove the boundary

behavior of the invariant metrics. The proof of the following
theorem can be found inTheorem 3.2 in [9].

Theorem 5. There is a small constant 𝑏 > 0 such that, for
each small 𝛿 > 0, there is a plurisubharmonic function 𝑔

𝛿
∈

𝐶
∞

0
(𝑄

2𝑏𝛿
(𝑧̃

𝛿
)) with the following properties:

(i) |𝑔
𝛿
(𝜁)| ≤ 1, 𝑧 ∈ Ω

𝛿
,

(ii) for all 𝐿 = 𝑏
1
𝐿

1
+𝑏

2
𝐿

2
+𝑏

3
𝐿

3
at 𝑧, where 𝑧 ∈ 𝑄

𝑏𝛿
(𝑧̃

𝛿
)∩

𝑆(𝑏𝛿),

𝜕𝜕𝑔
𝛿
(𝐿, 𝐿) (𝑧) ≳ 𝛿

−2/𝜂 󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨

2
+ 𝜏 (𝑧̃

𝛿
, 𝛿)

−2 󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨

2
+ 𝛿

−2 󵄨󵄨󵄨󵄨𝑏3
󵄨󵄨󵄨󵄨

2
,

(18)

(iii) ifΦ(𝜁) = (𝜁
1
, 𝜁

2
, Φ

3
(𝜁)), whereΦ

3
is defined in (10) for

𝑧̃
𝛿, then
󵄨󵄨󵄨󵄨󵄨
𝐷

𝛼
𝑔

𝛿
∘ Φ (𝜁)

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶

𝛼
𝛿
−𝛼
1
/𝜂
𝜏 (𝑧̃

𝛿
, 𝛿)

−𝛼
2

𝛿
−𝛼
3 (19)

holds for all 𝜁 ∈ 𝑅
2𝑏𝛿
(𝑧̃

𝛿
), where𝐷𝛼

= 𝐷
𝛼
1

1
𝐷

𝛼
2

2
𝐷

𝛼
3

3
.

Let Γ ⊂ Ω be a curve defined by

Γ := {𝑧
𝛿
: 𝑧

𝛿
= (𝑑𝛿

1/𝜂
, 0, 𝑒

𝛿
−
𝑏𝛿

2
) , 0 ≤ 𝛿 ≤ 𝛿

0
} , (20)

for sufficiently small 𝛿
0
> 0 and 𝑏 > 0. In the sequel, for each

𝑧
𝛿
= (𝑑𝛿

1/𝜂
, 0, 𝑒

𝛿
− 𝑏𝛿/2) ∈ Γ, set 𝜁𝛿 := Φ−1

𝑧̃
𝛿 (𝑧

𝛿
) and set Ω̃ =

Φ
−1

𝑧̃
𝛿 (Ω). In view of Proposition 3.4 in [9], there is a uniform

small constant 𝑐 > 0 such that 𝑅
𝑐𝛿
(𝜁

𝛿
) ⊂⊂ 𝑅

𝑏𝛿
(𝑧̃

𝛿
) ∩ Ω̃, and

hence

𝑄
𝑐𝛿
(𝑧

𝛿
) = {𝑧 : 𝑧 = Φ

𝑧̃
𝛿 (𝜁) , 𝜁 ∈ 𝑅𝑐𝛿

(𝜁
𝛿
)} ⊂⊂ 𝑄

𝑏𝛿
(𝑧̃

𝛿
) ∩ Ω,

(21)

provided 𝑐 > 0 and 𝛿
0
> 0 are sufficiently small. In particular,

we have Γ ⊂ Ω∪{𝑧
0
}. Note that 𝜏(𝑧𝛿

, 𝛿) ≈ 𝜏(𝑧̃
𝛿
, 𝛿), and for 𝑧 ∈

𝑄
𝑐𝛿
(𝑧

𝛿
) ⊂ Ω, we note that |𝑟(𝑧)| ≈ 𝛿. Thus, as in Proposition

1.3 and Corollary 1.4 in [6], we obtain that

𝜏 (𝑧
𝛿
, 𝛿)

−1

≈

𝑚

∑

𝑘=2

(
𝐶

𝑘 (𝑧)

|𝑟 (𝑧)|
)

1/𝑘

, 𝑧 ∈ 𝑄
𝑐𝛿
(𝑧

𝛿
) , (22)

where 𝐶
𝑘
(𝑧) is defined in (3). In the sequel, we set 𝜏

1
= 𝛿

1/𝜂,
𝜏
2
= 𝜏(𝑧̃

𝛿
, 𝛿), and 𝜏

3
= 𝛿. If we use the plurisubharmonic

weight functions constructed in Theorem 5 and follow the
method to prove Theorem 6.1 in [6], we get the following
estimates of the Bergman kernel along Γ.

Theorem 6. Let 𝑧
0
∈ 𝑏Ω be a point of regular finite 1-type and

𝑇
𝑟𝑒𝑔

Ω
(𝑧

0
) = 𝜂. Then, 𝐾

Ω
(𝑧

𝛿
, 𝑧

𝛿
), the Bergman kernel function

of Ω at 𝑧𝛿
∈ Γ, 𝛿 > 0, satisfies

𝐾
Ω
(𝑧

𝛿
, 𝑧

𝛿
) ≈ 𝛿

−2
𝜏
−2

1
𝜏
−2

2
. (23)

3. Metric Estimates

In this section, we estimate the behavior of the invariant
metric along Γ. In [15], Hahn got the following inequalities:

𝐶
Ω
(𝑧; 𝑋) ≤ 𝐵

Ω
(𝑧; 𝑋) , 𝐶

Ω
(𝑧; 𝑋) ≤ 𝐾

Ω
(𝑧; 𝑋) . (24)



4 Abstract and Applied Analysis

Therefore, the estimates for the lower bounds of𝐶
Ω
(𝑧; 𝑋)will

suffice for the lower bounds of 𝐵
Ω
(𝑧; 𝑋) and 𝐾

Ω
(𝑧; 𝑋). First,

we recall the following bumping theorem [14].

Theorem 7 (Theorem 2.3 in [14]). Let 𝑧
0
be a point of finite

1-type in the boundary of a pseudoconvex domain Ω ⊂ C𝑛,
defined by Ω = {𝑧 : 𝑟(𝑧) < 0}. Then, there exist 𝑉 ∋ 𝑧

0
and a

smooth 1-parameter family of pseudoconvex domains Ω
𝑡
, 0 ≤

𝑡 < 𝑡
0
, each defined by Ω

𝑡
= {𝑧; 𝑟(𝑧, 𝑡) < 0}, where 𝑟(𝑧, 𝑡) has

the following properties:

(1) 𝑟(𝑧, 𝑡) is smooth in 𝑧 for 𝑧 near 𝑏Ω and in 𝑡 for 0 ≤ 𝑡 <
𝑡
0
;

(2) 𝑟(𝑧, 𝑡) = 𝑟(𝑧), for 𝑧 ∉ 𝑉;
(3) (𝜕𝑟/𝜕𝑡)(𝑧, 𝑡) ≤ 0;
(4) 𝑟(𝑧, 0) = 𝑟(𝑧);
(5) for 𝑧 in 𝑉, 𝜕𝑟/𝜕𝑡 < 0.

Proof of Theorem 1. In the sequel, let us fix 𝛿 > 0 and, for
each 𝑧

𝛿
∈ Γ, set 𝜋(𝑧𝛿

) = 𝑧̃
𝛿
= (𝑑𝛿

1/𝜂
, 0, 𝑒

𝛿
) ∈ 𝑏Ω and

consider the special coordinates 𝜁 = (𝑧
1
, 𝑧

2
, 𝜁

3
) and Φ

𝑧̃
𝛿(𝜁) =

(𝑧
1
, 𝑧

2
, Φ

3
(𝜁)) = 𝑧, where Φ

3
is defined in Proposition 4.

From (9), we see that 𝜁𝛿 = (𝑑𝛿
1/𝜂
, 0, −𝑏𝛿/2𝑑

0
(𝑧̃

𝛿
)) :=

(𝜁
1
, 𝜁

2
, 𝜁

3
). We will estimate the metrics at 𝜁𝛿. For all small

𝛿 > 0 and for each 𝜁󸀠󸀠 = (𝜁
2
, 𝜁

3
), define

𝐽
𝛿
(𝜁

󸀠󸀠
) = (𝛿

2
+
󵄨󵄨󵄨󵄨𝜁3
󵄨󵄨󵄨󵄨

2
+

𝑚

∑

𝑘=2

(𝐴
𝑘
(𝑧̃

𝛿
))

2 󵄨󵄨󵄨󵄨𝜁2
󵄨󵄨󵄨󵄨

2𝑘
)

1/2

, (25)

where 𝐴
𝑘
(𝑧̃

𝛿
) is defined in (13) with 𝑧̃

1
replaced by 𝑧̃𝛿. Let

𝑐 > 0 be the fixed constant determined in (21). Note that
Φ

𝑧̃
𝛿(𝑑𝛿

1/𝜂
, 0, 0) = 𝑧̃

𝛿. Set

Ω̃
𝑎,𝛿

= {𝜁;
󵄨󵄨󵄨󵄨󵄨
𝜁
1
− 𝑑𝛿

1/𝜂󵄨󵄨󵄨󵄨󵄨
< 𝑐𝛿

1/𝜂
,
󵄨󵄨󵄨󵄨𝜁2
󵄨󵄨󵄨󵄨 < 𝑎,

󵄨󵄨󵄨󵄨𝜁3
󵄨󵄨󵄨󵄨 < 𝑎,

𝜌 (𝜁
1
, 𝜁

2
, 𝜁

3
) < 0} ,

(26)

and, for each 𝜖 > 0, define

Ω̃
𝜖

𝑎,𝛿
= {𝜁;

󵄨󵄨󵄨󵄨󵄨
𝜁
1
− 𝑑𝛿

1/𝜂󵄨󵄨󵄨󵄨󵄨
< 𝑐𝛿

1/𝜂
,
󵄨󵄨󵄨󵄨𝜁2
󵄨󵄨󵄨󵄨 < 𝑎,

󵄨󵄨󵄨󵄨𝜁3
󵄨󵄨󵄨󵄨 < 𝑎,

𝜌 (𝑑𝛿
1/𝜂
, 𝜁

󸀠󸀠
) < 𝜖𝐽

𝛿
(𝜁

󸀠󸀠
)} ,

(27)

and for all small 𝑒 > 0 set 𝐵
𝑒
= 𝑅

𝑒𝛿
(𝜁

𝛿
). By (21), we see that

𝜁
𝛿
∈ 𝐵

𝑒
⊂ Ω̃ for all 𝑒 ≤ 𝑐. Note that the domains Ω̃𝜖

𝑎,𝛿
are

pushed out only in 𝜁
2
and 𝜁

3
directions but not in 𝜁

1
direction.

To avoid the difficulty to push out Ω̃ in 𝜁
1
direction, we use a

bumping family ofTheorem 7. Consider a bumping family of
pseudoconvex domains {Ω

𝑡
}
0≤𝑡≤𝑡

0

with front 𝑉 and set 𝐷 =

Ω
𝑡
0

. For each 𝑟 > 0, let 𝑈
𝑟
(𝑧) be a ball of radius 𝑟 > 0 with

center at 𝑧 and set 𝑈̃
𝑟
(𝜁) = Φ

−1

𝑧̃
𝛿 (𝑈𝑟

(Φ
𝑧̃
𝛿(𝜁))). Then, there is

𝑟
0
> 0 such that

𝑄
𝑐𝛿
(𝑧

𝛿
) ⊂ Ω

𝜖

𝑎,𝛿
= Φ

𝑧̃
𝛿 (Ω̃

𝜖

𝑎,𝛿
) ⊂ 𝑈

𝑟
0
/4 (0) ⊂ 𝑈𝑟

0
(0) ⊂⊂ 𝐷,

(28)

for all sufficiently small 𝑎 > 0, 𝜖 > 0, and 𝛿 > 0.

In view of the proof in Section 3 of [13], we have Ω̃
𝑎,𝛿

⊂

Ω̃
𝜖/2

𝑎,𝛿
⊂ Ω̃

𝜖

𝑎,𝛿
and there is a uniformly (independent of 𝛿 >

0) bounded function 𝑓 = 𝑓(𝜁
2
, 𝜁

3
) which is holomorphic on

Ω̃
𝜖

𝑎,𝛿
and satisfies

󵄨󵄨󵄨󵄨󵄨
𝑌

󸀠󸀠
𝑓 (𝜁

𝛿
)
󵄨󵄨󵄨󵄨󵄨
≳
󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨 𝜏

−1

2
+
󵄨󵄨󵄨󵄨𝑏3
󵄨󵄨󵄨󵄨 𝜏

−1

3
, (29)

where 𝑌󸀠󸀠
= 𝑏

2
(𝜕/𝜕𝜁

2
) + 𝑏

3
(𝜕/𝜕𝜁

3
). Here, we may assume that

𝑓(0, −𝑏𝛿/𝑑
0
(𝑧̃

𝛿
)) = 0. In the sequel, we let 𝑌 be a vector field

given by 𝑌 = 𝑏
1
(𝜕/𝜕𝜁

1
) + 𝑏

2
(𝜕/𝜕𝜁

2
) + 𝑏

3
(𝜕/𝜕𝜁

3
). If |𝑏

1
|𝜏

−1

1
≥

|𝑏
2
|𝜏

−1

2
+ |𝑏

3
|𝜏

−1

3
, then set V

𝛿
= 𝜏

−1

1
(𝜁

1
− 𝑑𝛿

1/𝜂
). Otherwise, set

V
𝛿
= 𝑓(𝜁

2
, 𝜁

3
). From (29), we note that

󵄨󵄨󵄨󵄨󵄨
𝑌V

𝛿
(𝜁

𝛿
)
󵄨󵄨󵄨󵄨󵄨
≳

3

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑏𝑖
󵄨󵄨󵄨󵄨 𝜏

−1

𝑖
. (30)

Let 𝜓 ∈ 𝐶
∞

0
(𝑈), where 𝑈 is the unit polydisc in C3, such

that 𝜓(𝑧) = 1 if |𝑧
𝑖
| ≤ 1/2, 𝑖 = 1, 2, 3, and set

𝜓
𝑑
(𝜁) = 𝜓(

𝜁
1
− 𝜁

1

𝑑𝜏
1

,
𝜁
2

𝑑𝜏
2

,
𝜁
3
− 𝜁

3

𝑑𝜏
3

) , (31)

and set 𝛽
𝛿
= V

𝛿
𝜓

𝑑
. Then, 𝛽

𝛿
(𝜁

𝛿
) = 0. Since 𝑓 is bounded

independent of 𝛿 (and hence independent of 𝜁𝛿), there exists
a constant 𝐶 > 0, independent of 𝛿, such that |𝛽

𝛿
| ≤ 𝐶.

We want to correct 𝛽
𝛿
so that the corrected function 𝑓

𝛿

becomes a uniformly bounded holomorphic function on Ω̃
satisfying the estimate (30) with 𝛽

𝛿
replaced by 𝑓

𝛿
. With

bumped domain 𝐷 = Ω
𝑡
0

at hand, set 𝐷 = Φ
−1

𝑧̃
𝛿 (𝐷). On 𝐷,

instead of Ω̃, we will employ weighted estimates of 𝜕 that is
essentially a replication of the proof of Theorem 6.1 in [6].

Let 𝑔
𝛿
be the weight function defined in Theorem 5 and

set 𝑔
𝛿
= Φ

∗

𝑧̃
𝛿𝑔𝛿

. By replacing 𝑔
𝛿
by 𝑔

𝛿
+ |𝜁|

2
:= 𝜙, we can

obviously assume that 𝜙 is strictly plurisubharmonic on 𝐷

and 𝜙(𝜁𝛿) = 0. In view of Theorem 5, we also have

𝜕𝜕𝜙 (𝑌, 𝑌) (𝜁) ≳ 𝜏
−2

1

󵄨󵄨󵄨󵄨𝑏1
󵄨󵄨󵄨󵄨

2
+ 𝜏

−2

2

󵄨󵄨󵄨󵄨𝑏2
󵄨󵄨󵄨󵄨

2
+ 𝜏

−2

3

󵄨󵄨󵄨󵄨𝑏3
󵄨󵄨󵄨󵄨

2
,

𝜁 ∈ 𝑅
𝑐𝛿
(𝜁

𝛿
) .

(32)

From property (iii) inTheorem 5, there is a small constant 𝑎,
0 < 𝑎 ≤ 𝑐 (independent of 𝜏

𝑖
, 𝑖 = 1, 2, 3), so that

𝜙 (𝜁) ≥ 2Re ℎ (𝜁) + 𝑎
3

∑

𝑖=1

𝜏
−2

𝑖

󵄨󵄨󵄨󵄨󵄨
𝜁
𝑖
− 𝜁

𝑖

󵄨󵄨󵄨󵄨󵄨

2

, 𝜁 ∈ 𝑅
𝑐𝛿
(𝜁

𝛿
) , (33)

where

ℎ (𝜁) =

3

∑

𝑖=1

𝜕𝜙

𝜕𝜁
𝑖

(𝜁
𝛿
) (𝜁

𝑖
− 𝜁

𝑖
)

+
1

2

3

∑

𝑖,𝑗=1

𝜕
2
𝜙

𝜕𝜁
𝑖
𝜕𝜁

𝑗

(𝜁
𝛿
) (𝜁

𝑖
− 𝜁

𝑖
) (𝜁

𝑗
− 𝜁

𝑗
) .

(34)

If we set 𝑎 = 𝑎3
/3, it follows, from (33), that

Re ℎ (𝜁) ≤ −𝑎, 𝜁 ∈ {𝜁; 𝜙 (𝑧) ≤ 𝑎} ∩ supp 𝜕𝜓
𝑑
. (35)
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In the sequel, we set 𝐵
𝑒
= 𝑅

𝑒𝛿
(𝜁

𝛿
) for each small 𝑒 > 0.

For each 𝑠 ≥ 0, set

𝛼
𝑠
= 𝜕 (𝛽

𝛿
𝑒
𝑠ℎ
) = V

𝛿
𝑒
𝑠ℎ
𝜕𝜓

𝑑
(𝜁) :=

3

∑

𝑖=1

𝛼
𝑠,𝑖
𝑑𝜁

𝑖
. (36)

Then, 𝛼
𝑠
is a 𝜕-closed smooth (0, 1)-form with supp𝛼

𝑠
⊂

𝑅
𝑐𝛿
(𝜁

𝛿
) = 𝐵

𝑐
. Let 𝜒 be a smooth convex increasing function

that satisfies 𝜒(𝑡) = 0 for 𝑡 ≤ 𝑎/2 and 𝜒󸀠󸀠
(𝑡) > 0 for 𝑡 > 𝑎/2.

Now, define

𝜆
𝑠
(𝜁) = 𝜙 (𝜁) + 𝑠

2
𝜒 (𝜙 (𝜁)) . (37)

According to the weighted estimates of 𝜕-equation on 𝐷

(instead of Ω̃) and by using estimate (32) for each 𝑠 ≥ 0, there
is 𝑢

𝑠
which satisfies 𝜕𝑢

𝑠
= 𝛼

𝑠
, and

󵄩󵄩󵄩󵄩𝑢𝑠

󵄩󵄩󵄩󵄩𝜆
𝑠

≲ ∫

𝐷̃−𝐵
𝑐

󵄨󵄨󵄨󵄨𝛼𝑠

󵄨󵄨󵄨󵄨

2
𝑒
−𝜆
𝑠 + ∫

𝐵
𝑐

3

∑

𝑖=1

𝜏
2

𝑖

󵄨󵄨󵄨󵄨𝛼𝑠,𝑖

󵄨󵄨󵄨󵄨

2
𝑒
−𝜆
𝑠𝑑𝑉. (38)

Since |𝛼
𝑠,𝑖
| ≲ 𝑒

𝑠Re ℎ
𝜏
−1

𝑖
and supp𝛼

𝑠
⊂ 𝐵

𝑐
, it follows from (38)

that

∫

𝐷̃

󵄨󵄨󵄨󵄨𝑢𝑠

󵄨󵄨󵄨󵄨

2
𝑒
−𝜆
𝑠𝑑𝑉 ≲ ∫

𝐵
𝑐

3

∑

𝑖=1

𝜏
2

𝑖

󵄨󵄨󵄨󵄨𝛼𝑠,𝑖

󵄨󵄨󵄨󵄨

2
𝑒
−𝜆
𝑠𝑑𝑉

≲ ∫

supp 𝜕𝜓
𝑑

𝑒
2𝑠Re ℎ−𝜙−𝑠

2
𝜒(𝜙)

𝑑𝑉.

(39)

We consider the integrand of the last integral. If 𝜙(𝑧) ≥ 𝑎,
then 𝜒(𝜙(𝑧)) ≥ 𝜒(𝑎) > 0, so the 𝑠2-term in the exponent
predominates. On the other hand, if 𝑧 ∈ supp 𝜕𝜓

𝑑
and 𝜙(𝑧) ≤

𝑎, then (35) shows that the integrand tends to zero. Thus, for
any 𝜖

0
> 0, there exist 𝑠

0
> 0 and a function 𝑢

𝑠
0

so that 𝜕𝑢
𝑠
0

=

𝛼
𝑠
0

and

∫

𝐷̃

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑠
0

󵄨󵄨󵄨󵄨󵄨

2

𝑒
−𝜆
𝑠0𝑑𝑉 ≲ ∫

supp 𝜕𝜓
𝑑

𝜖
0
𝑑𝑉 ≲ 𝜖

0

3

∏

𝑖=1

𝜏
2

𝑖
. (40)

Since 𝜙(𝜁𝛿) = 0, it follows, from the property (iii) of
Theorem 5, that there is 𝑒 > 0, independent of 𝜁𝛿, such that
𝜓

𝑑
(𝑧) = 1 and 𝜙(𝑧) < 𝑎/2 for all 𝑧 ∈ 𝐵

𝑒
. Note that 𝜆

𝑠
is

independent of 𝑠 for 𝑧 ∈ 𝐵
𝑒
, and 𝑢

𝑠
0

is holomorphic in 𝐵
𝑒
. By

mean value theorem, we have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑢
𝑠
0

𝜕𝜁
𝑘

(𝜁
𝛿
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≲ 𝜏
−2

𝑘

3

∏

𝑖=1

𝜏
−2

𝑖
∫

𝐵
𝑒

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑠
0

󵄨󵄨󵄨󵄨󵄨

2

𝑒
−𝜆
𝑠0𝑑𝑉 ≲ 𝜖

0
𝜏
−2

𝑘
,

𝑘 = 1, 2, 3,

(41)

and hence it follows that
󵄨󵄨󵄨󵄨󵄨
𝑌𝑢

𝑠
0

(𝜁
𝛿
)
󵄨󵄨󵄨󵄨󵄨
≲ √𝜖0 max (󵄨󵄨󵄨󵄨𝑏𝑘

󵄨󵄨󵄨󵄨 𝜏
−1

𝑘
) . (42)

Now, set 𝑓
𝛿
= 𝛽

𝛿
𝑒
𝑠
0
ℎ
− 𝑢

𝑠
0

. Then, 𝑓
𝛿
is holomorphic on 𝐷 =

Φ
−1

𝑧̃
𝛿 (𝐷). Since 𝛽𝛿

(𝜁
𝛿
) = ℎ(𝜁

𝛿
) = 0, it follows, from (30) and

(42), that 𝑓
𝛿
satisfies

󵄨󵄨󵄨󵄨󵄨
𝑌𝑓

𝛿
(𝜁

𝛿
)
󵄨󵄨󵄨󵄨󵄨
≳

3

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑏𝑖
󵄨󵄨󵄨󵄨 𝜏

−1

𝑖
, (43)

provided 𝜖
0
is sufficiently small.

We want to show that sup
Ω̃
|𝑓

𝛿
| ≤ 𝐶, where 𝐶 > 0 is

independent of 𝛿. Recall that 𝑠
0
> 0 is fixed. Thus, from the

property (iii) of Theorem 5, there is a uniform constant 𝐶
0
>

0 such that |𝛽
𝛿
𝑒
𝑠
0
ℎ
| ≤ 𝐶

0
. Let 𝑟

0
> 0 be the constant satisfying

(28) and assume that 𝜁 ∈ 𝑈̃
𝑟
0
/2
(0) = Φ

−1

𝑧̃
𝛿 (𝑈𝑟

0
/2
(0)). Since

𝑓
𝛿
is holomorphic on 𝐷, it follows, by (40) and mean value

theorem, that there exists a constant 𝐶
1
> 0, independent of

𝛿 > 0, such that

󵄨󵄨󵄨󵄨𝑓𝛿
(𝜁)
󵄨󵄨󵄨󵄨

2
≲ 𝑟

−6

0
∫

𝑈̃
𝑟0/2

(𝜁)

󵄨󵄨󵄨󵄨𝑓𝛿

󵄨󵄨󵄨󵄨

2
𝑑𝑉 ≤ 𝐶

1
. (44)

We need to show the boundedness of 𝑓
𝛿
outside 𝑈̃

𝑟
0
/2
(0). Let

𝜒
1
and 𝜒

2
be smooth cutoff functions with

(i) 𝜒
1
(𝑧) = 1 if |𝑧| ≥

𝑟
0

2
, 𝜒

2
(𝑧) = 1 if 𝑧 ∈ supp𝜒

1

(ii) 𝜒
2
(𝑧) = 0 if |𝑧| ≤

𝑟
0

4
,

(45)

and set 𝜒
𝑖
= Φ

∗

𝑧̃
𝛿(𝜒𝑖

), 𝑖 = 1, 2. By Kohn’s theorem on global
regularity for the 𝜕-equation, the following estimate for the
solution of 𝜕𝑢 = 𝛼,

󵄩󵄩󵄩󵄩󵄩
𝜒

1
𝑢
𝑠
0

󵄩󵄩󵄩󵄩󵄩

2

4
≲
󵄩󵄩󵄩󵄩󵄩
𝜒

2
𝛼

𝑠
0

󵄩󵄩󵄩󵄩󵄩

2

4
+
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑠
0

󵄩󵄩󵄩󵄩󵄩

2

, (46)

holds on 𝐷 provided 𝑠
0
> 0 is sufficiently large. Note that

𝜒
2
𝛼

𝑠
0

= 0 because supp𝛼
𝑠
0

⊂ 𝑅
𝑐𝛿
(𝜁

𝛿
) ⊂ 𝑈̃

𝑟
0
/4
(0) for all suf-

ficiently small 𝛿 > 0. Thus, we conclude from (40), (46), and
the Sobolev lemma that

sup
𝐷̃

󵄨󵄨󵄨󵄨󵄨
𝜒

1
𝑢
𝑠
0

󵄨󵄨󵄨󵄨󵄨
≲
󵄩󵄩󵄩󵄩󵄩
𝜒

1
𝑢
𝑠
0

󵄩󵄩󵄩󵄩󵄩

2

4
≲
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑠
0

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝐶
2
, (47)

where 𝐶
2
is independent of 𝛿.

Combining (44) and (47) and by the fact that |𝛽
𝛿
𝑒
𝑠
0
ℎ
| ≤

𝐶
0
, we conclude that

sup
𝐷̃

󵄨󵄨󵄨󵄨󵄨
𝑓

𝛿󵄨󵄨󵄨󵄨󵄨
≤ 𝐶, (48)

where𝐶 is independent of 𝜁𝛿 and 𝛿.Therefore, it follows from
(43) and (48) that

𝐶
Ω̃
(𝜁

𝛿
; 𝑌) ≥ 𝐶

𝐷̃
(𝜁

𝛿
; 𝑌) ≳

3

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑏𝑖
󵄨󵄨󵄨󵄨 𝜏

−1

𝑖
. (49)

On the other hand, the polydisc 𝐵
𝑐
= 𝑅

𝑐𝛿
(𝜁

𝛿
) about 𝜁𝛿 lies in

Ω̃. So one obtains that

𝐶
Ω̃
(𝜁

𝛿
; 𝑌) ≤ 𝐶

𝐵
𝑐

(𝜁
𝛿
; 𝑌) = max {󵄨󵄨󵄨󵄨𝑏𝑘

󵄨󵄨󵄨󵄨 (𝑐𝜏𝑘)
−1
: 𝑘 = 1, 2, 3} .

(50)

Thus, one concludes from (49) and (50) that

𝐶
Ω̃
(𝜁

𝛿
; 𝑌) ≈

3

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑏𝑖
󵄨󵄨󵄨󵄨 𝜏

−1

𝑖
. (51)

Set 𝐿󸀠

𝑘
= (𝑑Φ

−1

𝑧̃
𝛿 )𝐿𝑘

, 𝑘 = 1, 2, 3, where 𝐿
𝑘
’s are defined

in (1) in terms of 𝑧-coordinates defined in Theorem 1.
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At 𝜁𝛿 = (𝑑𝛿
1/𝜂
, 0, −𝑏𝛿/𝑑

0
(𝑧̃

𝛿
)), from the holomorphic

coordinate change ofΦ
𝑧̃
𝛿 in Proposition 4, we see that

𝐿
󸀠

1
=

𝜕

𝜕𝜁
1

+ 𝑒
1
(𝑧

𝛿
) 𝑑

0
(𝑧̃

𝛿
)
𝜕

𝜕𝜁
3

:=
𝜕

𝜕𝜁
1

+ 𝑒
1
(𝑧

𝛿
)
𝜕

𝜕𝜁
3

,

𝐿
󸀠

2
=

𝜕

𝜕𝜁
2

+ [𝑑
1
(𝑧̃

𝛿
) + 𝑒

2
(𝑧

𝛿
)]

𝜕

𝜕𝜁
3

:=
𝜕

𝜕𝜁
2

+ 𝑒
1
(𝑧

𝛿
)
𝜕

𝜕𝜁
3

,

and that

𝐿
󸀠

3
= 𝑑

0
(𝑧̃

𝛿
)
𝜕

𝜕𝜁
3

,

(52)

where 𝑑
0
(𝑧̃

𝛿
) = (1/2)((𝜕𝑟/𝜕𝑧

3
)(𝑧̃

𝛿
))

−1 and 𝑑
1
(𝑧̃

𝛿
) = −((𝜕𝑟/

𝜕𝑧
3
)(𝑧̃

𝛿
))

−1
(𝜕𝑟/𝜕𝑧

2
)(𝑧̃

𝛿
) and where 𝑒

𝑖
= −(𝜕𝑟/𝜕𝑧

3
)
−1
(𝜕𝑟/𝜕𝑧

𝑖
),

𝑖 = 1, 2. Since (𝜕𝑟/𝜕𝑧
𝑖
)(0) = 0, 𝑖 = 1, 2, and |𝜕𝑟/𝜕𝑧

3
| ≈ 1,

independent of 𝛿, it follows that |𝑒
𝑖
| ≲ 𝛿, 𝑖 = 1, 2. Thus, if the

vector 𝑌 = ∑
3

𝑖=1
𝑏
𝑖
(𝜕/𝜕𝜁

𝑖
) is written as 𝑌 = ∑

3

𝑖=1
𝑎
𝑖
𝐿

󸀠

𝑖
, then it

follows that

max (󵄨󵄨󵄨󵄨𝑏𝑖
󵄨󵄨󵄨󵄨 𝜏

−1

𝑖
) ≈

3

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 𝜏

−1

𝑖
. (53)

Let us write 𝑋 = ∑
3

𝑖=1
𝑎
𝑖
𝐿

𝑖
, and 𝑌 = (Φ

−1

𝑧̃
𝛿 )∗𝑋 =

∑
3

𝑖=1
𝑎
𝑖
𝐿

󸀠

𝑖
= ∑

3

𝑖=1
𝑏
𝑖
(𝜕/𝜕𝜁

𝑖
). From (51), (53), and the invariance

property of the metric, it follows that

𝐶
Ω
(𝑧

𝛿
; 𝑋) = 𝐶

Ω̃
(𝜁

𝛿
; 𝑌) ≈

3

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 𝜏

−1

𝑖
. (54)

To obtain an upper bound for the Bergman metric, we
note that 𝑅

𝑐𝛿
(𝜁

𝛿
) ⊂ Ω̃. Thus, by elementary estimates, for any

𝑓 ∈ 𝐴
2
(Ω̃) := 𝐿

2
(Ω̃) ∩ 𝐴(Ω̃), we obtain that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕𝑓

𝜕𝜁
𝑘

(𝜁
𝛿
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2

≲ 𝜏
−2

𝑘

3

∏

𝑗=1

𝜏
−2

𝑗

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝐿
2
(Ω̃)

, (55)

for 𝑘 = 1, 2, 3. Therefore, it follows that

𝑏
Ω̃
(𝜁

𝛿
; 𝑌) ≲ (

3

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨 𝜏

−1

𝑘
)

3

∏

𝑗=1

𝜏
−1

𝑗
, (56)

where

𝑏
Ω̃
(𝜁

𝛿
; 𝑌)

= sup {󵄨󵄨󵄨󵄨󵄨𝑌𝑓 (𝜁
𝛿
)
󵄨󵄨󵄨󵄨󵄨
: 𝑓 ∈ 𝐴

2
(Ω̃) , 𝑓 (𝑧) = 0,

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐿2(Ω̃)

≤ 1} .

(57)

Combining (23) and (56), one concludes that

𝐵
Ω̃
(𝜁

𝛿
; 𝑌) =

𝑏
Ω̃
(𝜁

𝛿
; 𝑌)

𝐾
Ω̃
(𝜁𝛿, 𝜁𝛿)

1/2
≲

3

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨 𝜏

−1

𝑘
. (58)

To estimate the upper bound of the Kobayashi metric, set

𝑅 = min {𝑐𝜏
𝑘

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨

−1
: 𝑘 = 1, 2, 3} . (59)

Then,

𝑓 (𝑡) = (𝑏
1
𝑡, 𝑏

2
𝑡, −

𝑏𝛿

2
+ 𝑏

3
𝑡) (60)

defines a map 𝑓 : 𝐷
𝑅
⊂ C → 𝐵

𝑐
= 𝑅

𝑐𝛿
(𝜁

𝛿
) ⊂ Ω̃ with

𝑓
∗
((𝜕/𝜕𝑡)|

0
) = 𝑌 = ∑

3

𝑘=1
𝑏
𝑘
(𝜕/𝜕𝜁

𝑘
). Hence,

𝐾
Ω̃
(𝜁

𝛿
; 𝑌) ≤ 𝐾

𝐵
𝑐

(𝜁
𝛿
; 𝑌) ≤ 𝑅

−1

≤ max {󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨 (𝑐𝜏𝑘)

−1
: 𝑘 = 1, 2, 3}

≲

3

∑

𝑘=1

󵄨󵄨󵄨󵄨𝑏𝑘
󵄨󵄨󵄨󵄨 𝜏

−1

𝑘
.

(61)

Combining (51), (58), and (61), we obtain that

𝐶
Ω̃
(𝜁

𝛿
; 𝑌) ≈ 𝐵

Ω̃
(𝜁

𝛿
; 𝑌) ≈ 𝐾

Ω̃
(𝜁

𝛿
; 𝑌) ≈

3

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑏𝑖
󵄨󵄨󵄨󵄨 𝜏

−1

𝑖
, (62)

and hence the invariance property implies that

𝐶
Ω
(𝑧

𝛿
; 𝑋) ≈ 𝐵

Ω
(𝑧

𝛿
; 𝑋) ≈ 𝐾

Ω
(𝑧

𝛿
; 𝑋) ≈

3

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑎𝑖
󵄨󵄨󵄨󵄨 𝜏

−1

𝑖
. (63)

If we combine (3), (4), (22), and (63), a proof of Theorem 1 is
completed.
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