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We study the existence of monotonic and nonnegative solutions of a nonlinear quadratic Volterra-Stieltjes integral equation in the
space of real functions being continuous on a bounded interval. The main tools used in our considerations are the technique of
measures of noncompactness in connection with the theory of functions of bounded variation and the theory of Riemann-Stieltjes
integral.The obtained results can be easily applied to the class of fractional integral equations and Volterra-Chandrasekhar integral
equations, among others.

1. Introduction

The aim of this paper is to study of monotonic and nonneg-
ative solutions of the nonlinear quadratic Volterra-Stieltjes
integral equation having the form

𝑥 (𝑡) = (𝐹
1
𝑥) (𝑡) + (𝐹

2
𝑥) (𝑡) ∫

𝑡

0

𝑢 (𝑡, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑡, 𝜏) ,

(1)

where 𝑡 ∈ [𝑎, 𝑏] and 𝐹
1
, 𝐹
2
are superposition operators

defined on the function space 𝐶[𝑎, 𝑏]. The precise defini-
tions will be given later. We show the existence of such
solutions of the previous equation under some reasonable
and handy assumptions. In our considerations, we use the
technique associated with measures of noncompactness and
the Riemann-Stieltjes integral with a kernel depending on
two variables. Moreover, the theory of functions of bounded
variation is also employed.

The main result of the paper is contained in Theorem 8.
That theorem covers, as particular cases, the classical Volterra
integral equation, the integral equation of fractional order,
and the Volterra counterpart of the famous integral equa-
tion of Chandrasekhar type. It is worth pointing out that
differential and integral equations of fractional order create
an important branch of nonlinear analysis and the theory of
integral equations.Moreover, these equations have found a lot

of applications connected with real world problems. Integral
equations of Chandrasekhar type can be often encountered in
several applications as well.

This paper can be considered as a continuation of [1, 2]
(cf. also [3–5]).

2. Preliminaries

At the beginning, we provide some basic facts concerning
functions of bounded variation and the Riemann-Stieltjes
integral. We refer to [6] or [7] for more information about
this subject. Assume that 𝑥 is a real function defined on the
interval [𝑎, 𝑏]. The symbol ⋁𝑏

𝑎
𝑥 stands for the variation of

the function 𝑥 on the interval [𝑎, 𝑏]. In case of a function
𝑢(𝑡, 𝜏) = 𝑢 : 𝐴 → R , where 𝐴 ⊂ R2, the symbol
⋁
𝑞

𝜏=𝑝
𝑢(𝑡, 𝜏) denotes the variation of the function 𝜏 → 𝑢(𝑡, 𝜏)

on the interval [𝑝, 𝑞]which is contained in the domain of this
function, where the variable 𝑡 is fixed. Further, assume that
𝑥, 𝜑 are given real functions defined on the interval [𝑎, 𝑏].
Then, under some additional conditions imposed on 𝑥 and
𝜑, we can define the Riemann-Stieltjes integral

∫

𝑏

𝑎

𝑥 (𝑡) 𝑑𝜑 (𝑡) (2)
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of the function𝑥with respect to the function𝜑. In such a case,
we say that 𝑥 is integrable in the Riemann-Stieltjes sense on
the interval [𝑎, 𝑏] with respect to 𝜑.

Now, we recall two useful properties of the Riemann-
Stieltjes integral, which will be employed in the sequel.

Theorem1. (a) If𝑥 is 𝑎 continuous function and𝜑 is a function
of bounded variation on the interval [𝑎, 𝑏], then 𝑥 is Riemann-
Stieltjes integrable on [𝑎, 𝑏] with respect to 𝜑.

(b) Suppose that 𝑥
1
and 𝑥

2
are functions being Riemann-

Stieltjes integrable on the interval [𝑎, 𝑏] with respect to 𝑎
nondecreasing function 𝜑 and 𝑥

1
(𝑡) ≤ 𝑥

2
(𝑡), for 𝑡 ∈ [𝑎, 𝑏].

Then,

∫

𝑏

𝑎

𝑥
1
(𝑡) 𝑑𝜑 (𝑡) ≤ ∫

𝑏

𝑎

𝑥
2
(𝑡) 𝑑𝜑 (𝑡) . (3)

In what follows we will use the Riemann-Stieltjes integral
of the form

∫

𝑏

𝑎

𝑥 (𝜏) 𝑑
𝜏
𝑔 (𝑡, 𝜏) , (4)

where the symbol 𝑑
𝜏
indicates the integration with respect

to the variable 𝜏 and 𝑡 is fixed. Let us mention that, in some
situations, lower and upper limit of the integration can also
depend upon the variable 𝑡.

Now, we deal with the discussion of basic facts connected
with measures of noncompactness. We refer to [8] (see
also [9]) for a more detailed discussion. Assume that 𝐸
is a real Banach space. Denote by 𝐵(𝑥, 𝑟) the closed ball
centered at 𝑥 and with radius 𝑟. Instead of 𝐵(0, 𝑟), we will
write 𝐵

𝑟
. If 𝑋 is a subset of 𝐸, then the symbols 𝑋 and

Conv𝑋 denote the closure and convex closed hull of the
set 𝑋, respectively. Further, denote by M

𝐸
the family of all

nonempty and bounded subsets of 𝐸. The symbolN
𝐸
stands

for the subfamily of M
𝐸
consisting of all relatively compact

sets. We will accept the following definition of a measure of
noncompactness.

Definition 2. A mapping 𝜇 : M
𝐸
→ R

+
= [0, +∞) will

be called a measure of noncompactness in the space 𝐸 if it
satisfies the following conditions:

(1) the family ker 𝜇 = {𝑋 ∈M
𝐸
: 𝜇(𝑋) = 0} is nonempty

and ker 𝜇 ⊂ N
𝐸
;

(2) 𝑋 ⊂ 𝑌 ⇒ 𝜇(𝑋) ≤ 𝜇(𝑌);
(3) 𝜇(𝑋) = 𝜇(𝑋) = 𝜇(Conv𝑋);
(4) 𝜇(𝜆𝑋+(1−𝜆)𝑌) ≤ 𝜆𝜇(𝑋)+(1−𝜆)𝜇(𝑌), for 𝜆 ∈ [0, 1];
(5) if (𝑋

𝑛
) is a sequence of closed sets belonging to M

𝐸

such that 𝑋
𝑛+1
⊂ 𝑋
𝑛
, for 𝑛 = 1, 2, . . ., and if lim

𝑛→∞

𝜇(𝑋
𝑛
) = 0, then the intersection 𝑋

∞
= ⋂
∞

𝑛=1
𝑋
𝑛
is

nonempty.

An important example of a measure of noncompactness
is the Hausdorff measure of noncompactness defined by the
formula
𝜒 (𝑋) = inf {𝜀 > 0 : 𝑋 has a finite 𝜀 − net in 𝐸} ,

𝑋 ∈M
𝐸
.

(5)

The key role in our studies will be played by Darbo’s fixed
point theorem.

Theorem3. LetΩ be a nonempty, bounded, closed, and convex
subset of the space 𝐸 and let 𝑄 : Ω → Ω be a continuous
transformation. Assume that there exists a constant 𝑘 ∈ [0, 1)
such that 𝜇(𝑄𝑋) ≤ 𝑘𝜇(𝑋) for any nonempty subset 𝑋 of Ω.
Then, 𝑄 has at least one fixed point in the setΩ. Moreover, the
set Fix 𝑄 of all fixed points of 𝑄 belonging toΩ is a member of
the family ker 𝜇.

The considerations in this paper will be placed in the
Banach space 𝐶[𝑎, 𝑏] consisting of all real functions defined
and continuous on the bounded interval [𝑎, 𝑏] with the
standard maximum norm.

Finally, we turn our attention to the superposition (or
Nemytskii) operator which appears very frequently in non-
linear analysis. We refer to monographs [6, 10] for detailed
information covering the properties of this operator. To
define the operator in question, suppose that 𝑓 : [𝑎, 𝑏]×R →
R is a given function. For any function𝑥(𝑡) = 𝑥 : [𝑎, 𝑏] → R,
we can define the function 𝐹𝑥 by putting

(𝐹𝑥) (𝑡) = 𝑓 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [𝑎, 𝑏] . (6)

The operator 𝐹 defined in such a way is called the superposi-
tion operator generated by the function 𝑓.

3. Main Result

In this section, we will investigate the nonlinear quadratic
Volterra-Stieltjes integral equation which has the form

𝑥 (𝑡) = 𝑓
1
(𝑡, 𝑥 (𝑡)) + 𝑓

2
(𝑡, 𝑥 (𝑡))

× ∫

𝑡

0

𝑢 (𝑡, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑡, 𝜏) , 𝑡 ∈ 𝐼 = [0,𝑀] ,

(7)

where 𝑀 > 0 is fixed number. Obviously, in our further
considerations the interval 𝐼 = [0,𝑀] can be replaced by
any interval [𝑎, 𝑏]. We look for monotonic and nonnegative
solutions of this equation in the space 𝐶[0,𝑀]. In our study,
we will need some results obtained in [1, 2].

At the beginning, let us consider the following conditions.

(i) The functions 𝑓
𝑖
: 𝐼 × R → R (𝑖 = 1, 2) are

continuous and there exist nondecreasing functions
𝑘
𝑖
: R
+
→ R

+
such that

󵄨
󵄨
󵄨
󵄨
𝑓
𝑖
(𝑡, 𝑥) − 𝑓

𝑖
(𝑡, 𝑦)

󵄨
󵄨
󵄨
󵄨
≤ 𝑘
𝑖
(𝑟)
󵄨
󵄨
󵄨
󵄨
𝑥 − 𝑦

󵄨
󵄨
󵄨
󵄨
(𝑖 = 1, 2) , (8)

for any 𝑡 ∈ 𝐼 and for all 𝑥, 𝑦 ∈ [−𝑟, 𝑟], where 𝑟 ≥ 0 is
an arbitrary fixed number.

Observe that, on the basis of the above condition, we may
define the finite constants 𝐹

1
, 𝐹
2
by putting

𝐹
𝑖
= max {󵄨󵄨󵄨

󵄨
𝑓
𝑖
(𝑡, 0)
󵄨
󵄨
󵄨
󵄨
: 𝑡 ∈ 𝐼} (𝑖 = 1, 2) . (9)

Let Δ
𝑀
denote the following triangle:

Δ
𝑀
= {(𝑡, 𝜏) ∈ R

2
: 0 ≤ 𝜏 ≤ 𝑡 ≤ 𝑀} . (10)
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(ii) The function 𝑢 : Δ
𝑀
×R → R is continuous. More-

over, there exists a continuous function Φ : R
+
→

R
+
such that

|𝑢 (𝑡, 𝜏, 𝑥)| ≤ Φ (|𝑥|) , (11)

for all (𝑡, 𝜏) ∈ Δ
𝑀
and 𝑥 ∈ R.

(iii) The function𝑔 : Δ
𝑀
→ R is continuouswith respect

to the variable 𝜏 on the interval [0, 𝑡], where 𝑡 ∈ 𝐼 is
fixed.

(iv) For any 𝑡 ∈ 𝐼, the function 𝜏 → 𝑔(𝑡, 𝜏) is of bounded
variation on the interval [0, 𝑡].

(v) For each 𝜀 > 0, there exists 𝛿 > 0 such that, for all
𝑡, 𝑠 ∈ 𝐼 and |𝑠 − 𝑡| ≤ 𝛿, the following inequality holds

min{𝑡,𝑠}
⋁

𝜏=0

[𝑔 (𝑠, 𝜏) − 𝑔 (𝑡, 𝜏)] ≤ 𝜀. (12)

Remark 4. It can be shown (see [1, 2]) that the constant

𝐾 = max{
𝑡

⋁

𝜏=0

𝑔 (𝑡, 𝜏) : 𝑡 ∈ 𝐼} (13)

is well defined and finite.

(vi) The operator 𝑇 : 𝐶(𝐼) → 𝐶(𝐼) is continuous and
there exists a nondecreasing function Ψ : R

+
→ R
+

such that ‖𝑇𝑥‖ ≤ Ψ(‖𝑥‖), for any 𝑥 ∈ 𝐶(𝐼).
(vii) There exists a positive real number 𝑟

0
which satisfies

the inequalities

𝑟𝑘
1
(𝑟) + 𝐹

1
+ 𝐾(𝑟𝑘

2
(𝑟) + 𝐹

2
)Φ (Ψ (𝑟)) ≤ 𝑟,

𝑘
1
(𝑟) + 𝐾𝑘

2
(𝑟)Φ (Ψ (𝑟)) < 1.

(14)

Remark 5. Observe that if 𝑟
0
is a positive solution of the first

inequality from condition (vii) and if one of the terms 𝐹
1

and𝐾𝐹
2
Φ(Ψ(𝑟

0
)) does not vanish, then the second inequality

from (vii) is automatically satisfied.

Now, let us consider the operators 𝐹
𝑖
(𝑖 = 1, 2), 𝑈, and 𝑉

defined on the space 𝐶(𝐼) by the following formulas:

(𝐹
𝑖
𝑥) (𝑡) = 𝑓

𝑖
(𝑡, 𝑥 (𝑡)) (𝑖 = 1, 2) ,

(𝑈𝑥) (𝑡) = ∫

𝑡

0

𝑢 (𝑡, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑡, 𝜏) ,

(𝑉𝑥) (𝑡) = (𝐹
1
𝑥) (𝑡) + (𝐹

2
𝑥) (𝑡) (𝑈𝑥) (𝑡) .

(15)

Theorem 6. Let conditions (i)–(vii) hold. Then, the operator
𝑉
|𝐵
𝑟
0

: 𝐵
𝑟
0

→ 𝐵
𝑟
0

is well defined and continuous and has
at least one fixed point, which gives that (7) has at least one
solution in the ball 𝐵

𝑟
0

, where 𝑟
0
is a number appearing in

condition (vii).

The basic idea of the proof of Theorem 6 is to study
behaviour of the operator 𝑉 with respect to the Hausdorff
measure of noncompactness in connection withTheorem 3.

Remark 7. Additionally, all solutions of (7) from the ball 𝐵
𝑟
0

are equicontinuous.This observation results directly from the
Arzela-Ascoli theorem andTheorem 3.

We can now formulate our main result about monotonic-
ity and nonnegativity of the solutions of (7). In our study, we
will consider the following conditions.

(i󸀠) The functions 𝑓
𝑖
: 𝐼 ×R → R (𝑖 = 1, 2) are such that

(1) 𝑓
𝑖
(𝐼 ×R

+
) ⊂ R
+
;

(2) the function 𝑡 → 𝑓
𝑖
(𝑡, 𝑥) is nondecreasing on

𝐼, for any fixed 𝑥 ∈ R
+
;

(3) the function 𝑥 → 𝑓
𝑖
(𝑡, 𝑥) is nondecreasing on

R
+
, for any fixed 𝑡 ∈ 𝐼.

(ii󸀠) (a) The function 𝑢 : Δ
𝑀
×R → R is such that

(1) 𝑢(Δ
𝑀
×R
+
) ⊂ R
+
;

(2) the function 𝑡 → 𝑢(𝑡, 𝜏, 𝑥) is nondecreasing on
[𝜏,𝑀], for any fixed 𝜏 ∈ 𝐼 and 𝑥 ∈ R

+
;

(3) for each 𝑡, 𝑠 ∈ 𝐼 such that 𝑡 < 𝑠, the function
𝜏 → 𝑔(𝑠, 𝜏) − 𝑔(𝑡, 𝜏) is nondecreasing on [0, 𝑡];

(4) for any function 𝑥 ∈ 𝐵
𝑟
0

which is nonnegative
and nondecreasing on 𝐼, the function𝑇𝑥 is non-
negative on 𝐼, where 𝑟

0
is a number appearing in

condition (vii).

Or

(b) The function 𝑢 : Δ
𝑀
×R → R is such that

(1) 𝑢(Δ
𝑀
×R
+
) ⊂ R
+
;

(2) the function 𝑡 → 𝑢(𝑡, 𝜏, 𝑥) is nondecreasing on
[𝜏,𝑀], for any fixed 𝜏 ∈ 𝐼 and 𝑥 ∈ R

+
;

(3) the function 𝜏 → 𝑢(𝑡, 𝜏, 𝑥) is nondecreasing on
[0, 𝑡], for any fixed 𝑡 ∈ 𝐼 and 𝑥 ∈ R

+
;

(4) the function 𝑥 → 𝑢(𝑡, 𝜏, 𝑥) is nondecreasing on
R
+
for any fixed (𝑡, 𝜏) ∈ Δ

𝑀
;

(5) for each 𝑡, 𝑠 ∈ 𝐼 such that 𝑡 < 𝑠, the function
𝜏 → 𝑔(𝑠, 𝜏) − 𝑔(𝑡, 𝜏) is nondecreasing on [0, 𝑡];

(6) 𝑔(𝑠, 𝑠) − 𝑔(𝑡, 𝑡) + 𝑔(𝑡, 0) − 𝑔(𝑠, 0) ≥ 0;
(7) for any function 𝑥 ∈ 𝐵

𝑟
0

which is nonnegative
and nondecreasing on 𝐼, the function 𝑇𝑥 is
nonnegative and nondecreasing on 𝐼, where 𝑟

0

is a number appearing in condition (vii).

(iii󸀠) For each 𝑡 ∈ 𝐼 the function 𝜏 → 𝑔(𝑡, 𝜏) is nonde-
creasing on [0, 𝑡].

The following theorem is a completion of Theorem 6.

Theorem 8. Suppose that conditions (i)–(vii) and (i󸀠)–(iii󸀠)
are fulfilled. Then, (7) has at least one solution in 𝐵

𝑟
0

which
is nonnegative and nondecreasing, where 𝑟

0
is a number

appearing in condition (vii).
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Proof. Let 𝐵+
𝑟
0

denote set of all nonnegative and nondecreas-
ing functions from the ball𝐵

𝑟
0

. It is clear that𝐵+
𝑟
0

is nonempty,
bounded, closed, and convex. FromTheorem 6, we conclude
that the operator 𝑉

|𝐵
+

𝑟
0

is continuous. We show that 𝑉(𝐵+
𝑟
0

) ⊂

𝐵
+

𝑟
0

. To this end, fix 𝑥 ∈ 𝐵+
𝑟
0

and take 𝑡, 𝑠 ∈ 𝐼 such that 𝑠 > 𝑡.
Since (𝐹

𝑖
𝑥)(𝑡) = 𝑓

𝑖
(𝑡, 𝑥(𝑡)) ≥ 0 and

(𝐹
𝑖
𝑥) (𝑠) − (𝐹

𝑖
𝑥) (𝑡) = 𝑓

𝑖
(𝑠, 𝑥 (𝑠)) − 𝑓

𝑖
(𝑡, 𝑥 (𝑡))

≥ 𝑓
𝑖
(𝑡, 𝑥 (𝑠)) − 𝑓

𝑖
(𝑡, 𝑥 (𝑡)) ≥ 0,

(16)

we obtain 𝐹
𝑖
(𝐵
+

𝑟
0

) ⊂ 𝐵
+

𝑟
0

, for 𝑖 = 1, 2.
It is easily seen that (𝑈𝑥)(𝑡) ≥ 0 so it suffices to check

monotonicity of the operator 𝑈. We get

(𝑈𝑥) (𝑠) − (𝑈𝑥) (𝑡)

= ∫

𝑠

0

𝑢 (𝑠, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑠, 𝜏)

− ∫

𝑡

0

𝑢 (𝑡, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑡, 𝜏)

= ∫

𝑡

0

𝑢 (𝑠, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑠, 𝜏)

+ ∫

𝑠

𝑡

𝑢 (𝑠, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑠, 𝜏)

− ∫

𝑡

0

𝑢 (𝑡, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑡, 𝜏)

≥ ∫

𝑡

0

𝑢 (𝑠, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑠, 𝜏)

− ∫

𝑡

0

𝑢 (𝑠, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑡, 𝜏)

+ ∫

𝑠

𝑡

𝑢 (𝑠, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑠, 𝜏)

= ∫

𝑡

0

𝑢 (𝑠, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
[𝑔 (𝑠, 𝜏) − 𝑔 (𝑡, 𝜏)]

+ ∫

𝑠

𝑡

𝑢 (𝑠, 𝜏, (𝑇𝑥) (𝜏)) 𝑑
𝜏
𝑔 (𝑠, 𝜏) .

(17)

Further proving process depends on which of conditions
(ii󸀠(a)) or (ii󸀠(b)) is satisfied.

Assume that condition (ii󸀠(a)) holds. Then based on
Theorem 1, the two last integrals in estimation (17) are
nonnegative and indeed (𝑈𝑥)(𝑠) − (𝑈𝑥)(𝑡) ≥ 0.

Now, assume that condition (ii󸀠(b)) is satisfied. Coming
back to estimation (17), we obtain

(𝑈𝑥) (𝑠) − (𝑈𝑥) (𝑡)

≥ ∫

𝑡

0

𝑢 (𝑠, 𝑡, (𝑇𝑥) (𝑡)) 𝑑
𝜏
[𝑔 (𝑠, 𝜏) − 𝑔 (𝑡, 𝜏)]

+ ∫

𝑠

𝑡

𝑢 (𝑠, 𝑡, (𝑇𝑥) (𝑡)) 𝑑
𝜏
𝑔 (𝑠, 𝜏)

= 𝑢 (𝑠, 𝑡, (𝑇𝑥) (𝑡)) [𝑔 (𝑠, 𝑡) − 𝑔 (𝑡, 𝑡) − (𝑔 (𝑠, 0) − 𝑔 (𝑡, 0))

+𝑔 (𝑠, 𝑠) − 𝑔 (𝑠, 𝑡)]

= 𝑢 (𝑠, 𝑡, (𝑇𝑥) (𝑡)) [𝑔 (𝑠, 𝑠) − 𝑔 (𝑡, 𝑡) + 𝑔 (𝑡, 0)

−𝑔 (𝑠, 0)] ≥ 0

(18)

and, consequently, 𝑈(𝐵+
𝑟
0

) ⊂ 𝐵
+

𝑟
0

. Finally, we have 𝑉(𝐵+
𝑟
0

) ⊂

𝐵
+

𝑟
0

. UsingTheorems 3 and 6, we obtain the existence of a fixed
point of the operator𝑉 in 𝐵+

𝑟
0

. This means that (7) has at least
one nonnegative and nondecreasing solution in 𝐵

𝑟
0

, and the
proof is complete.

Remark 9. It can be shown (see for instance [1]) that if the
function 𝑔 : Δ

𝑀
→ R is continuous on the triangle Δ

𝑀

and for arbitrarily fixed 𝑡, 𝑠 ∈ 𝐼 such that 𝑡 < 𝑠, the function
𝜏 → 𝑔(𝑠, 𝜏) − 𝑔(𝑡, 𝜏) is monotonic (nondecreasing or
nonincreasing) on the interval [0, 𝑡]; then𝑔 satisfies condition
(v).

4. Applications and an Example

The topic of this section is to present some applications of
Theorem 8 in the situation of the classical integral equations.

Let us consider the equation

𝑥 (𝑡) = 𝑓
1
(𝑡, 𝑥 (𝑡)) +

̃
𝑓
2
(𝑡, 𝑥 (𝑡))

Γ (𝛼)

× ∫

𝑡

0

𝑢 (𝑡, 𝜏, (𝑇𝑥) (𝜏))

(𝑡 − 𝜏)
1−𝛼

𝑑𝜏, 𝑡 ∈ 𝐼,

(19)

where Γ denotes the Euler gamma function and𝛼 > 0. It is the
well-known integral equation of fractional order. If we take on
the set Δ

𝑀
the function 𝑔 defined by

𝑔 (𝑡, 𝜏) =

1

𝛼

[𝑡
𝛼
− (𝑡 − 𝜏)

𝛼
] , (20)

then it is easy to check that (19) is a special case of (7). Using
Remark 9 and the standard methods of differential calculus,
we can show that the function 𝑔 satisfies conditions (iii)–(v),
(ii󸀠), and (iii󸀠). Additionally, we have 𝐾 = (1/𝛼)𝑀𝛼, where
𝐾 is the constant appearing in Remark 4. Making use of the
fact that Γ(𝛼 + 1) = 𝛼Γ(𝛼) for 𝛼 > 0, condition (vii) in this
situation takes the following form:

(vii∗) there exists a positive real number 𝑟
0
which satisfies

the inequalities

𝑟𝑘
1
(𝑟) + 𝐹

1
+

𝑀
𝛼

Γ (𝛼 + 1)

(𝑟
̃
𝑘
2
(𝑟) + 𝐹

2
)Φ (Ψ (𝑟)) ≤ 𝑟,

𝑘
1
(𝑟) +

𝑀
𝛼

Γ (𝛼 + 1)

̃
𝑘
2
(𝑟)Φ (Ψ (𝑟)) < 1,

(21)

where 𝐹
2
= max{| ̃𝑓

2
(𝑡, 0)| : 𝑡 ∈ 𝐼} and ̃𝑘

2
is a function chosen

for ̃𝑓
2
based on condition (i).
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Obviously, when 𝛼 = 1, (19) reduces to the classical
nonlinear quadratic Volterra integral equation.

Now, let us consider the equation

𝑥 (𝑡) = 𝑓
1
(𝑡, 𝑥 (𝑡)) + 𝑓

2
(𝑡, 𝑥 (𝑡))

× ∫

𝑡

0

𝑡

𝑡 + 𝜏

𝑢 (𝑡, 𝜏, (𝑇𝑥) (𝜏)) 𝑑𝜏, 𝑡 ∈ 𝐼.

(22)

It is the Volterra counterpart of the quadratic integral equation
of Chandrasekhar type. This equation is also a special case of
(7), in which

𝑔 (𝑡, 𝜏) =

{

{

{

𝑡 ln(1 + 𝜏
𝑡

) , (𝑡, 𝜏) ∈ Δ
𝑀
\ {(0, 0)}

0, 𝑡 = 𝜏 = 0.

(23)

Using, as before, Remark 9 and the standard methods of
differential calculus, we can show that this function satisfies
conditions (iii)–(v), (ii󸀠(a)), and (iii󸀠). Additionally, we have
𝐾 = 𝑀 ln 2, where 𝐾 is the constant appearing in Remark 4.

Let us observe that if we put 𝑓
2
(𝑡, 𝑥) ≡ 0 in (7), we

obtain the classical functional equation of the first order on
the interval 𝐼.

We finish by providing an example illustrating
Theorem 8.

Example 1. Let us consider the following integral equation:

𝑥 (𝑡) = 𝑡𝑒
−𝑡
+

𝑡
2
+ 𝑥 (𝑡)

Γ (2/3)

× ∫

𝑡

0

1

2𝜋

√|𝑥 (𝜏)|arctg (4 + 𝑡2 + 𝜏2)
3

√𝑡 − 𝜏

𝑑𝜏, 𝑡 ∈ [0, 1] .

(24)

Obviously, this equation is a special case of (19) if we put 𝛼 =
2/3 and

𝑓
1
(𝑡, 𝑥) = 𝑡𝑒

−𝑡
,

̃
𝑓
2
(𝑓, 𝑥) = 𝑡

2
+ 𝑥,

𝑢 (𝑡, 𝜏, 𝑥) =

1

2𝜋

√|𝑥| arctg (4 + 𝑡2 + 𝜏2) ,

𝑇𝑥 = 𝑥.

(25)

In is easy to check that conditions (i)–(vi), (i󸀠), (ii󸀠(b)), and
(iii󸀠) of Theorem 8 are satisfied and 𝑘

1
(𝑟) = 0, 𝐹

1
= 1/𝑒,

̃
𝑘
2
(𝑟) = 1, 𝐹

2
= 1, Φ(𝑟) = (1/4)√𝑟, and Ψ(𝑟) = 𝑟. Using

standard estimation Γ(𝛼) > 0.8856 for 𝛼 > 0 and taking 𝑟
0
=

1, we verify that condition (vii∗) is also satisfied. Therefore,
in case of (24), we can apply Theorem 8. This means that
(24) has at least one nonnegative and nondecreasing solution
belonging to the ball 𝐵

1
of the space 𝐶[0, 1].
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