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Feedback based reputation systems continue to gain popularity in eCommerce and social media systems today and reputation
management in large social networks needs to manage cold start and sparseness in terms of feedback. Trust propagation has
been widely recognized as an effective mechanism to handle these problems. In this paper we study the characterization of
trust propagation models in the context of attack resilience. We characterize trust propagation models along three dimensions:
(i) uniform propagation and conditional propagation, (ii) jump strategies for breaking unwanted cliques, and (iii) decay factors
for differentiating recent trust history from remote past history. We formally and experimentally show that feedback similarity
is a critical measure for countering colluding attacks in reputation systems. Without feedback similarity guided control, trust
propagations are vulnerable to different types of colluding attacks.

1. Introduction

Large scale social networks provide such a convenient
opportunity that has never been known before for people
interacting with each other without face-to-face interaction,
such as Facebook, eBay, and Epinion. Due to the features of
behaviors in these networks, such as anonymity, dynamics,
scalability, normal interactions are seriously threatened by
dishonorable users. For example, a malicious seller may try
to provide fake or low quality goods to a buyer in eBay
for illegal profit or a dishonest user in Facebook may cheat
another user for slandering someone else. Fortunately, there
are a lot of ways to provide guidance for people identifying
these malicious users or behaviors. Trust and reputation
management systems are considered as one of the most
effective methods to maintain these social networks.

In most cases, the interactions in social network could
be seen as the request-respond mode. When sending an
interacting request in a large scale social network, users
usually havemore than one responder. A list of users is offered
to the requestor as responders so that the requestor could

select someone as his/her final interaction partner. Reputa-
tion management provides a good opportunity for helping
users selecting the trustworthy user from the responding
list. Amazon, Epinion, and numerous other distributed social
network systems have demonstrated that incorporating rep-
utation management can be an effective way to improve the
trustworthiness of the system. Trust computing, the core part
of reputation management system, also has a wide range
of applications in eCommerce, mobile computing, peer to
peer computing, sensor computing, and social computing,
to name a few [1–3]. Intuitively, computing trust value of a
given user requires some indicators such as pretransaction
based feedback information or something else. By feedback
we mean the performance of all historical transactions of the
target user. This can be expressed according to the rating
process used in several sites, such as eBay [4], or a statement
of trust as in the case of Epinion.

However, feedback based trust computing is still suffering
some challenges in the following aspects. (i) Dishonest feed-
backs: malicious users may slander good users in the system
by giving relatively low rating values or exaggerating another
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bad user by giving relatively high rating values. (ii) Malicious
collective or manipulation: malicious users could form a
malicious collective to help improving each other’s trust
value. (iii) Sparsity problem: apparently, nomatter what exact
form the direct relationship takes, one user could only feature
in direct relationshipswith a relatively small number of others
in a feedback based trust system. Consequently, most of the
responding users in the system would be strangers for a
specific user when sending a transaction request. (iv) Cold
start problem: basically, newcomers without any feedback
from any other existing users in a trust system could hardly
be selected as a trusted party. Specifically, it concerns the issue
that the trust system cannot draw any inferences for users or
items about which it has not yet gathered sufficient feedback
information.

Lots of trust models [5–8] have been proposed to date the
problems mentioned above. They all differ from one another
in three aspects, including feedback aggregating algorithm,
local trust, and global trust computing. But they are similar
in one aspect; all are based on the uniform trust propagation
kernel when dealing the sparsity and cold start problem. For
example, EigenTrust [5] is through the use of Eigenvector
based uniform propagation kernel and ServiceTrust [8] is
based on a similarity weighted uniform propagation kernel.

Unfortunately, most of the existing approaches have been
developed independently and little efforts have been made to
compare and understand the relative strength and inherent
vulnerabilities of different propagation approaches. Besides,
conditional trust propagation model is not discussed care-
fully in these trust systems. Concretely, with the same local
trust and similarity computing mechanism, how different
trust propagation models affect the global trust computing
even the performance of trust system? What kind of specific
factors in trust propagation models are critical and how they
affect the performance of propagation process? How robust
and resilient the existing trust models are in anticipation of
malicious or dishonest feedbacks, and whether the proposed
trust propagation model will remain to be effective in the
presence of some known attacks?We believe the understand-
ing of these questions is very important for building a more
sophisticated reputation management system.

Based on the questions mentioned above, we investigated
several popular trust propagation models in reputation man-
agement systems. The main contributions of this paper can
be summarized as follows. (i) We investigated the two most
important trust propagation models in this paper: uniform
propagation and conditional propagation, which could be
subcategorized into two classes, the similarity based and the
local trust value based. (ii) We discuss several important
issues affecting the performance of trust propagationmodels,
like how to avoid trust sink/malicious clique, how to design
the jump strategies for avoiding trust sink. (iii) We also argue
that trust propagation models also should have decay factor
to emphasize themost recent history and discount the remote
history. (iv) In our study, we found that uniform propagation
is hard to resist sophisticated attack behavior and we identify
conditional propagation with similarity reference is more
attack resilient under the same circumstance. In the similarity
based conditional propagation, we identify that the way to

use similarity is very important. Should we use similarity
only as weight or a threshold value for cutting some path
in conditional propagation? Experimental evaluation with
independent and colluding attack models shows that only
similarity based conditional propagation is attack resilient in
most cases but still vulnerable in certain cases. We should
combine them together.

The rest of this paper is organized as follows. Section 2
briefly describes the related work. Section 3 discussed the
uniform and conditional trust propagation models and for-
mulized them. Besides, Section 3 also gives an example net-
work to show how these different trust propagation models
work. Section 4 discussed the threat models we use briefly.
We report our experimental evaluation results in Section 5
and conclude the paper in Section 6.

2. Related Work

From the standpoint of trust, a trust network is naturally
modeled as a weighted directed graph. Each of the real
existed edge in this directed graph corresponds with a trust
relationship from the node at the source vertex to the node at
the target vertex. The weight on the edge could be treated as
a measure of how strong this trust relationship is. The trust
propagation process could help us building a path from a
source vertex to a target vertex without a direct edge.

Nowadays, existing trust models are categorized into two
categories from the standpoint of trust propagation: non-
propagating trust model and propagating trust model. One
of the famous nonpropagating trust models is PeerTrust [6].
The feedback credibility concept and its role for defending
against dishonest feedbackwere first introduced in PeerTrust,
which also described the roles transaction context may play
in making trust model more resilient to attacks. Another
trust model without trust propagation process is proposed
by [9], for supporting trust in virtual communities by direct
experiences and reputation. The semantic distance of feed-
back ratings was also introduced in this paper. Reference [10]
proposed a supervised learning approach that automatically
predicts trust between a pair of users using evidence derived
from actions of individual users (user factors) as well as
from interactions between pairs of users (interaction factors).
This method is completely detached from the structure
of network graph. References [11–13] also discussed trust
evaluation models relying on past observed behaviors, which
can also be subcategorized in nonpropagating classification.
In recent years, game theory [14–16] was introduced in trust
computing, which is another example of trust computation
without trust propagation. Most of the work in this area is
trying to design some mechanism to make people cooperate
with each other rather than defecting. Although there have
been some preliminary attempts at studying game theory
[17, 18] on trust among agents, game theory is still not among
the primary focuses of research in trust management.

Trust models with trust propagation are more popular
than nonpropagation trust models. Intuitively, trust propa-
gation could without doubt handle the sparse problem in a
trust network. Basically most of the trust propagationmodels
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are based on uniform propagation framework, which means
users will propagate their trust value to others following
all their direct trust relationships or edges in the trust
network. One of the most famous trust models with uniform
trust propagation is EigenTrust, which actually applied the
propagation principle of PageRank [19] in the propagation
process with a little bit of changes on the jump strategies and
weight of the edges. EigenTrust shows good attack resilience
on specific simple threat models. But it could not have
a satisfied performance when encountering more sophisti-
cated threat models. ServiceTrust [8] is another trust model
applying similarity at the propagation process. ServiceTrust
analyzes the vulnerabilities of EigenTrust and shows a better
performance on some more sophisticated attack models by
introducing feedback similarity weighted trust propagation
into the trust model. Reference [20] argued that, in the trust
inference process, the trust information and confidence on
the trust estimate should be separated and proposed a new
trust algorithm to compute an estimate of trust based on
only those information sources with the highest confidence
estimates. Another interesting concept introduced in trust
propagation process is howdistrust is propagated [21]. Ortega
et al. [22] proposed a novel system intended to propagate
both positive and negative opinions of the users through a
network, in such away that the opinions from each user about
others influence their global trust score.

3. Trust Propagation Models

In this section, we first briefly introduce the uniform prop-
agation models, including the nonpropagating trust mod-
els and propagating trust models. We argue that uniform
nonpropagating trust models could be seen as the special
situation of trust propagationmodelswith 1-step propagation.
We listed some critical factors about feedback applied in trust
propagating process and discussed some general ways to get
them. In addition, we also discussed other important factors
in the trust propagation process, including the strategies of
jumping out of malicious clique [16] and the decay factors
in the trust propagation. Then we proposed the conditional
trust propagation model and introduced two states of each
participant in conditional trust propagating process.

3.1. Preparation of Trust Propagation. In reputation manage-
ment systems, each participant can be a requestor (trustor)
and also a responder (trustee).Thus the relationship between
any two pairs of participants simulates the peer to peer
relationship in any complex network. Hence, we refer to a
member of the reputationmanagement systemby either “par-
ticipant” or “peer” in the rest of the paper. Each participant 𝑖’s
reputation could be represented by the global trust value of
𝑖. The basic idea of trust propagation is based on “circle of
friends” with 𝑘(𝑘 ≥ 0) hops to get the global trust value of
each user.

Before we start the trust propagating process, we need
to compute the local trust value of each peer by aggregating
all the feedback ratings that the peer has received from
other participants. Indeed, local trust values provide valuable

reference for trust enabled selection of trustor when the local
trust network is dense enough. In a feedback based trust
propagation models, three important factors are involved for
the local trust computation and aggregation as follows.

(1) Rating Mechanism. When a peer 𝑃
𝑖
acting as a provider

to respond to a service request from another peer 𝑃
𝑗
, the

receiving peer 𝑃
𝑗
is allowed to enter a feedback rating on 𝑃

𝑖

in terms of the quality of the service provided by 𝑃
𝑖
. We refer

to this as a per-transaction based feedback. Usually, there are
two mechanisms that peer gives their feedback. (i) Binary
rating mechanism: let tr(𝑖, 𝑗) denote the feedback rating from
peer 𝑖 to peer 𝑗 where 𝑖, 𝑗 ∈ [1, . . . , 𝑛] and tr(𝑖, 𝑗) is initialized
to zero. With a binary rating scheme, when peer 𝑖 competes a
transaction with another peer 𝑗 at time 𝑡, then peer 𝑖may rate
the transaction it has with peer 𝑗 as positive by tr(𝑖, 𝑗, 𝑡) = 1 or
negative by tr(𝑖, 𝑗, 𝑡) = −1.The key advantage of binary rating
is that it could get a number of discrete numbers of 1 or −1,
which is easy to be formulatedmathematically. (ii) Multiscale
rating mechanism: binary rating mechanism is so simple that
it loses a lot of useful information and brings some drawbacks
which make the reputation system more vulnerable. In the
first place, rating mechanism should be more in accordance
with human beings’ rating habit. Commonly, people would
like to judge a transaction in a more subjective way, such
as “not bad,” “good,” and “excellent”. In the next place, it
is easy for us to distinguish “bad” and “good” from binary
mechanism, but it is hard to distinguish different “good”
or “completed” services. There is no difference between
“an excellent” service and an ordinary “good” service. This
mechanism will discourage people to try to make their
service better but tomuddle along. In addition, the reputation
system based on binary mechanism is too simple to be attack
resilient for some special threat models. Based on these
considerations, multiscale rating mechanism [8] is proposed
as a more subjective and more incentive way to encourage
users to make their service better and also could punish the
malicious ones tomake the systemmore attack resilient.With
the same definition of tr(𝑖, 𝑗) as mentioned in binary rating,
tr(𝑖, 𝑗) is formulated as follows:

tr (𝑖, 𝑗) =

{{{{{{{{{{{

{{{{{{{{{{{

{

−1 bad
0 no rating
1 neutral
2 fair
3 good
4 very good
5 excellent.

(1)

(2) Feedback Aggregating Mechanism. This computation pro-
cess could be referred to as the local trust computation in a
mathematical formulation, which is the abstract mathemati-
cal specification of how the available information should be
transformed into a usable metric. Lots of ways are discussed
with respected to local trust computation. One of the most
intuitive mechanisms is proposed in EigenTrust, which just
got the difference between satisfactory transactions and
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unsatisfactory transactions. Let 𝑠(𝑖, 𝑗) denote the total num-
ber of satisfactory transactions between peer 𝑖 and peer 𝑗 and
unsat(𝑖, 𝑗) denote the number of unsatisfactory transactions
between peer 𝑖 and peer 𝑗. Hence, 𝑠(𝑖, 𝑗) = sat(𝑖, 𝑗) −

unsat(𝑖, 𝑗). Clearly, 𝑠(𝑖, 𝑗) is a positive integer if there are
more positive feedback ratings and negative otherwise. After
analyzing the vulnerabilities of this intuitive way of local trust
computing, ServiceTrust [8] proposed a new, more attack
resilient local trust computation formula based on the mul-
tiscale rating mechanism and user’s rating variance. Other
proposals include the use of Bayesian procedures [23, 24] or
fuzzy decision logic [25] to transform the feedback rating
information into ratio-scaled local trust values. Literature [13]
described a new system called the beta reputation system
which is based on using beta probability density functions to
combine feedback and derive reputation ratings.

(3) Normalization Mechanism. After we got the local trust
value that participant 𝑖 places on participant 𝑗, 𝑠(𝑖, 𝑗), it is
important to normalize it into the [0, 1] interval to make
the comparison meaningful between peers with high volume
of transactions and peers with low volume of transactions.
We can use 𝑖’s trust on all the rest of players to obtain a
normalized 𝑠(𝑖, 𝑗) for a specific 𝑗, say, 𝑐(𝑖, 𝑗).

In a nonpropagating trust models, we could get the global
trust value of peer 𝑖 by aggregating all the direct trust values
from 𝑖’s direct neighbors; 𝑡

𝑖
could be represented by the

following:

𝑡
𝑖
=

𝑁

∑

𝑗=1

𝑐 (𝑗, 𝑖) 𝑗 ̸= 𝑖. (2)

Clearly, there are many proposals with different dis-
cussion of these three factors computation. We need to
select appropriate algorithms based on different realistic
applications.

3.2. Uniform Propagating Trust Models. Computing the rep-
utation of a peer in a nonpropagating trust model is basically
only based on the direct trust relationship between users. But
in a large sparse complex networks, a peer 𝑖 only has very few
direct trust values to other peers and, to most of the rest, they
are strangers to peer 𝑖.Hence we need the k-hop propagating
process to find a more accurate value to assess 𝑖’s reputation
in the whole system. When 𝑐(𝑖, 𝑗) = 𝑁𝑢𝑙𝑙, we will compute
the trust value 𝑖 places on 𝑗, based on the circle of friends that
𝑖 and 𝑗 have in common. This circle can be defined by k-hop
traversal reachability from 𝑖 to 𝑗 in a trust graph and 𝑘 > 1.
Indeed, the nonpropagating trust models could be referred to
as the special case of 𝑘 = 1. When 𝑘 = 1, the global trust value
𝑡(𝑖, 𝑗) = ∑

𝑘
𝑐
𝑖𝑘
𝑐
𝑘𝑗
. This could be referred to as 1-hop indirect

transition probability.
Let 𝑛 denote the total number of participants in a

reputation system. We define 𝐶 = [𝑐
𝑖𝑗
] as a matrix of 𝑛 rows

by 𝑛 columns. Let 𝑡0
𝑖
denote the initial global trust value of

peer 𝑖. Let 𝑡𝑘
𝑖
denote the k-hop global trust value of peer 𝑖. We

have 𝑡
1

𝑖
= ∑
𝑛

𝑗=1
𝑐
𝑗𝑖
/𝑛 = ∑

𝑛

𝑗=1
𝑐
𝑗𝑖
𝑡
0

𝑖
.

Let ⃗𝑡
𝑘
= (𝑡
𝑘

1
, . . . , 𝑡

𝑘

𝑖
, . . . , 𝑡

𝑘

𝑛
) denote the global trust vector

of size 𝑛 at kth iteration (1 ≤ 𝑘 < 𝑛).The general formula for
computing the global trust vector at the (𝑘 + 1)th iteration is

⃗𝑡
𝑘+1

= 𝐶
𝑇 ⃗𝑡
𝑘

𝑐
𝑖𝑗
= {

̸= 0 if 𝑠
𝑖𝑗

̸= 0

0 otherwise.
(3)

Based on formula (3), when 𝑘 = 0, we have ⃗𝑡 = (𝐶
𝑇
)
𝑚 ⃗𝑡
0.

The trust vector ⃗𝑡 will converge to the left principal
eigenvector of 𝐶 if 𝑚 is large enough [16]. For each element
of this global trust vector, 𝑡

𝑖
, it quantifies how much trust the

system as a whole places on the participant 𝑖.
This general form of global trust computing suffers sev-

eral practical issues listed as follows. (i) Cold start problem:
when 𝑖 has not had any transaction with anyone, it has no
rating and thus no trust value. Specifically, how we initialize
everyone’s global trust value when 𝑘 = 0? (ii) Graph clique: by
analyzing the basic propagating mechanism in formula (3),
we could easily find that if there exist some cliques in the
trust network topology, users in the clique/collective would
boost each other’s global trust value repeatedly. Malicious
users could easily take advantage of this feature and mislead
the system. In the uniform trust propagation models, we
will discuss several typical ways to handle these issues and
compare them, respectively. In the following paragraphs, we
abbreviate “Uniform Trust Propagation” as UTP.

In the following, we will discuss several different uniform
trust propagation models.

3.2.1. UTP1: UTP with Uniform Jump Strategy and Initial-
ization. In this way of trust propagation, we have 𝑡

0

𝑖
=

1/𝑛. Namely, we initialize the global trust values for all
participants based on a uniform probability distribution over
all 𝑛 peers. Besides, we could introduce the parameter alpha
𝛼 to jump out of the trust sink due to malicious clique. In this
trust propagation model, each node could jump to any of the
users in the trust network with the same probability.

Let ⃗𝑡
𝑘
= (𝑡
𝑘

1
, . . . , 𝑡

𝑘

𝑖
, . . . , 𝑡

𝑘

𝑛
) denote the global trust vector

at kth iteration.The general formula for computing the global
trust vector at the (𝑘 + 1)th iteration is

⃗𝑡
𝑘+1

= (1 − 𝛼)𝐶
𝑇 ⃗𝑡
𝑘
+ 𝛼𝑡
0
,

𝑐
𝑖𝑗
=

{

{

{

1

out degree (𝑖)
if 𝑎
𝑖𝑗
= 1

0 otherwise,

(4)

where

𝐴 = [𝑎
𝑖𝑗
] , 𝑎

𝑖𝑗
= {

1 if 𝑖 trust 𝑗
0 otherwise.

(5)

Indeed, 𝐴 is the adjacent matrix of trust network. In this
case, if there is a directed link from 𝑖 to 𝑗, then 𝑖 places the
same trust value on each of his neighbors. This type of trust
propagation is actually how PageRank computes the rank
value of each page in the network.
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3.2.2. UTP2: UTP with Pre Trust Jump Strategy and Uniform
Initialization. In this ways of trust propagation, we have 𝑡

0

𝑖
=

1/𝑛, which is the same as UTP1. By utilizing a set P of
pretrust seed peers as the bootstrap peers, any participant
that does not know whom to trust can always trust one of
the pretrust peers with a probability of 1/|𝑃|. Another role of
using pretrust peers to serve as some sort of central authority
is to handle malicious collectives, namely, those peers who
aim at manipulating the system by giving each other high
local trust values and giving all others low local trust values
in an attempt to gain high global trust values. A commonway
to break the collectives is by having each participant placing
some trust on pretrust seed peers that are definitely not a
part of the collectives. This will avoid getting stuck within a
malicious collective.

Let ⃗𝑡
𝑘
= (𝑡
𝑘

1
, . . . , 𝑡

𝑘

𝑖
, . . . , 𝑡

𝑘

𝑛
) denote the global trust vector

at kth iteration.The general formula for computing the global
trust vector at the (𝑘 + 1)th iteration is

⃗𝑡
𝑘+1

= (1 − 𝛼)𝐶
𝑇 ⃗𝑡
𝑘
+ 𝛼𝑝⃗,

𝑐
𝑖𝑗
=

{{

{{

{

1

out degree (𝑖)
if 𝑎
𝑖𝑗
= 1

0 otherwise,

(6)

where

𝑝
𝑗
=

{{

{{

{

1

|𝑃|
if 𝑗 ∈ 𝑃

0 otherwise.
(7)

3.2.3. UTP3: UTP with Pre Trust Jump Strategy and Pre Trust
Initialization. Compared with UTP2, the only difference in
UTP3 is the way we assign initial global trust values. We have
𝑡
0

𝑖
= 𝑝⃗.
The common point of these three trust propagation

models is no matter how user 𝑖’s neighbors perform, they are
equal with respect to local trust values for peer 𝑖. In most of
the reputation systems, this kind of trust models usually is
not attack resilient. We could see that with a pre trust jump
strategy, the malicious users are hard to make a graph clique
to boost each other’s global trust value. So, based on these
analyses, we could get the result that, in the same context,
the attack resilience of UTP3 is much stronger that UTP2 and
UTP2 are much stranger than UTP1.We will give an example
experiment to show that.

3.2.4. UTP4: UTP3 with Local Trust Weight Propagation. In
this way of trust propagation, we have 𝑡0

𝑖
= 𝑝⃗. Compared with

UTP3, instead of assigning the same local trust value to each
of his neighbors, peer 𝑖will propagate his trust value based on
the feedback ratings.

Let ⃗𝑡
𝑘

= (𝑡
𝑘

1
, . . . , 𝑡

𝑘

𝑖
, . . . , 𝑡

𝑘

𝑛
) denote the global trust

vector at kth iteration (𝑘 > 1). Based on this propagation

mechanism, the general formula for computing the global
trust vector at the (𝑘 + 1)th iteration is

⃗𝑡
𝑘+1

= (1 − 𝛼)𝐶
𝑇 ⃗𝑡
𝑘
+ 𝛼𝑝⃗,

𝑐
𝑖𝑗
=

{{

{{

{

max (𝑠 (𝑖, 𝑗) , 0)

∑
𝑗
max (𝑠 (𝑖, 𝑗) , 0)

if ∑
𝑗

max (𝑠 (𝑖, 𝑗) , 0) ̸= 0

𝑝
𝑗

otherwise,

(8)

where

𝑝
𝑗
=

{{

{{

{

1

|𝑃|
if 𝑗 ∈ 𝑃

0 otherwise.
(9)

The computation of 𝑠(𝑖, 𝑗) is discussed in [5]. And since what
we focus on is the propagation mechanism, we would not
discuss it in detail.

3.2.5. UTP5: UTP4 with top q Jump Strategy and Pre Trust
Initialization. Considering the jumping choice of a peer 𝑖,
we find that it only has two selections: everyone or pre trust
ones. Here we proposed another jump strategy, called top q
jump strategy. Instead of jumping to the pre trust users in the
trust propagation, a user would like to choose a set of𝑄 users
whose global trust values are in the top q list. Namely, a user
always tries to believe the user who has a higher global trust
value. This way of trust propagation could be formulated as
follows.

In this way of trust propagation, we have 𝑡
0

𝑖
= 𝑝⃗.

Compared with UTP3, instead of assigning the same local
trust value to each of his neighbors, peer 𝑖 will propagate his
trust value based on the feedback ratings.

Let ⃗𝑡
𝑘

= (𝑡
𝑘

1
, . . . , 𝑡

𝑘

𝑖
, . . . , 𝑡

𝑘

𝑛
) denote the global trust

vector at kth iteration (𝑘 > 1). Based on this propagation
mechanism, the general formula for computing the global
trust vector at the (𝑘 + 1)th iteration is

⃗𝑡
𝑘+1

= (1 − 𝛼)𝐶
𝑇 ⃗𝑡
𝑘
+ 𝛼 ⃗𝑞,

𝑐
𝑖𝑗
=

{{

{{

{

max (𝑠 (𝑖, 𝑗) , 0)

∑
𝑗
max (𝑠 (𝑖, 𝑗) , 0)

if ∑
𝑗

max (𝑠 (𝑖, 𝑗) , 0) ̸= 0

𝑝
𝑗

otherwise,

(10)

where

𝑞
𝑗
=

{{

{{

{

1

|𝑄|
if 𝑗 ∈ 𝑄

0 otherwise.
(11)

Intuitively speaking, top q jump strategy looks more
reasonable in a real life and more decentralized since it
does not depend on the pre trust users anymore. However,
once the malicious users are included in the top q list, the
consequence is fatal. We will show the experiment result of
this kind of jump strategy in Section 3.4. This explains that
why we select pretrust users to jump rather than others.

It is also worth mentioning that the top q jump strategy
may cause the trust propagation process unconverging. Once
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differentmalicious users come into the top qusers in different
iterations, it maymake themalicious users’ global trust values
fluctuate sharply in different iteration rounds.

3.2.6. UTP6: UTP4 with Decay Factor 𝑑. Another design
consideration is that we need to differentiate recent trust
history from remote past history. So we need to introduce a
“forgetting factor” to emphasize this consideration, namely,
the decay factor 𝑑. Considering one important attack strategy
of malicious users-malicious clique, we believe that decay
factor could effectively improve the attack resilience of trust
models.

Concretely, let 𝑑 ∈ (0, 1] be the decay factor. By incorpo-
rating the decay factor in the trust propagation formula (8),
we can compute the global trust at the (𝑘 + 1)th iteration by
formula (12) as follows:

⃗𝑡
𝑘+1

= 𝑑 × (1 − 𝛼)𝐶
𝑇 ⃗𝑡
𝑘
+ 𝛼𝑝⃗,

𝑐
𝑖𝑗
=

{{

{{

{

max (𝑠 (𝑖, 𝑗) , 0)

∑
𝑗
max (𝑠 (𝑖, 𝑗) , 0)

if ∑
𝑗

max (𝑠 (𝑖, 𝑗) , 0) ̸= 0

𝑝
𝑗

otherwise,

(12)

where

𝑝
𝑗
=

{{

{{

{

1

|𝑃|
if 𝑗 ∈ 𝑃

0 otherwise.
(13)

3.3. Conditional Trust Propagation Models. The basic idea of
uniform trust propagation is that if there is a directed link
from participant 𝑖 to participant 𝑗 in the trust network, 𝑖
would always trust certain amount of trust value to 𝑗 no
matter how weak this trust relationship is. But in a realistic
trust system, if the trust relationship between twoparticipants
is too weak, 𝑖 would like to cut this relationship and does not
propagate its trust value to 𝑗, or 𝑗 is in an inactive status with
respect to participant 𝑖. If the trust relationship is higher than
the threshold value, we say 𝑗 is active with respect to peer 𝑖.
We call this kind of trust propagation threshold value based
trust propagation. Figure 1 gives an example of conditional
trust propagation and uniform propagation.

Figure 1(a) shows the initialized trust network and the
value on the edge could be the local trust value that a trustor
placed on a trustee or some other type of values, for example,
the feedback similarity value. Figure 1(b) depicts the uniform
trust propagation; we could see that even user id = 2 places
very low weight value on user id = 3; it still propagates its
trust to it. But in Figure 1(c), that way is cut since the weight
value is less than the threshold value. By this way, suppose
that id = 3 and id = 4 are malicious users; they could not get
higher profit by the trust propagation process.This will make
our trust model more attack resilient. The conditional trust
propagation is described in formula (14).

Let 𝑡0
𝑖

= 𝑝⃗ = {1/𝑝, ⋅ ⋅ ⋅ 1/𝑝, 0, . . . , 0} be the initialization
global trust vector. ⃗𝑡

𝑘
= (𝑡
𝑘

1
, . . . , 𝑡

𝑘

𝑖
, . . . , 𝑡

𝑘

𝑛
) denotes the global

trust vector of size 𝑛 network at kth iteration. The general

formula for computing the global trust vector at the (𝑘 + 1)th
iteration is

⃗𝑡
𝑘+1

= (1 − 𝛼) × th × 𝐶
𝑇 ⃗𝑡
𝑘
+ 𝛼𝑝⃗,

th = {
1 if 𝑐

𝑖𝑗
> threshold value

0 otherwise,

(14)

where

𝑝
𝑗
=

{{

{{

{

1

|𝑃|
if 𝑗 ∈ 𝑃

0 otherwise.
(15)

Formula (14) is the local trust based threshold value condi-
tional trust propagation. We call it LTCP.

3.4. Similarity Based Trust Propagation: Uniform and Condi-
tional. Similarity based technologies have been widely used
in reputation management systems [26–28]. Similarity based
approaches can be categorized in two groups: feedback based
similarity and profile based similarity. There are a lot of
methods to compute the pairwise similarity. One of the
most common ones is based on Euler distance between
two users’ rating behavior vectors. Another popular way to
computer similarity is cosine function based which computes
the cosine value between two rating vectors. How to compute
the similarity is another important area in trust computation
and collaborative filtering. In this paper, what we focus on is
how to introduce similarity value into our trust propagation
process and what kind of influence it will lead. Based on this
discussion, we proposed our similarity-related trust propa-
gation process in both uniform propagation and conditional
propagation.

Let Sim = [sim
𝑖𝑗
] 0 ≤ sim

𝑖𝑗
≤ 1 indicate the similarity

matrix of the trust network. sim
𝑖𝑗
is the similarity, either

feedback behavior similarity or profile similarity, between
participant 𝑖 and participant 𝑗.

3.4.1. SLUTP: Similarity and Local Trust Weighted Uniform
Trust Propagation. When peer 𝑖 propagates his trust value to
its neighbors, it will consider the local trust that it places on
each neighbor as the propagation weight on the first layer.
Then, by computing the similarity between 𝑖 and its neighbor,
the similarity value is placed as the propagation weight on
the second layer. This way of trust propagation is proposed
in ServiceTrust.

Let 𝑡0
𝑖

= 𝑝⃗ = {1/𝑝, ⋅ ⋅ ⋅ 1/𝑝, 0, . . . , 0} be the initialization
global trust vector. ⃗𝑡

𝑘
= (𝑡
𝑘

1
, . . . , 𝑡

𝑘

𝑖
, . . . , 𝑡

𝑘

𝑛
) denotes the global

trust vector of size 𝑛 network at kth iteration. The general
formula for computing the global trust vector at the (𝑘 + 1)th
iteration is

⃗𝑡
𝑘+1

= (1 − 𝛼) × Sim𝑇 × 𝐶
𝑇 ⃗𝑡
𝑘
+ 𝛼𝑝⃗,

𝑐
𝑖𝑗
=

{{

{{

{

max (𝑠 (𝑖, 𝑗) , 0)

∑
𝑗
max (𝑠 (𝑖, 𝑗) , 0)

if ∑
𝑗

max (𝑠 (𝑖, 𝑗) , 0) ̸= 0

𝑝
𝑗

otherwise,

(16)
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Figure 1: Comparison of uniform trust propagation and conditional propagation.

where

𝑝
𝑗
=

{{

{{

{

1

|𝑃|
if 𝑗 ∈ 𝑃

0 otherwise.
(17)

Similarly, we could introduce the decay factor into SLUTP,
which is called D-SLUTP. Formula (16) could be rewritten as
follows:

⃗𝑡
𝑘+1

= 𝑑 × (1 − 𝛼) × Sim𝑇 × 𝐶
𝑇 ⃗𝑡
𝑘
+ 𝛼𝑝⃗,

𝑐
𝑖𝑗
=

{{

{{

{

max (𝑠 (𝑖, 𝑗) , 0)

∑
𝑗
max (𝑠 (𝑖, 𝑗) , 0)

if ∑
𝑗

max (𝑠 (𝑖, 𝑗) , 0) ̸= 0

𝑝
𝑗

otherwise,

(18)

where

𝑝
𝑗
=

{{

{{

{

1

|𝑃|
if 𝑗 ∈ 𝑃

0 otherwise.
(19)

In formula (18), if we take the 𝐶 = 𝐼 (𝐼 is unit matrix) and
𝑑 = 1, we got the similarity weighted uniform propagation.
In this situation, peer 𝑖will propagate its trust values based on
its rating behavior similarity with respect to other neighbors.
If we take the Sim = 𝐼 and 𝑑 = 1, then we get the local trust
weighted uniform propagation.

3.4.2. STCP: Similarity Threshold Value Based Conditional
Trust Propagation. We already discussed the general form
of conditional trust propagation in Section 3.2. In STCP,
we introduce the pairwise similarity as the condition that 𝑖
with respect to 𝑗 is active or not. Namely, if the feedback
based similarity between 𝑖 and 𝑗 is higher than the predefined
threshold value, then 𝑖 is activated with respect to 𝑗 and
has the willing to propagate its trust value. STCP could be
formulized in (20).

Let 𝑡0
𝑖

= 𝑝⃗ = {1/𝑝, ⋅ ⋅ ⋅ 1/𝑝, 0, . . . , 0} be the initialization
global trust vector. ⃗𝑡

𝑘
= (𝑡
𝑘

1
, . . . , 𝑡

𝑘

𝑖
, . . . , 𝑡

𝑘

𝑛
) denotes the global

trust vector of size 𝑛 network at kth iteration and 𝑑 is the
decay factor. The general formula for computing the global
trust vector at the (𝑘 + 1)th iteration is

⃗𝑡
𝑘+1

= 𝑑 × (1 − 𝛼) × th × 𝐶
𝑇 ⃗𝑡
𝑘
+ 𝛼𝑝⃗,

th = {
1 if sim

𝑖𝑗
> threshold value

0 otherwise,

(20)

where

𝑝
𝑗
=

{{

{{

{

1

|𝑃|
if 𝑗 ∈ 𝑃

0 otherwise.
(21)

In some type of attacks, malicious users would like to
give some honest ratings or profiles with a probability to
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gain some similarity with good ones. This similarity based
conditional trust propagation could effectively prevent this
kind of camouflage behavior.

3.4.3. HCP: Hybrid Conditional Trust Propagation. In some
cases, we could not cut all the malicious users out of the
trust propagation only depending on the similarity based
threshold value. For example, if our threshold value is 0.5
and the spy users’ similarity value with respect to other good
ones is 0.51, we cannot cut this one out. What we need to
do is to make sure that even if this spy user comes into the
trust propagation process, we still couldminimize its negative
influence on the reputation management system. In order
to improve the robust of trust model, we proposed this new
hybrid conditional trust propagation process. The main idea
of HCP could be divided into two steps before participant
𝑖 decides to propagate its trust value to others. First, it will
check its similarity value with his neighbors in the trust
network to find if it is higher than the threshold value or not.
Then if the similarity value is higher enough, user 𝑖 still uses
the similarity as the weight in the trust propagation. HCP
could be formulized as follows.

Let 𝑡0
𝑖

= 𝑝⃗ = {1/𝑝, ⋅ ⋅ ⋅ 1/𝑝, 0, . . . , 0} be the initialization
global trust vector. ⃗𝑡

𝑘
= (𝑡
𝑘

1
, . . . , 𝑡

𝑘

𝑖
, . . . , 𝑡

𝑘

𝑛
) denotes the global

trust vector of size 𝑛 network at kth iteration and 𝑑 is the
decay factor. The general formula for computing the global
trust vector at the (𝑘 + 1)th iteration is

⃗𝑡
𝑘+1

= 𝑑 × (1 − 𝛼) × th × Sim𝑇𝐶𝑇 ⃗𝑡
𝑘
+ 𝛼𝑝⃗,

th = {
1 if sim

𝑖𝑗
> threshold value

0 otherwise,

(22)

where

𝑝
𝑗
=

{{

{{

{

1

|𝑃|
if 𝑗 ∈ 𝑃

0 otherwise.
(23)

When the threshold value is 0 and the decay factor is 1, the
propagation model described in formula (22) becomes into
the SLUTP. If the threshold value is 1 and the similaritymatrix
Sim = 𝐼, we get the UTP6 or UTP4 depending on the decay
factors value. Therefore, by exploring different boundary-
values of these factors in formula (22), we could get all kinds
of trust propagation models we discussed above.

3.5. Illustration of Comparison amongThese Trust Propagation
Models. In this section, we will compare these trust prop-
agation models based on the same trust network which is
depicted in Figure 2. In this network, there are four types of
participants: pretrust participants, normal participants, spy
participants, and normal malicious participants.

There are some basic rules when we compute the local
trust values and pairwise similarity values. For the local
trust value, each user’s local trust values placed on its trust
neighbors follow the zipf distribution (weighted propagation)
or uniform distribution (unweighted propagation) and the
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Figure 2: Example service provision trust network with attack
behaviors.
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sum should be 1. For the similarity value, the similarity
between spy users and good ones (including pretrust and
normal) should be less than the similarity between good
ones and good ones. We suppose there are no similarity
between good users and normal malicious users. The spy
users could propagate their trust values to normal malicious
users. The attack model implicated in this trust network has
been discussed in [5, 8].

In the first comparison (Figure 3), UTP6 deserves the best
performance in which the malicious users could not obtain
high global trust values but good ones are trusted more by
the system after propagating process converging. The worst
case is UTP1 in which themalicious users are trustedmore by
the system.The global trust values of malicious users are way
higher than the good ones.This will make themalicious users
subvert the system easily. By comparing UTP1, UTP2, and
UTP3, we can see that the choice of the initialization vector
does not influence the global trust values but the choice of
jump strategies does. If we choose the random jump strategy,
we can see thatmalicious users (id 16–20) obtainmuch higher
global trust values. By comparing UTP4 and UTP5, we could



Mathematical Problems in Engineering 9

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

ID of each node

UTP6
LTCP

G
lo

ba
l t

ru
st 

va
lu

es
 o

f u
se

rs 1-2 pretrust users
3–13 good users
14-15 spy users
16–20 normal malicious users

Figure 4: Performance comparison on uniform propagation
(UTP6, 𝑑 = 0.5) and conditional propagation (LTCP).

2
0

4 6 8 10 12 14 16 18 20

0.05

0.1

0.15

0.2

0.25

ID of each user

G
lo

ba
l t

ru
st 

va
lu

es
 o

f u
se

rs

UTP4
SLUTP

UTP6
D-SLUTP

1-2 pretrust users
3–13 good users
14-15 spy users
16–20 normal malicious users

Figure 5: Performance on uniform trust propagation (UTP4,UTP6,
SLUTP, and D SLUTP) 𝑑 = 0.5.

see that UTP4 is a little bit better than UTP5. But both of
them are worse than the UTP6. By carefully observing the
trust propagating process in UTP5, the spy peer id = 15 is
selected in the top q (𝑞 = 3) users which makes the other
normal malicious users boosted by spy user id = 15.

Figure 4 shows the performance comparison ofUTP6 and
LTCP. Clearly, uniform trust propagation with decay factors
could effectively hinder normal malicious users obtaining
high global trust values by boosting each other in the
malicious collection. Due to the fact that spy users also always
provide good services or files when responding to a request,
if we take the local trust as our threshold value reference, we
could not effectively prevent the trust propagated from good
peers to spy users.

In Figure 5, we could see that, by introducing similarity
into the trust propagation process, the attack resilience
of trust propagation process is effectively improved. The
malicious users in SLUTP only could obtain a little bit higher
global trust values than the UTP6 which includes the decay
factor but significantly lower global trust values than the
UTP4. If we introduce both decay factor and similarity into
the uniform trust propagating process, the attack resilience of
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Figure 6: Performance comparison on uniform trust propagation
and conditional trust propagation (𝑑 = 0.5).

trust system is obviously improved.The global trust values of
malicious users in D SLUTP are lowest in Figure 5 and most
of good ones are higher than other propagating models.

Since the D SLUTP shows the best performance among
the four trust propagating trust models in Figure 5, we take
D SLUTP as our benchmark in the following comparison.
Figure 6 shows the attack resilient performance of D SLUTP
and other similarity included conditional trust propagation
models. The D SLUTP shows the worst performance among
these four trust propagating models. The normal malicious
users could hardly get any global trust values in HCP and
D HCP by carefully utilizing similarity between spy users
and good ones as our threshold value reference and prop-
agating weight. The STCP also shows a better performance
than D SLUTP but worse than the HCP and D HCP. This
phenomenon tells us that, instead of only using similarity as
propagating weight or threshold value reference, it is a better
way to combine them together.

Another important conclusion obtained by these simu-
lating results is that decay factor is very important to prevent
malicious behavior in a trust graph with malicious clique.

In order to give a vivid illustration of how trust propa-
gation model could handle the sparsity problem in trust net-
work.We show another set of comparisonwith two networks:
the local trust network, which is without trust propagation
(Figure 7) and the 1-hoppropagation trust network (Figure 8).
We can see that Figure 8 gives us a more dense trust network
compared with Figure 7, which shows how trust propagation
process addresses the problem of sparsity.

4. Attack Models

In decentralized networks, lots of threat models are used to
characterize malicious behaviors of different forms. Refer-
ence [8] discussed four threat models in 2013. These four
threat models are independently malicious (threat model A),
malicious collectives (threat model B), malicious collectives
with camouflage (threatmodel C), andmalicious spies (threat
model D). These four attack models are gradually more
sophisticated than the previous ones. In this paper, we
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Figure 8: Trust Network after 1-hop trust propagation. Dash
line represents the indirect trust computed though 1-hop trust
propagation.

proposed another more sophisticated attack model which is
malicious spies with camouflage (threat model E).

Threat model E. Malicious participants are also strategically
organized into two groups (type E and type B). Compared
with typeD peers in threatmodel D, type E peers also provide
honest feedback to good peers at 𝑓% when selected as a
service provider. In addition, type B peers not only provide
bad (inauthentic) services but also form a chain of malicious
collective as described in threat model B.

In the following experiments, we will give the evaluation
of different kinds of trust propagation models under these
five threat models and varying different decay factors and
threshold values.

5. Experimental Evaluation

In this section we evaluate the performance of the trust prop-
agation models in terms of attack resilience. Since we already
discussed the differences between uniform trust propagation
models, we only take UTP1, UTP2, UTP4, UTP6, LTCP,
SLUTP, and D SLUTP as our uniform trust propagation
models and STCP, HCP, and D HCP as our conditional trust
propagation models in the Epinion network under five attack

models. We also evaluate the effectiveness of uniform and
conditional trust propagation models varying the decaying
factors. We take the Epinion trust network for our simulating
network for a number of reasons. First, Epinion is a platform
for people to share their experiences, both good and bad,
about a variety of topics, ranging fromdaily life consumptions
(such as cars and coffees) tomedia objects (such asmusic and
movies). Users could write reviews, rate the reviews of other
authors, and, most importantly for our purposes, indicate
trust or distrust for another user. Second, the Epinion dataset
is a very sparse network. There are about 75879 nodes in
Epinion and the degree distribution follows the power-law
distribution [26]. Most of the nodes only have limited trust
links with other nodes. Basically speaking, it is an ideal sparse
network for evaluating the effectiveness of trust propagating
process. Figure 9 shows the in-degree and out-degree distri-
bution of Epinion network. In our real experimental setting,
due to the limitation of our computation, we only take the
first 1000 nodes to run our experiments.The configuration of
parameters in the experiments is shown in Table 1.

5.1. Experiment Setup. In the first 1000 nodes, there are
134 nodes without any in-degree which means they are
not trusted by any of the 1000 nodes. Three nodes have
no out-degree which means they do not trust anybody in
the system. The maximum out-degree of 1000 network is
478 and the maximum in-degree of 1000 network is 366.
The minimum out-degree and in-degree of the network are
both 0. The average degree of the network is 40.24. The
degree of this smaller Epinion network still obeys the power-
law distribution and is a sparse network. In this 1000-node
network, one real preexisting directed link from one node
𝑖 to another node 𝑗 represents a direct trust relationship, 𝑖
trust 𝑗 in some degree. In our experiments, we take the 134
nodes as malicious node for launching the attacks, including
attempting to degrade or destroy the quality and performance
of the service network system. And the first 30 users as our
pre trust users whose initial global trust is greater than zero.
All the rest are normal good users which are in the network
for requiring and responding requests.

In order to keep this power-law distribution network of
Epinion, we try our best to not generate new trust links
(directed edges) in the existing topology. In this 1000-node
Epinion network, we simulate the transactions by query-
answering mechanism. Every node could send requests (as
service consumer or trustee) and could get a responding list
including all its out-degree neighbors. In order to introduce
the attack behavior in the transactions, we suppose all the
134 malicious users could answer any of the requests. Only
when peer 𝑖 has received a service provided by peer 𝑗, peer 𝑖
is allowed to give 𝑗 one feedback.

The simulation of the service network dynamics is done
through simulation cycles. Each cycle consists of multiple
query cycles. In each query cycle peers can probabilistically
choose to ask queries or respond to queries. The number of
queries that a peer issued follows the uniform distribution.
After issuing a query, peer waits for response. Upon obtaining
a list of providers that responded to the query, the peer
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Figure 9: In and out degree distribution of Epinion dataset.

Table 1: Simulation configuration.

Network scale 1000
Number of malicious nodes 13.4%
Number of pretrust nodes 3%
% of spy users 3.4%
% of service requests in which good
user i provides unsatisfied services 0%–10%

% of service requests in which
malicious user i provides unsatisfied
service

Varied in threat models

% of spy users gives honest ratings 10%, 30%, 50%, 70%
Decay factors 0.1, 0.3, 0.5, 0.7
Threshold value of conditional
propagation 0.005, 0.5

Rating mechanism Multiscale rating mechanism
Similarity algorithm [8] [Su, et al. 2013]
Local trust algorithm [5] [Kamvar, et al. 2003]
Initialization strategy Varied in propagation models
Jump strategy Varied in propagation models
Queries issued by each node Uniform distribution 50–100.
Number of cycles 30

selects one provider from the list. The selection process will
be repeated until a user has received a satisfying service. We
choose the probabilistic-based selection [8] as the selection
method. In the conditional trust propagation, we select 0.495
as our similarity referred threshold value. How to properly
select a threshold value is also vital in the conditional trust
propagation. It is not the key concern of this paper. We will
discuss it in detail in our future work.

At the end of each simulation cycle, the local and global
trust values are computed. We run each experiment several
times and the results of all runs are averaged. The perfor-
mance metrics used in this paper include the percentage of
unsatisfactory services versus the percentage of satisfactory
services. If the global trust values accurately reflect each peer’s
actual behavior, then high global trust values minimize the

number of inauthentic downloads. We are also interested
in the time complexity and iteration rounds used for trust
propagation.

5.2. Evaluation of Trust Propagating Models. In this part,
we will show the performance of typical uniform trust
propagation models on the Epinion dataset we obtained,
including UTP1, UTP2, UTP4, UTP6, SLUTP, and DSLUTP.
For the DSLUTP, we take the decay factor 𝑑 = 0.5. All the
simulations are executed under threat models A, B, C, D, and
E. The experiment results under threat models A and B are
depicted in Figure 10.

For threat models A and B, we see a very interesting
phenomenon here is that, except UTP1, all the rest uniform
trust propagation models show a very good attack resilience,
about 20% failed services. UPT1, which could be considered
as the original PageRank propagation model, could not
handle the least sophisticated threat models A and B. We
can see that, by carefully selecting pretrust users in jump
strategies, evenUTP2 also initializes each peer with a positive
global trust values; it still outperforms UTP1 significantly.
By comparing UTP2 with UTP4, UTP6, SLUTP, DSLUTP,
and conditional trust propagation models, we could see
that UTP2 performs a little worse than all the rest models,
especially in threat model B (about 23%–25%). The reason
is that, with the positive global trust values obtained in the
initialization and malicious collective in threat model B, all
the malicious users in UTP2 never go to 0.

Another phenomenon is that we could see that, except
UTP1 and UTP2, all the rest propagation models are about
20%. By carefully analyzing the global trust values and
the topology of trust network, we see that even all the
malicious users’ global trust values are much lower in these
trust propagation models, but constrained by the network
topology, there are several good users which have only one
other good neighbor to respond to their requests. Once the
goodneighbor involuntarily provides unsatisfied services, the
good users will keep trying all the other responders even they
are all malicious users due to our experimental settings.

Firstly we observe the performance of all the uniform
trust propagation models on threat model C in Figure 11(a).
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Figure 10: Performance comparison on all trust propagation models under threat models A and B.
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Figure 11: Performance comparison on all trust propagation models under threat model C.

We can see that the DSLUTP outperforms the other uniform
trust propagation models in an obvious way. Particularly
when the camouflage probability is 50%, there are more than
30% lower compared to the worst case UTP2. By comparing
UTP6 with UTP4, DSLUTP with SLUTP we could see that
when the malicious users get smarter and try to mislead
good users, they do could obtain some positive global trust
values from good ones and enhancing their global trust
values by malicious clique. However, the decay factor could
effectively decrease this kind of bad influence by malicious
clique. When the 𝑓% = 30%, UTP6’s percentage of failed
services is 15% lower than UTP4. And when the 𝑓% = 50%,
DSLUTP outperforms SLUTP with about 12% failed services.
Figure 11(a) also shows that, by introducing similarity in

threat model C, malicious users could not easily get high
global trust values any more.

Another very interesting phenomenon in Figure 11(a) that
really interests us is that UTP1 outperforms UTP2 slightly in
threat model C, which is unexpected. By carefully checking
the global trust values in each iteration round, we found that,
in UTP2, the pretrust users could get way higher global trust
values than they are inUTP1. Since there is nomechanism for
preventing the global trust values propagated from pretrust
users to malicious users, once the malicious users provide
good services to pretrust users, they could get higher global
trust values than in UTP1. Due to this reason, the global trust
values of malicious users in UTP2 are higher than in UTP1,
which makes UTP2 worse (about 3% higher in UTP2).
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Figure 11(b) shows the performance of conditional trust
propagation models under threat model C. The threshold
value for LTCP is t LTCP = 0.005 (normalized local trust
values) and for STCP is s STCP = 0.5. In this set of exper-
iments we know that even the worst case of conditional
trust propagation (LTCP) is all most as good as the SLUTP
in the same environment. The reason that LTCP is worse
than the DSLUTP case is that we could not cut all the
propagation ways from good ones to malicious ones. If we
select a higher threshold value in LTCP, it also will cut
too more propagation ways that are from good ones to
good ones. This will make the trust network too sparse.
When the camouflage percentage is 10%, the percentage of
failed services of LTCP propagation is less than 10%, which
means the camouflage probability is too low to make the
malicious users get a higher enough local trust values than
the threshold value to make the malicious collective work.
But, in other cases, the LTCP performs much worse than
the cases that we introduce similarity into the conditional
propagation. By carefully applying similarity algorithms and
values in conditional trust propagations (STCP), we could
improve the attack resilience of trust propagation process
obviously (about 11%–20% better than the LTCP). Also, we
could see that the HCP and DHCP are even better than the
STCP if we use similarity not only as propagation weight but
also as reference of threshold value. Particularly when the
camouflage probability is 50%, theDHCP is almost 10%better
than STCP and 7% better than the HCP, which proves that
decay factor could also decline the negative effect ofmalicious
collective.

Figure 12 shows each trust propagation models’ attack
resilience under threat model D, in which we introduce
naive spy users andmalicious collectives.The first interesting
phenomenon is that all the trust propagation models without
similarity lost their effectiveness under threatmodelD (about
57% in UTP 6 is the best result) but all the similarity
based trust propagation models show an impressive attack
resilience no matter the percentage of spy users out of all
the malicious users, which is all at about 5% failed services.
By analyzing our similarity algorithm and the malicious
behavior in threat model D, we found that the only way
that type B users obtain global trust values is from the type
D users. However, our similarity algorithm makes it even
harder for the spy users to get a positive similarity value
between them and good ones. Actually, all the similarity
values between spy users and good ones are 0. In this case,
there is no trust propagated from good ones to spy nodes
and the malicious type-B users could not get any trust
either. But without similarity, because spy users perform
just as well as good users when providing services; they
could not be discovered by good ones only with local trust
values. Meanwhile, the phenomenon that UTP6 performs
much better than other no-similarity propagation models
also proves the decay factor works on some extent.

Figure 13 shows the performance of different trust prop-
agation models under threat model E. In Figure 13(a), we can
see that UTP1, UTP2, and UTP4 are not attack resilient at
all. The percentage of failed services is all about 80%, which
means the global trust values of malicious type B users are

much higher than others. Besides, when the ℎ% is higher than
30%, even theUTP6 and SLUTP andDSLUTPperformmuch
better than other uniform trust propagationmodels, they still
lost their effectiveness on attack resilience. The best case is
DSLUTP which is with almost 42%–53% of failed services.
This shows that if spy users could obtain some similarity,
the uniform trust propagation models fail to defend the trust
management against the colluding behavior of spy users and
type-B users. But when the probability of honest rating is
not high enough, like 10%, the spy users could not get high
trust values from good ones because of the too much low
similarity values. This makes the 10% of honest rating case
with similarity in uniformmodels show a better performance.

In Figure 13(b), we can see that the percentage of failed
services in LTCP is about 84% percentage, which is even
about 3% higher than UTP1, UTP2, and UTP4. The LTCP
is the worst propagation model in these trust propagation
models. That means in this case that the LTCP could not
defend the trust management system from malicious users
but hurt the propagation between good ones. However,
if we introduce the similarity into the conditional trust
propagation, we could see it making the trust propagation
modelsmore attack resilient.The percentage of failed services
in STCP is about 5% higher than the HCP and DHCP when
the honest rating probability is 30%, 50%, and 70%. Also, the
DHCP shows the best attack resilience among all the trust
propagation models. Similarly, with the 10% of honest rating,
the similarities between spy users and good ones are too small
tomake a big difference between STCP andHCP,DHCP.They
are all good enough.

5.3. Impact of Different Decay Factors and Different Threshold
Values. In this set of experiments, we will take the most
sophisticated threat model E with the honest rating ℎ% =

50% to show how different decay factors and threshold values
affect the performance of the trust propagation models. To
make a clear comparison, when we explore the threshold
value’s affection, we take the STCP as our baseline propaga-
tion model, and DSLUTP as the baseline propagation model
for exploring the affection of decay factors.

By measuring the percentage of failed services with
varying settings of threshold values from 0.2 to 0.5 in
Figure 14(a), we can see that if the threshold value is too
low, such as 0.2 and 0.3, the STCP could not show too
much attack resilience on threat model E, but when the
threshold value is higher than 0.4, STCP shows amuch better
performance on attack resilience. By observing the similarity
values during the simulation, we could see that most of the
similarity values between spy users and good ones are above
0.3–0.5. It is natural to think that the higher the threshold
value is, the better of the performance is. However, if we
choose a too much higher threshold value, there are also
too many propagation ways from good ones to good ones
being cut. Actually, as we mentioned before, how to choose
a propitiate threshold value could also be an interesting
future exploration, such as how they are affected by the
algorithm, how they are computed, dynamic threshold value,
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Figure 12: Performance comparison on all trust propagation models under threat model D.
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Figure 13: Performance comparison on all trust propagation models under threat model E, 𝑑% = 3.4%.
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Figure 15: Global trust values of each user in STCP under threat model E, 𝑑% = 3.4%, ℎ% = 50%.

or static threshold value, and should the threshold value be
personalized or globalized.

Figure 14(b) shows the decay factors influence on the
performance ofDSLUTP.We observe that the lower the decay
factor is, the better that the DSLUTP performs. Intuitively
thinking, we should select the decay factor as low as we can.
However, a too much low decay factor also weakens the trust
propagation from good ones to good ones.The pretrust users
will have too much higher global trust values than all of the
rest, which is not good for a trust management system. We
also observe that incorporating the decay factor only prevents
or constrains the global trust values to be propagated to
type-B malicious peers from pretrust peers and alleviates the
detrimental effect of the malicious chain of type-B malicious
collectives.

The second set of experiments shows the global trust
value of each user with different threshold values (0.2 and 0.5)
in STCP under threat model E with honest rating probability
ℎ% = 50%.

In Figure 15, we can see that, with a higher threshold value
(0.5), the malicious users including spy users and malicious
type-B users could hardly get any high global trust values
to subvert the reputation management system. This also
illustrates why our STCP with threshold value 0.5 performs
very well under threat model E. But when the threshold value
is 0.2, it cannot effectively cut the propagation way from
good users to spy users.Themalicious type-B users get much
higher global trust values. This also illustrates why SLUTP
and DSLUP and other uniform trust propagation models
could not perform very well under threat model E.

6. Conclusions

We have discussed 10 kinds of trust propagationmodels from
the simplest uniform trust propagation model (UTP1) to
the most sophisticated conditional trust propagation model

(DHCP) for reputation management systems. This paper
compares these trust propagationmodels’ attack resilience on
5 classic threat models and shows the different impact factors’
influence on propagation models. First, we formulized all
these trust propagation models mathematically and depict
a small example trust network to intuitively show the per-
formance of these propagation models with the global trust
values of each user after the propagation process converge.
Second, we found that by carefully introducing the similarity
into the trust uniform and conditional propagation process,
it could enhance the attack resilience of the reputation man-
agement system. We show that we could use similarity only
as weight (SLUTP) or threshold value reference (STCP) or
combine them together (HCP). The experiments on Epinion
dataset show that if we should apply similarity both as weight
and threshold value reference into the trust propagation
process. Third, the experiments results also prove that decay
factor also could alleviate the detrimental effect of malicious
collude in both uniform trust propagation and conditional
trust propagation. Experimental evaluation with five attack
models shows that DHCP always performs the best on a real
dataset.
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