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We study Legendre polynomials and develop new operational matrix of integration. Based on the operational matrix, we
develop a new method to solve a coupled system of Fredholm integral equations of the form 𝑈(𝑥) + 𝜆
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constants and 𝑓, 𝑔 ∈ 𝐶([0, 1]). The method reduces the coupled system to a system of easily solvable algebraic equations without
discretizing the original system. As an application, we provide examples and numerical simulations demonstrating that the results
obtained using the new technique match very well with the exact solutions of the problems. To show the efficiency of the method,
we compare our results with some of the results already studied with other available methods in the literature.

1. Introduction

Fredholm integral equations are frequently encountered
in many physical processes such as dynamic stiffness of
rigid rectangular foundations [1], soil mechanics and rock
mechanics [2], diffraction of waves by randomly rough
surface in two dimensions [3], thermoelasticity [4], and
scattering problem [5], to name a few. For systems of such
equations, various techniques such as extrapolation method,
Galerkin discretization, collocation methods, and quadra-
ture, iterative, spline, orthogonal polynomial, and multiple
grid methods have been proposed to determine desired
solutions (see, e.g., [6–9] and the references quoted there).
Thesemethods include approximate analytical and numerical
approaches.

Recently, approximate solutions to system of integral
equations have attracted the attention of many authors and
they obtained solutions using various available techniques
in the literature. For example, system of integral equations
has been studied with wavelets techniques in [10, 11], with
Adomian decompositionmethod in [12, 13], with Taumethod
in [14], with chebesheve polynomial and block pulse function

in [15, 16], and with Taylor expansion and some modified
methods based on taylor series expansion in [17–25].

In this paper, we use shifted Legendre polynomials and
develop a new operational matrix of integration. Based on
the operational matrix of integration, we develop a simple
method to find solutions of the coupled system of Fredholm
integral equations. The method reduces the coupled system
to a system of easily solvable algebraic equations without
discretizing the original system of equations. Besides sim-
plicity, the method yields accurate results even for small
value of𝑀 resulting in the reduction of the system to small
system of algebraic equations. It is verified by examples and
their numerical simulations demonstrating that the results
obtained using the new technique match very well with
the exact solutions of the problems. To show the efficiency
of the method over some of the well-known techniques,
we compare our results with some of the results already
studied with other available methods such as Taylor series
approximation method [19] and block pulse method [16].
We find that the new techniques provide highly accurate
solutions as compared toTaylor series approximationmethod
and block pulse method.
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2. Main Results: New Operational
Matrix of Integrations

TheLegendre polynomials defined on [−1, 1] are given by the
following recurrence relation:

Ł
𝑖+1
(𝑧) =

2𝑖 + 1

𝑖 + 1
𝑧Ł
𝑖
(𝑧) −

𝑖

𝑖 + 1
Ł
𝑖−1
(𝑧) ,

𝑖 = 1, 2, . . . , where Ł
0
(𝑧) = 0, Ł

1
(𝑧) = 𝑧.

(1)

The transformation 𝑥 = (𝑧 + 1)/2 transforms the interval
[−1, 1] to [0, 1] and the polynomials transformed to the so
called shifted Legendre polynomials given as [26] follows:
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, 𝑖 = 0, 1, 2, 3, . . . , (2)
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𝑖
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𝑖
(1) = 1. The orthogonality condition
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0, if 𝑖 ̸= 𝑗.
(3)

Consequently, any 𝑓(𝑥) ∈ 𝐶[0, 1] can be approximated
by shifted Legendre polynomial as follows:
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where 𝑀 = 𝑚 + 1, 𝐾 is the coefficient vector, and 𝑃̂ is 𝑀
terms vector function. In case of function of two variables,
that is, 𝑓 ∈ 𝐶([0, 1] × [0, 1]), we write
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In vector notation, (6) can be written as

𝑓 (𝑥, 𝑡) ≈ (𝑃̂
𝑀
(𝑥))
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where 𝑃̂
𝑀
(𝑥) and 𝑃̂

𝑀
(𝑡) are column vectors containing

Legendre polynomial and 𝐶 is the coefficient matrix whose
entries are obtained by using (6).

2.1. Error Analysis. For sufficiently smooth function 𝑓(𝑥, 𝑦)
on [0, 1] × [0, 1], the error of the approximation is given by
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We refer the reader to [27] for the proof of the above result.

Lemma 1. Let 𝑓(𝑥, 𝑡) ∈ 𝐶([0, 1]× [0, 1]) and 𝑔(𝑡) ∈ 𝐶([0, 1]);
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Using the orthogonality relation, we get
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where 𝑞
𝑗𝑖
= (1/(2𝑗 + 1))𝑐

𝑖𝑗
. In matrix form, we have

∫

1

0

𝑓 (𝑥, 𝑡) 𝑔 (𝑡) 𝑑𝑡 ≈ 𝐾
𝑀
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3. System of Fredholm Integral Equations

Consider the following coupled system of Fredholm integral
equations:

𝑈 (𝑥) + 𝜆
11
∫

1

0

𝐾
11
(𝑥, 𝑡) 𝑈 (𝑡) 𝑑𝑡

+ 𝜆
12
∫

1

0

𝐾
12
(𝑥, 𝑡) 𝑉 (𝑡) 𝑑𝑡 = 𝑓 (𝑥) ,

𝑉 (𝑥) + 𝜆
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∫

1

0

𝐾
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(𝑥, 𝑡) 𝑈 (𝑡) 𝑑𝑡

+ 𝜆
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∫

1

0

𝐾
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(𝑥, 𝑡) 𝑉 (𝑡) 𝑑𝑡 = 𝑔 (𝑥) ,

(17)

where 𝜆
11
, 𝜆
12
, 𝜆
21
, and 𝜆

22
are real constants, 𝑓, 𝑔 ∈

𝐶([0, 1]), 𝐾
11
, 𝐾
12
, 𝐾
21
, 𝐾
22
∈ 𝐶([0, 1] × [0, 1]), and 𝑈(𝑥),

𝑉(𝑥) are unknown functions to be determined. Approximat-
ing 𝑈(𝑥) and 𝑉(𝑥) in terms of Legendre polynomials, we
obtain

𝑈 (𝑥) ≈ 𝐻
𝑇

𝑀
𝑃̂ (𝑥) , 𝑉 (𝑥) ≈ 𝑁

𝑇

𝑀
𝑃̂ (𝑥) . (18)

Using Lemma 1, we have the following approximations:
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𝑇

𝑀
𝐺
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𝑃̂ (𝑥) .

(19)

Using (18) and (19) in the coupled system (17), we obtain the
following system of algebraic equations

𝐻
𝑇

𝑀
𝑃̂ (𝑥) + 𝜆

11
𝐻
𝑇

𝑀
𝐺
11
𝑃̂ (𝑥) + 𝜆

12
𝑁
𝑇

𝑀
𝐺
12
𝑃̂ (𝑥) = 𝐹

1
𝑃̂ (𝑥) ,

𝑁
𝑇

𝑀
𝑃̂ (𝑥) + 𝜆

21
𝐻
𝑇

𝑀
𝐺
21
𝑃̂ (𝑥) + 𝜆

22
𝑁
𝑇

𝑀
𝐺
22
𝑃̂ (𝑥) = 𝐹

2
𝑃̂ (𝑥) ,

(20)

which can be written as

(

𝐻
𝑇

𝑀
𝑃̂ (𝑥)

𝑁
𝑇

𝑀
𝑃̂ (𝑥)

) + (

𝜆
11
𝐻
𝑇

𝑀
𝐺
11
𝑃̂ (𝑥)

𝜆
22
𝑁
𝑇

𝑀
𝐺
22
𝑃̂ (𝑥)

)

+ (

𝜆
12
𝑁
𝑇

𝑀
𝐺
12
𝑃̂ (𝑥)

𝜆
21
𝐻
𝑇

𝑀
𝐺
21
𝑃̂ (𝑥)

) = (

𝐹
1
𝑃̂ (𝑥)

𝐹
2
𝑃̂ (𝑥)

) .

(21)

The transpose of the above system is given by

(𝐻
𝑇

𝑀
𝑃̂ (𝑥) 𝑁

𝑇

𝑀
𝑃̂ (𝑥)) + (𝜆

11
𝐻
𝑇

𝑀
𝐺
11
𝑃̂ (𝑥) 𝜆

22
𝑁
𝑇

𝑀
𝐺
22
𝑃̂ (𝑥))

+ (𝜆
12
𝑁
𝑇

𝑀
𝐺
12
𝑃̂ (𝑥) 𝜆

21
𝐻
𝑇

𝑀
𝐺
21
𝑃̂ (𝑥))

= (𝐹
1
𝑃̂ (𝑥) 𝐹

2
𝑃̂ (𝑥))

(22)

which can further be written as

(𝐻
𝑇

𝑀
𝑁
𝑇

𝑀
)𝐴 + (𝐻

𝑇

𝑀
𝑁
𝑇

𝑀
) (
𝜆
11
𝐺
11

0

0 𝜆
22
𝐺
22

)𝐴

+ (𝐻
𝑇

𝑀
𝑁
𝑇

𝑀
) (

0 𝜆
21
𝐺
21

𝜆
12
𝐺
12

0
)𝐴 = (𝐹1 𝐹2) 𝐴,

(23)

where

𝐴 = (
𝑃̂ (𝑥) 0

0 𝑃̂ (𝑥)
) . (24)

Hence it follows that

(𝐻
𝑇

𝑀
𝑁
𝑇

𝑀
) + (𝐻

𝑇

𝑀
𝑁
𝑇

𝑀
) (
𝜆
11
𝐺
11
𝜆
21
𝐺
21

𝜆
12
𝐺
12
𝜆
22
𝐺
22

)

− (𝐹1 𝐹2) = 0,

(25)

which is a generalized Sylvester type equation and can easily
be solved for the unknown𝐻

𝑀
and𝑁

𝑀
by any computational

software.

4. Illustrative Examples

Example 1. Consider the following system of Fredholm inte-
gral equation:

𝑈 (𝑥) −
1

3
∫

1

0

(𝑥 + 𝑡)𝑈 (𝑡) 𝑑𝑡 −
1

3
∫

1

0

(𝑥 + 𝑡) 𝑉 (𝑡) 𝑑𝑡

=
𝑥

18
+
17

36
,

𝑉 (𝑥) − ∫

1

0

(𝑥𝑡) 𝑈 (𝑡) 𝑑𝑡 − ∫

1

0

(𝑥𝑡) 𝑉 (𝑡) 𝑑𝑡

= 𝑥
2
−
19

12
𝑥 + 1.

(26)

The exact solutions of the system are𝑈(𝑥) = 1+𝑥 and𝑉(𝑥) =
𝑥
2.The solutions (𝑈(𝑥),𝑉(𝑥)) obtained via our technique for
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1.9
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x

Approximate U(x) 
Approximate V(x) 

Exact U(x) 
Exact V(x) 

Figure 1: Comparison between the exact solutions and the solutions
obtained via the new method for𝑀 = 3. Dots represent the exact
solution and the approximate solutions are represented by curved
lines.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

x

Exact U(x)

Exact V(x)

Approximate U(x) at M = 2

Approximate V(x) at M = 2

Approximate V(x) at M = 3

Approximate V(x) at M = 3

Figure 2: Comparing exact solutions with the solutions obtained by
our method at different values of𝑀.

𝑀 = 3 (small enough) are compared with the exact solutions
of the problem in Figure 1, where dots represent the exact
solutions and the curves are for the solutions obtained via
the new method. From Figure 1, it follows that our solutions
matchs very well with the exact solution of the problem
even for small value𝑀, which shows the effectiveness of our
technique.

Example 2. For comparison purposes, consider the following
coupled system of Fredholm integral equations:

𝑈 (𝑥) + ∫

1

0

𝑒
(𝑥−𝑡)

𝑈 (𝑡) 𝑑𝑡 + ∫

1

0

𝑒
(𝑥𝑡+2𝑡)

𝑉 (𝑡) 𝑑𝑡

= 2𝑒
𝑥
+

1

(𝑥 + 1)
(𝑒
(𝑥+1)

− 1) ,
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Figure 3: Error analysis in 𝑈(𝑥) and 𝑉(𝑥) for𝑀 = 5.

𝑉 (𝑥) + ∫

1

0

𝑒
(𝑥𝑡)
𝑈 (𝑡) 𝑑𝑡 + ∫

1

0

𝑒
(𝑥+𝑡)

𝑉 (𝑡) 𝑑𝑡

= 𝑒
𝑥
+ 𝑒
−𝑥
+

1

(𝑥 + 1)
(𝑒
(𝑥+1)

− 1) .

(27)

The exact solutions of the system are 𝑈(𝑥) = 𝑒𝑥 and 𝑉(𝑥) =
𝑒
−𝑥. We obtain the approximate solutions of the system for
different values of𝑀 and compare the results with the exact
solutions of the system. For 𝑀 = 2 and 𝑀 = 3, the com-
parison is shown in Figure 2, where dots represent the exact
solutions of the system and doted curves (red and yellow)
represent the approximate solution (𝑈(𝑥) and𝑉(𝑥)) obtained
via our technique for𝑀 = 2 while Blue and orange dots rep-
resent the approximate solutions (𝑈(𝑥) and 𝑉(𝑥)) obtained
via our technique for𝑀 = 3. It is clear that the approximate
solutions approach rapidly the exact solutions as the values of
𝑀 increase. It also shows that the approximate solutions are
very close to the exact ones for 𝑀 = 3. For example, error
of approximation in both 𝑈(𝑥) (red doted curve) and 𝑉(𝑥)
(blue doted curve) is less than 10−6 for𝑀 = 5 as shown in
Figure 3, which is much more acceptable number and dem-
onstrates high accuracy of the new technique. Further, we
compare our results with some other available results in
the literature. We compare the absolute errors (red line)
with the absolute error obtained in [19] using Taylor series
approximation and also with absolute error obtained in [16]
using numerical solution with block pulses. The results are
shown in Figures 4 and 5. From these analyses, it is clear
that the absolute error in our method even for small value
of𝑀 = 4 is much smaller than those obtained in [16, 19] even
for much larger values of 𝑚 such as 𝑚 = 16, 32. It is a clear
indication that the new techniques provide highly accurate
solutions as compared toTaylor series approximationmethod
and block pulse method.
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Figure 4: Comparing the error estimates in 𝑈(𝑥) by our method
with error found with Taylor series approximation method (purple
dots) and block pulse method (green and blue dots).
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Figure 5: Comparing the error estimates in 𝑉(𝑥) by our method
with error found with taylor series approximation method (green
dots) and block pulse method (orange and purple dots).
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