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Forecasting activities play an important role in our daily life. In recent years, fuzzy time series (FTS) methods were developed to
deal with forecasting problems. FTS attracted researchers because of its ability to predict the future values in some critical situations
where most standard forecasting models are doubtfully applicable or produce bad fittings. However, some critical issues in FTS are
still open; these issues are often subjective and affect the accuracy of forecasting. In this paper, we focus on improving the accuracy
of FTS forecasting methods.The newmethod integrates the fuzzy clustering and genetic algorithm with FTS to reduce subjectivity
and improve its accuracy. In the new method, the genetic algorithm is responsible for selecting the proper model. Also, the fuzzy
clustering algorithm is responsible for fuzzifying the historical data, based on its membership degrees to each cluster, and using
these memberships to defuzzify the results. This method provides better forecasting accuracy when compared with other extant
researches.

1. Introduction

Time series are widely observed in many aspects of our lives;
therefore, the prediction of future values based on the past
and present information is very useful. In practice, there are
several emergent domains that require dealing with short
multivariate time series. As a consequence, the prediction of
such time series arises in many situations. There are many
existing techniques that are well proven in forecasting with
multivariate time series data, but they put constraints on the
minimum number of observations and require distribution
assumptions to be made regarding the observed time series.

Fuzzy time series (FTS)models have become increasingly
popular in recent years because of their ability to deal with
time series data without the need for validating any theoret-
ical assumptions. However, how to select the proper model,
how to partition the universe of discourse and determine
effective lengths of intervals objectively to fuzzify the numeri-
cal data, and how to defuzzify the results are still open critical
issues. These issues are very important and affect the model
accuracy. The paper probes into these three questions in the
modeling of FTS. The new method incorporates the fuzzy

clustering and genetic algorithms (GA) with FTS to reduce
its subjectivity and improve its accuracy.More specifically, the
new method uses the integer genetic algorithm to search for
the optimal model that fits the available data. (In this paper,
to solve integer optimization problems, we used the MI-
LXPM algorithm which is a suitably modified and extended
version of the real coded genetic algorithm, LXPM. In MI-
LXPM, a tournament selection procedure, Laplace crossover,
and power mutation are modified and extended for integer
decision variables. Moreover, a special truncation procedure
for satisfaction of integer restriction on decision variables and
a “parameter free” penalty approach for constraint handling
are used in MI-LXPM algorithm. More details of these
operators are defined in [1].) In addition, fuzzy clustering
is used to partition the universe of discourse objectively.
Furthermore, the method employs clustering centers and the
observations’ fuzzy memberships to defuzzify the results,
instead of the centers of each interval, which are used in
numerous existing models. The empirical results show that
the newmodel is able to forecast with high accuracymeasures
than the counterpart of existing models.
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GA was used before in the literature of fuzzy time series.
For example, Chen and Chung [2] use GA to tune up the
length of each interval in the universe of discourse for one
factor (variable), Lee et al. [3] use genetic algorithms to
adjust the length of each interval in the universe of discourse
for two factors, Kang [4] uses GA to obtain the optimal
fuzzy membership function, while Egrioglu [5] uses genetic
algorithm for finding the elements of fuzzy relation matrix.

Many authors applied fuzzy clustering in the fuzzification
process. For example, Cheng et al. [6], Li et al. [7], Egrioglu
[5], and Yolcu [8] used fuzzy c-means for the fuzzification
of time series. While Lie et al. and Egrioglu applied their
methods in univariate time series, Cheng et al. applied their
method in both univariate and multivariate time series.

The remainder of this paper is organized as follows.
Section 2 describes in brief the concept of FTS and itsmodels.
Section 3 presents the new FTS method; it begins with a
method overview.Then the details of each step of the newFTS
forecasting model are described. In Section 4, the method
is evaluated by comparing its forecasts with those derived
fromother related FTSmethods based on an example. Finally,
Section 5 summarizes the main conclusions.

2. The Basic Concepts of Fuzzy Time
Series and Its Models

Fuzzy set theory provides a powerful framework to cope
with vague or ambiguous problems and can express lin-
guistic values and human subjective judgments of natural
language. In 1993, Song and Chissom [9, 10] successfully
employed the concept of fuzzy sets presented by Zadeh [11]
and the application of fuzzy logic to approximate reasoning
presented by Mamdani [12] to develop the foundation of
FTS forecasting. Initially, FTS was proposed to deal with
forecasting problems where the historical data are linguistic
values. But recently FTS models have become increasingly
popular because of their ability to deal with quantitative time
series data with limited or even no theoretical assumptions in
contrast with conventional time series models. The main dif-
ference between a traditional time series and FTS is the values
of observations. In a traditional time series, the observations
are represented by crisp numerical values. However, in a FTS,
the values of observations are represented by fuzzy sets. The
basic definitions of FTS could be presented as follows [10].
Let

R: the set of all real values

𝑌(𝑡): the universe of discourse, 𝑡 = . . . , 0, 1, 2, . . .,

𝐹(𝑡): fuzzy time series, 𝑡 = . . . , 0, 1, 2, . . .,

𝑓
𝑖
(𝑡): fuzzy set, 𝑖 = 1, 2, . . .,

𝑅(𝑡, 𝑡−1): the fuzzy relation between𝐹(𝑡) and𝐹(𝑡−1).

FTS. Let 𝑌(𝑡), (𝑡 = . . . , 0, 1, 2, . . .), a subset of R, be the
universe of discourse on which fuzzy sets 𝑓

𝑖
(𝑡), (𝑖 = 1, 2, . . .)

are defined and 𝐹(𝑡) is the collection of 𝑓
𝑖
(𝑡), (𝑖 = 1, 2, . . .).

Then 𝐹(𝑡) is called a FTS on 𝑌(𝑡), (𝑡 = . . . , 0, 1, 2, . . .).

𝐹(𝑡) can be understood as a linguistic variable and
𝑓
𝑖
(𝑡) (𝑖 = 1, 2, . . .) as the possible linguistic values of 𝐹(𝑡).

Because at different times, the values of 𝐹(𝑡) can be different,
𝐹(𝑡) is a function of time 𝑡. Also, since the universes of
discourse can be different at different times, 𝑌(𝑡) is used for
the universe of discourse at time 𝑡.

The𝑚th OrderModel. Suppose𝐹(𝑡) is caused by𝐹(𝑡−1), 𝐹(𝑡−
2), . . ., and𝐹(𝑡−𝑚) (𝑚 ≥ 1) simultaneously.This relation can
be expressed as the following fuzzy relation equation:

𝐹 (𝑡) = (𝐹 (𝑡 − 1) × 𝐹 (𝑡 − 2) × ⋅ ⋅ ⋅ × 𝐹 (𝑡 − 𝑚))

∘ 𝑅
𝑚 (𝑡, 𝑡 − 𝑚) ,

(1)

where × is the Cartesian product and 𝑅
𝑚
(𝑡, 𝑡 − 𝑚) is defined

as the fuzzy relation between 𝐹(𝑡) and 𝐹(𝑡 − 1), 𝐹(𝑡 − 2), . . .,
and 𝐹(𝑡 − 𝑚). Then (1) is called the𝑚th order model of 𝐹(𝑡).
When𝑚 = 1, the model is called the first-order model.
Despite the large number of FTSmethods developed since the
introduction of the subject by Song and Chissom [9, 10, 16],
the main steps in most of them are similar to the first method
[9], which could be summarized as follows:

(1) defining and partitioning the universe of discourse,
defining fuzzy sets and fuzzifying time series,

(2) establishing fuzzy logical rules,
(3) grouping the fuzzy logical rules,
(4) calculating the forecasted fuzzy sets,
(5) defuzzifying the forecasted results.

Most of the work done in FTS employs one variable to build
a fuzzy time-series model, that is, univariate model. Recently,
FTS models have employed multiple variables in forecasting
processes to deal with more complex forecasting problems,
that is, multivariate model [17, 18]. It is important to note
that the term “multivariate” in most FTS literature is limited
to the prediction of one variable of interest, taking into
consideration the multiple variables that could have effects
on it, into the prediction process. To forecast some or all of
the other variables, the same process has to be individually
repeated for each variable. In this paper, we adopt the same
understanding to deal with multivariate fuzzy time series
data.

3. The New Method

In this section, we present the new forecasting method for
fuzzy time series. Section 3.1 provides an overview of the new
method. Section 3.2 presents the notations and definitions.
Finally, the detailed description of the new method is given
in Section 3.3.

3.1. Method Overview. Figure 1 summarizes the structure of
the new method in the following steps.

(1) Set the upper bound and lower bound for the model
parameters, the probability of crossover (𝑃

𝑐
), and

probability of mutation (𝑃
𝑚
). Also set the stopping
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Figure 1: Flowchart for the suggested method.

criteria (the algorithm stops if the weighted average
relative change in the best fitness function value over
generations is less than or equal to tolerance (TolFun)
or a prespecified maximum number of generations is
reached [19]), maximum number of generations, and
fitness function tolerance (TolFun).

(2) With the language of GA, themethod begins with cre-
ating a random initial population of chromosomes.
Each chromosome suggests one possible model and
consists of number of genes that is equal to themodel’s
parameters and the values which specify that model.

(3) Make a mating pool by applying the tournament
selection procedure on initial (old) population [1].

(4) Applying FTS procedure which is conducted for each
chromosome in the mating pool, this procedure can
be briefed as follows.

(i) Fuzzification: applying fuzzy clustering to par-
tition each time series according to the specific
number of clusters (as specified in the chromo-
some), ranking cluster centers of each variable,
and then fuzzifying the historical data.

(ii) Building fuzzy rules: building fuzzy relations
according to specific order and number of
variables (as specified in the chromosome) in
addition to assigning membership degree of
each data point to each cluster.

(iii) Defuzzification: defuzzifying the forecasted out-
puts using the membership degrees and the
clusters centers.

(iv) Calculate the penalty function which includes
a term for infeasibility. If the member (chro-
mosome) is feasible, the penalty function will
be the fitness function; otherwise, it will be
the maximum fitness function among feasible
members of the population, plus a sum of the
constraint violations of the (infeasible) point.

(5) Apply Laplace crossover and power mutation to all
individuals in mating pool, with 𝑃

𝑐
and 𝑃

𝑚
to make

new population.
(6) Replace the current population with the offsprings to

form the next generation.
(7) Check the stopping criteria. If satisfied stop; else go to
(2) [19].

After this overview of the new method, we will go through
the method in more detail.

3.2. Notations and Definitions. Assume that we have 𝑃 time
series (or variables) 𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑃
; and without loss of

generality, assume that the first time series 𝑥
1
is themain time

series that we want to forecast and the rest of 𝑃 time series,
that is, 𝑥

𝑝
, 𝑝 = 2, . . . , 𝑃, are the auxiliary time series.

The following notations and definitions are used through-
out the formulation of the new method: 𝑝 denotes the
variable’s (time series) number; 𝑝 = 1, . . . , 𝑃, where 𝑃 is the
total number of variables. 𝑡 denotes the time point number;
𝑡 = 1, . . . , 𝑇, where 𝑇 is the total number of time points.
𝑥
𝑡𝑝

denotes the actual value of the variable 𝑝 at time 𝑡;
𝑡 = 1, . . . , 𝑇; 𝑝 = 1, . . . , 𝑃. 𝑥󸀠

𝑝
= (𝑥
1𝑝
, 𝑥
2𝑝
, . . . , 𝑥

𝑇𝑝
); 𝑝 =

1, . . . , 𝑃. 𝑥
𝑡𝑝
denotes the forecasted value of the variable 𝑝 at

time 𝑡; 𝑡 = 1, . . . , 𝑇; 𝑝 = 1, . . . , 𝑃. 𝑥󸀠
𝑝
= (𝑥
1𝑝
, 𝑥
2𝑝
, . . . , 𝑥

𝑇𝑝
);

𝑝 = 1, . . . , 𝑃. 𝑘 denotes the cluster’s number; 𝑘 = 1, . . . , 𝐾,
where𝐾 is the total number of clusters.

Generally speaking, the number of clusters 𝐾 could take
any value from 1 to 𝑇. However, in the new method a
number of clusters lower than 3 is considered too small and
a number of clusters higher than (𝑇/2) is considered too
large. If the number of clusters is too small, there will be
no fluctuations in FTS. On the other hand, if the number of
clusters is too large, the meaning of FTS will be diminished
and it creates computational complexities [20], although the
higher number of intervals may contribute to reaching better
forecasting accuracy.

In the newmethodwe assume that𝐾 takes values ranging
from 3 to 𝑇/2; that is,

3 ≤ 𝐾 ≤
𝑇

2
. (2)



4 Advances in Fuzzy Systems

Gene

Chromosome

Number of 
clusters

Model 
order

The auxiliary variables

K O Ix2
Ix3

Ix4
· · · Ix𝑃

Figure 2:The component of chromosome in the proposed method.

𝑂 denotes the model order, which indicates how many
previous time points we use to predict the present time. It
takes values ranging from 1 to (𝑇 − 1). Generally, lower and
upper limits of the model order are optional. However, it is
common in the literature that the model order takes values
between 1 and 5. In the new method, we consider that the
upper limit of the model order is (𝑇/3). That is,

1 ≤ 𝑂 ≤
𝑇

3
. (3)

𝐼
𝑥𝑝
∈ [0, 1]; 𝑝 = 2, . . . , 𝑃: the indicator variables, each one

takes the value 0 or 1 to indicate the absence or presence of
the auxiliary variable in the model; that is,

𝐼
𝑥𝑝
=

{{{{

{{{{

{

0, if the auxiliary variable
𝑥
𝑝
is excluded from the model

1, if the auxiliary variable
𝑥
𝑝
is included in the model.

𝑝 = 2, . . . , 𝑃

(4)

3.3. Description of the New Method. In this section, each
step of the new method is further illustrated and detailed as
follows.

Step 1 (initialization). The first step is to create an initial
population of possible models or chromosomes. For each
model, three main factors are of concern:

(1) the number of clusters or fuzzy sets whichwill be used
to fuzzify the historical data;

(2) the order of the model, whether first order or high
order;

(3) the selected auxiliary variables to be entered in the
forecasting model.

These factors are considered as the parameters of the model,
so each chromosome the GA created represents one possible
model. Accordingly, the number of genes in each chromo-
some is set equal to the number of auxiliary variables (𝑃 − 1)
plus 2. That is, each chromosome consists of (𝑃 + 1) genes.
Figure 2 illustrates the model parameter as a chromosome.

The population of chromosomes is generally chosen at
random. There are no hard rules for determining the size of

the population. Generally, the size is defined to range between
20 and 100. Large populations guarantee greater diversity and
may producemore robust solutions. Following this, the initial
population is used to make a mating pool by applying the
tournament selection procedure [19]; for more details, see [1].

Step 2. Applying the fuzzy time series procedure for each
chromosome in the mating pool as follows.

(1) Each time series 𝑥
𝑝
, 𝑝 = 1, 2, . . . , 𝑃, in the possible

model at hand is partitioned using fuzzy c-means into 𝑘
clusters (for more details about fuzzy c-means, see [21]).
When fuzzy c-means algorithm is applied, the clusters’
centers for each time series, denoted by 𝑐

𝑘𝑝
, 𝑘 = 1, . . . , 𝐾,

and 𝑝 = 1, . . . , 𝑃, are calculated iteratively. After the clusters’
centers are fixed, the memberships of each time point with
respect to these centers, denoted by 𝜇

𝑡𝑘𝑝
, 𝑡 = 1, . . . , 𝑇, 𝑘 =

1, . . . , 𝐾, and 𝑝 = 1, . . . , 𝑃, are computed. Then, the clusters
of each variable are ranked ascendingly according to their
centers’ values, and these ranks are used as linguistic values
(fuzzy sets) 𝐴

𝑘𝑝
, 𝑘 = 1, . . . , 𝐾, and 𝑝 = 1, . . . , 𝑃 such that

𝐴
1𝑝
< 𝐴
2𝑝
< ⋅ ⋅ ⋅ < 𝐴

𝐾𝑝
and 𝑝 = 1, . . . , 𝑃.

(2) Fuzzify each time series by replacing each value with
the equivalent linguistic value to obtain the FTS, 𝐹(𝑡) that
is, each crisp value is mapped into a fuzzy set where its
membership degree has maximum value.

(3) Given that the model order 𝑂 and the indicator
variables 𝐼

𝑥
’s are as specified in the randomly selected

chromosome at hand, the fuzzy rule is established as follows:

𝑓
1 (𝑡 − 𝑜) , . . . , 𝑓1 (𝑡 − 1) , 𝑓2 (𝑡 − 𝑜) × 𝐼𝑥2

, . . . , 𝑓
2 (𝑡 − 1)

× 𝐼
𝑥2
, . . . , 𝑓

𝑃 (𝑡 − 𝑜) × 𝐼𝑥𝑃
, . . . , 𝑓

𝑃 (𝑡 − 1)

× 𝐼
𝑥𝑃
󳨀→ [𝜇

𝑓1
(𝑡)] ,

(5)

where𝑓
𝑝
(𝑡) is the value of the FTS𝐹

𝑝
at time 𝑡,𝑝 = 1, 2, . . . , 𝑃,

and 𝜇
𝑓1
(𝑡) = (𝜇𝑡11 𝜇𝑡21 . . . 𝜇𝑡𝐾1) is the row vector of

membership degrees of the main variable at time 𝑡 to the 𝑘
clusters; 𝑡 = 1, 2, . . . , 𝑇.

For example, assume that we have two fuzzy time series
𝐹
1
(the main variable) and 𝐹

2
(the auxiliary variable) both

clustered and fuzzified into four fuzzy sets (i.e., 𝐾 = 4) and
assume also that the model is of order 2 (i.e., 𝑂 = 2). Let
the current states of the main variable 𝐹

1
be 𝑓
1
(𝑡) = 𝐴

31
and

𝑓
1
(𝑡 + 1) = 𝐴

41
, let its next state be 𝑓

2
(𝑡 + 2) = 𝐴

12
, and let

the next state vector of membership degrees to the four fuzzy
sets (i.e., 𝜇

𝑓1(𝑡+2)
) be equal to [0.006 0.017 0.153 0.823].

Similarly, let the current states of the auxiliary variable
𝐹
2
be 𝑓
2
(𝑡) = 𝐴

42
and 𝑓

2
(𝑡 + 1) = 𝐴

32
. Then, under these

assumptions, the rule can be induced as follows:

[ 0.006 0.017 0.153 0.823]A31 A41, A42 A32,

Now moving one time point ahead, let the current states
of 𝐹
1
become 𝑓

1
(𝑡 + 1) = 𝐴

41
and 𝑓

1
(𝑡 + 2) = 𝐴

41
, let the

next state be 𝑓
1
(𝑡 + 3) = 𝐴

41
, and let its vector of member-

ship degrees 𝜇
𝑓1(𝑡+3)

be equal to [0.185 0.756 0.042 0.018].
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And for the auxiliary variable𝐹
2
let𝑓
2
(𝑡+1) = 𝐴

32
,𝑓
2
(𝑡+2) =

𝐴
12
. Then, the corresponding rule can be stated as

[ 0.185 0.756 0.042 0.018]A41 A41, A32 A12,

It is important to notice that, for each of the above
two rules, the vector of membership degrees in the right-
hand side is the main variable’s next state row vector of
memberships; that is, it has no relation with the vectors of
memberships of all of the current states appearing in the left
side of the rule whether they belong to the main variable or
to the auxiliary variable.
(4) Group all generated fuzzy logical rules that have the

same left-hand side. If this grouping process resulted in any
group with more than one relation, then the average vector
of all related membership vectors in this group is calculated.
The resulting groups will be denoted by 𝐺

𝑗
; 𝑗 = 1, 2, . . . , 𝐽,

𝐽 ≤ 𝑇 − 𝑜, where 𝐽 is the total number of groups with at
least one relation.The average membership vector 𝜇

𝐺𝑗1
: 𝑗
1
=

1, 2, . . . , 𝐽
1
and 𝐽
1
≤ 𝐽 where 𝐽

1
is the total number of groups

with at least two relations.
For example, assume that we have the following 3 rules

attributed to 3 different points of time:

[0.039 0.242 0.641 0.078]
[0.001 0.004 0.988 0.006]
[0.005 0.986 0.006 0.002]

A31 A13, A12 A12

A31 A13, A12 A12

A31 A13, A12 A12

These rules have similar left-hand sides (same fuzzified
classes of the current states) but different vectors of member-
ship degrees of the 3 next states (different right-hand sides).
Hence, by calculating the average vector of membership
degrees, we get the following final rule representing this
group:

A31 A31, A12 A12 [0.015 0.411 0.545 0.029]

(5) To calculate the forecasted output for each time point
𝑡, that is, to forecast𝑓

1
(𝑡+1), 𝑡 = 1, 2, . . . , 𝑇, we have tomatch

the current state of time point 𝑡with the left-hand sides of the
grouped constructed fuzzy rules. Three possibilities could be
faced.

(1) If the current state exists in one of the groups, say 𝐺
𝑗
,

then the forecasted output of year 𝑡+1, that is,𝑓
1
(𝑡+1),

is calculated as

𝜇
𝐺𝑗
∗ 𝐶
󸀠
= [𝜇𝑡11 𝜇𝑡21 ⋅ ⋅ ⋅ 𝜇𝑡𝐾1]

[
[
[
[

[

𝐶
11

𝐶
21

...
𝐶
𝐾1

]
]
]
]

]

, (6)

where 𝐶 = [𝐶
11
𝐶
21
⋅ ⋅ ⋅ 𝐶

𝐾1
] is the row vector of

clusters’ centers of the main variable.
(2) If there are no fuzzy relations with the same left-hand

side in the grouped constructed fuzzy rules whose
current state is 𝐴

𝑘
which is the case if one or more of

the time series points is missing or for the first future

time point in the time series, then we try to reduce
the order of the model gradually to reach the same
left-hand side; then we apply case (1).

(3) If there are no fuzzy relations in the grouped con-
structed fuzzy logical rules with any order whose
current state is𝐴

𝑘
, then the forecasted output of time

point 𝑡 + 1 will be taken as the center of the cluster 𝑘.

(6) Calculate the fitness value that reflects the prediction
accuracy of the main variable under the specified model.
Theoretically speaking, the search is for the propermodel that

(1) minimizes a certain measure of solution error;

(2) maximizes the separation between the clusters centers
of the main variable.

Hence, a fitness function composed of two measures is
proposed in this method to compare the possible models
performance or prediction accuracy: the symmetric mean
absolute percentage error (sMAPE) for measuring the solu-
tion error and the minimum absolute distance for measuring
the cluster separation.

sMAPE can be defined as follows [22]:

sMAPE = 1
𝑇

𝑇

∑

𝑡=1

󵄨󵄨󵄨󵄨𝑥𝑡 − 𝑥𝑡
󵄨󵄨󵄨󵄨

(
󵄨󵄨󵄨󵄨𝑥𝑡
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑥𝑡
󵄨󵄨󵄨󵄨) /2

× 100, (7)

where 𝑥
𝑡
is the actual value at time point 𝑡, 𝑥

𝑡
is the forecasted

value at time point 𝑡, and 𝑇 is the number of time points
used in the calculation. The formula above provides a result
between 0% and 200%, which is considered an advantage to
this measure.The closer the value of sMAPE to 0 is, the better
the forecasting accuracy is.

sMAPE is well known in FTS literature as a measurement
of solution error as it has an independent scale and it is less
influenced by extreme values. It also corrects the computation
asymmetry of the percentage error [22]. Hence, the fitness
function in the new method depends mainly on the sMAPE
as a measure of solution error; to improve the accuracy of the
results, sMAPE has to be minimized.

The minimum absolute distance between the centers
of clusters is chosen to measure the overlapping between
clusters. The minimum absolute distance can be defined as
follows:

𝑑min = min
𝑘,𝑚=1,...,𝐾

𝑘 ̸=𝑚

󵄨󵄨󵄨󵄨𝐶𝑘1 − 𝐶𝑚1
󵄨󵄨󵄨󵄨 , (8)

where 𝑘 and 𝑚 are any two clusters for the main variable.
Conventionally, 𝑑min can take any positive value.

Now, we have a two-objective optimization problem.
Since the parameters of the model take only integer values,
it is not easy to find software that can solve multiobjective
integer genetic algorithm. To overcome this deficiency, the
weighted sum of objectives method [23] is used.This method
is the simplest approach and is probably themost widely used
one.
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Table 1: Yearly car accident causalities in Belgium from 1974 to 2004.

Year Killed Mortally wounded Died within 30 days Severely wounded Light casualties
1974 1,574 819 2,393 16,506 44,640
1975 1,460 701 2,161 15,792 42,423
1976 1,536 728 2,264 16,057 44,227
1977 1,597 701 2,298 15,830 44,995
1978 1,644 728 2,372 16,645 44,797
1979 1,572 544 2,116 15,750 42,346
1980 1,616 557 2,173 15,915 42,670
1981 1,564 454 2,018 15,091 41,915
1982 1,464 406 1,870 14,601 40,936
1983 1,479 412 1,891 14,864 42,023
1984 1,369 363 1,732 14,471 42,456
1985 1,308 352 1,660 13,287 39,879
1986 1,456 330 1,786 13,764 42,965
1987 1,390 380 1,770 13,809 44,090
1988 1,432 339 1,771 14,029 45,956
1989 1,488 312 1,800 14,515 46,667
1990 1,574 190 1,764 13,864 46,818
1991 1,471 209 1,680 12,965 43,578
1992 1,380 173 1,553 12,113 41,772
1993 1,346 171 1,517 11,680 41,736
1994 1,415 149 1,564 11,160 40,294
1995 1,228 109 1,337 10,267 39,140
1996 1,122 115 1,237 9,123 38,390
1997 1,150 105 1,255 9,229 39,594
1998 1,224 121 1,345 8,784 41,038
1999 1,173 126 1,299 8,461 41,841
2000 1,253 103 1,356 7,990 39,719
2001 1,288 90 1,378 7,319 38,747
2002 1,145 118 1,263 6,834 39,522
2003 1,035 101 1,136 6,898 42,445
2004 953 141 1,094 5,949 41,627
Source: [13].

The weighted sum method [23] scalarizes a set of objec-
tives into a single objective by premultiplying each objective
by a user-supplied weight. There is one critical question that
arises here: what values of the weights must one use? The
answer depends on the importance of each objective and the
scaling of them.

The scale of the first objective (sMAPE) ranges from 0 to
2, while the second objective can take any nonnegative value.
To guarantee that both objectives have the same scale, we
redefine the second objective as follows:

separation measure = 𝑑min
(
󵄨󵄨󵄨󵄨𝐶𝑘1
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐶𝑚1
󵄨󵄨󵄨󵄨) /2
. (9)

Equation (9) is considered as a proportional absolute distance
between the centers of two clusters 𝐶

𝑘1
and 𝐶

𝑚1
relative to

their average.

Accordingly, the overall fitness function can be defined
as a linear combination of the two objectives (7) and (9) as
follows:

fitness function

= min[𝜆( 1
𝑇

𝑇

∑

𝑡=1

󵄨󵄨󵄨󵄨𝑥𝑡 − 𝑥𝑡
󵄨󵄨󵄨󵄨

(
󵄨󵄨󵄨󵄨𝑥𝑡
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝑥𝑡
󵄨󵄨󵄨󵄨 /2)
)

− (1 − 𝜆)
𝑑min

(
󵄨󵄨󵄨󵄨𝐶𝑘1
󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨𝐶𝑚1
󵄨󵄨󵄨󵄨 /2)
] ; 0 < 𝜆 < 1,

(10)

where 𝜆 is the weight (a simulation study is conducted
to determine suitable weights for the two objectives. The
simulation result shows that the best value for the weight 𝜆 is
0.9 because it gives lower sMAPE) and it takes any arbitrary
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Table 2:The comparison of the forecasting results between the new method and other methods for yearly car accident casualties in Belgium
from 1974 to 2004.

Years Actual killed Jilani and Burney
(2008) method 1

Jilani and Burney
(2008) method 2 Lee et al. (2007) Egrioglu et al.

(2009) The new method

1974 1574 — — — — —
1975 1460 — — — — —
1976 1536 — — — — —
1977 1597 1497 1497 1500 1600 1593
1978 1644 1497 1497 1500 1600 1616
1979 1572 1497 1497 1500 1600 1567
1980 1616 1598 1497 1500 1600 1621
1981 1564 1598 1497 1500 1600 1567
1982 1464 1498 1497 1500 1500 1458
1983 1479 1498 1497 1500 1500 1462
1984 1369 1398 1497 1500 1400 1353
1985 1308 1298 1396 1400 1300 1335
1986 1456 1498 1296 1300 1500 1458
1987 1390 1398 1497 1500 1400 1389
1988 1432 1398 1396 1400 1400 1452
1989 1488 1498 1396 1400 1500 1470
1990 1574 1598 1497 1500 1600 1567
1991 1471 1498 1497 1500 1500 1459
1992 1380 1398 1497 1500 1400 1370
1993 1346 1298 1396 1400 1300 1337
1994 1415 1398 1296 1300 1400 1435
1995 1228 1198 1396 1400 1200 1222
1996 1122 1098 1095 1100 1100 1169
1997 1150 1198 1196 1200 1200 1173
1998 1224 1198 1196 1200 1200 1215
1999 1173 1198 1196 1200 1200 1171
2000 1253 1298 1296 1300 1300 1273
2001 1288 1298 1296 1300 1300 1325
2002 1145 1098 1095 1100 1100 1173
2003 1035 997 995 1000 1000 1024
2004 953 997 995 1000 1000 1010
MSE — 2188 7333 7285 978 445
MAPE — 2.72 5.25 5.24 2.17 1.28
Source: except for the last column and the last two rows the table is replicated from [13].

value between 0 and 1. 𝑑min is the shortest distance between
cluster centers.

The formula in (10) is considered as a tradeoff between
the prediction accuracy and the reasonability of the clustering
results.

Step 3 (selection and mutation for all chromosomes in the
mating pool). To produce the chromosomes for the next
generation, genetic algorithm creates three types of children
for the next generation:

(i) selection of elite children which are the individuals
in the current generation with the best fitness values.

These individuals automatically survive to the next
generation.

(ii) Crossover children, created by combining the vectors
of a pair of parents.

(iii) Mutation children, created by introducing random
changes, or mutations, to a single parent.

Step 4. Replace the current population with the offsprings to
form the next generation.

Step 5. If the end conditions are not satisfied, go to Step 2.
Otherwise, stop and retain the best solution in current
population.
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Table 3: Actual and forecasted values of the Alabama University enrollments.

Year Enrollment Kuo et al. (2009) [15] Egrioglu (2012) [5] Forecasted enrollment
1971 13055 — — —
1972 13563 — 13481 —
1973 13867 14000 13481 —
1974 14696 14000 14242 —
1975 15460 15500 15710 —
1976 15311 15500 15485 15401
1977 15603 16000 15936 15451
1978 15861 16000 15936 15756
1979 16807 16000 16838 16729
1980 16919 17500 17500 17448
1981 16388 16000 17500 16632
1982 15433 16000 16737 15397
1983 15497 15500 15485 15407
1984 15145 16000 15485 15417
1985 15163 16000 15710 15416
1986 15984 16000 15710 15989
987 16859 16000 16838 16729
1988 18150 17500 17500 17448
1989 18970 18500 19144 19073
1990 19328 19500 19144 19092
1991 19337 19500 19144 19087
1992 18876 18500 19144 18964
MSE∗ — 275539 265203 69492
MAPE∗ — 2.65 2.24 1.16
∗To have a valid comparison, MSE and MAPE are calculated for the same period (1976–1992).
Source: the 3 inner columns are taken from [15].

4. Experimental Results

In this section, we consider two examples, one for multivari-
ate time series and the other for univariate case. Predictions
that resulted from the new method are compared with
the well-known results reported in the literature by other
researchers. The forecast accuracy is compared by the mean
absolute percentage error (MAPE) and mean square error
(MSE). Suppose the actual value in time point 𝑡 is 𝑦

𝑡
, the

forecasted value in time point 𝑡 is 𝑦
𝑡
, 𝑇 is the total number

of time points used in calculation; then the MAPE and MSE
are computed by the following equation, respectively:

MAPE = 1
𝑇

𝑇

∑

𝑡=1

󵄨󵄨󵄨󵄨𝑦𝑡 − 𝑦𝑡
󵄨󵄨󵄨󵄨

𝑦
𝑡

, MSE = 1
𝑇

𝑇

∑

𝑡=1

(𝑦
𝑡
− 𝑦
𝑡
)
2
. (11)

4.1. The Multivariate Case. Table 1 shows the total number
of annual car accidents casualties in Belgium from 1974
to 2004 [13]. Here, the main time series is the number of
killed persons and the auxiliary time series are mortally
wounded and died within 30 days, severely wounded, and
light casualties.

To implement the newmethod,Themixed integer genetic
algorithm module in MATLAB package is used after making

slight modifications to cope with the nature of the FTS
problem. The solution steps of the new method are carried
out using a specially developed MATLAB code.

The best model selected by the new method, in the
language of Figure 2, is represented by the chromosome
(6 3 0 0 0 1). This means that the best model found is of
order three (second gene) with one auxiliary variable (last
gene); namely, the light casualties and a number of fuzzy
sets equal 6 (first gene). The other three auxiliary variables
are ruled out from the fitted model as their corresponding
indicator variables take the value 0 in the chromosome. The
trends of the actual values and the forecasted ones obtained
by the new method are shown in Figure 3.

As seen inTable 2, the newmethodhas the smallest values
for MSE and MAPE: 445 and 1.28, respectively; that is, the
new method outperforms the Jilani and Burney model [14]
and Egrioglu et al. model [13] which are superior to other
existingmethods in the literature in terms of themean square
error and the average forecasting error rate.

4.2. The Univariate Case. New method is applied on the
famous enrollment data in FTS literature (Table 3). The best
model according to the results of the new method is (5 5).
This means that the best model found is of order five and a
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Figure 3: The actual and forecasted values of killed persons.
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Figure 4: The actual and forecasted values of enrollments.

number of fuzzy sets equal 5. It should be noted that in the
univariate time series the chromosome genes reduce to two
as we have no auxiliary variables in this case. The trends of
the actual values and the forecasted ones obtained by the new
method are shown in Figure 4.

Comparison of the forecasting results is made between
the new method and two other recently published ones, the
Kuo et al. method [15] and the Egrioglu method [5]. Both
mentionedmethods considered the same enrollment data set
and proved being superior to other existing methods in the
literature in terms of the mean square error and the average
forecasting error rate. From Table 3, it can be seen that the
forecasting accuracy of the new method outperforms both
mentioned methods in terms of MSE and MAPE.

5. Conclusion

When dealing with short multivariate time series, it is
obvious that the assumptions of classical time series are not
satisfactory. This paper introduces a new fuzzy time series
method to deal with such cases.The newmethod drew on the
ability of FTS approaches to deal with time series datawithout
the need for checking any various theoretical assumptions. It
also integrates the fuzzy clustering with genetic algorithm to

improve the prediction accuracy for solving the multivariate
high order FTS.

In the new method, fuzzy clustering algorithm is respon-
sible for fuzzifying the historical data based on its member-
ship degrees to each cluster, then using these memberships
to defuzzify the results. Also, genetic algorithm is responsible
for selecting the proper model.Themethod is applied to time
series of the yearly car accident causalities in Belgium from
1974 to 2004 and to the famous university enrollment data
set. It provided forecasts with MSE and MAPE values that
are smaller than those obtained from the other existing fuzzy
time series methods.
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