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Selecting the most appropriate kernel function to extrapolate a load set is the paramount step in compiling load spectrum, as it
affects the results of nonparametric extrapolation largely. Aiming at this issue, this paper provides a new approach in selecting
kernel function for the nonparametric extrapolation. To solve the complexity and uncertainty of nonparametric extrapolation,
characteristics of four kernel functions and their effects on the results are explained in the “from-to” diagram obtained by rainflow
counting. Multicriteria decision-making (MCDM) is then applied to solve the selection problem of kernel function. To evaluate
the dispersion degrees of the mean and amplitude of a load set accurately, their range, standard deviation, and interquartile range
are selected as the evaluation criteria. The weight of each criterion, which represents the impact degree on the selection of the
kernel function, is calculated separately using the eigenvector and entropy method. The comprehensive weights are obtained by
applying the optimization theory and Jaynes’ maximum entropy principle. Finally, the importance of each criterion is discussed
according to their calculated comprehensive weights, and the selectionmethod for kernel functions is obtained, which is illustrated
by extrapolating the output torque of the power split device of hybrid electrical vehicles.

1. Introduction

Load extrapolation is a key issue in compiling a load spec-
trum, which attempts to obtain a full life load spectrum
from the limited load time histories, as shown in Figure 1.
Proper extrapolation can achieve an accurate estimation of
the overall load, particularly, the large loads that could not
be measured in a short test period. To compile a full life
load spectrum, load extrapolation has been applied in various
areas, such as wind turbines, tractors, and gliders. Peeringa
[1] estimated the extreme load of a wind turbine using para-
metric extrapolation, in which two different distribution
functions are selected to fit the test load. The safety factor
[2], a new extrapolation method, is applied in a wind tur-
bine, in which the subjectivity and empiricism of paramet-
ric extrapolation are avoided. Rodzewicz [3] predicted the

long-term loads of a glider accurately by reintegrating tested
data. To predict bridge life [4], load extrapolation is applied
to estimate the test load and calculate full life efficiently. Load
extrapolationmethods for fatigue life prediction are also used
in other large equipment, such aswheel loader [5] andmining
dump trucks [6]. However, the above extrapolation processes
also show the inherent complexity and uncertainty of load
extrapolation in load spectrum compiling.

In parametric extrapolation methods, the mean and
amplitude of loads are fitted by a distribution function. After
testing their correlation, the joint probability density function
(PDF) of loads can be calculated. However, subjective human
factors are produced when using distribution function to fit
the load data. Aiming to this issue, nonparametric estimation
methods [7] are applied in the extrapolation of the load
spectrum to eliminate the errors caused by subjective human
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Figure 1: Flowchart of different load extrapolation methods.

factors. Drebler et al. [8] proposed a nonparametric extrapo-
lation method and estimated the PDF of nonergodic loads in
vehicles by introducing the kernel function and applying the
adaptive bandwidth. Johannesson andThomas [9] proposed a
rainflow intensity algorithm to extrapolate the limit rainflow
matrix which is smoothed by kernel function based onMiner
theory. As nonparametric estimation is a method that esti-
mates the parameters of an unknown distributionwhich does
not rely on assumptions about the type of distribution, it can
avoid the subjectivity of parametric extrapolation. Therefore,
this paper proposes that nonparametric extrapolation should
be an appropriate method to compile the load spectrum for
loads of hybrid electrical vehicles (HEVs) [10].

However, nonparametric extrapolation results may vary
greatly due to the different selection of kernel functions.
Multicriteria decision-making (MCDM) technology may be
a good solution to the above issue, as it has been widely used
in evaluating multiple objectives [11]. The multi-property
decision-making and multiobjective decision-making of
MCDMplay important roles in the comprehensive evaluation
of objectives. Xiong et al. [12] achieved a scientific evaluation
of the ecological environment by applying the eigenvector
method of MCDM. Zhao et al. [13] evaluated air quality after
calculating the weight values of indicators using the entropy
method, which is commonly used to calculate objective
weight. In other areas, Cristóbal [14] usedMCDMtechnology
combined with analytic hierarchy process (AHP) to select a
renewable energy project. Kannan et al. [15] applied MCDM
technology to determine the best green suppliers in a green
supply chain.

In view of the superiority of MCDM in rendering objec-
tive judgment, MCDM technology is used to evaluate the
dispersion degree of the mean and amplitude of the load in
this paper. In order to select an appropriate kernel function
to extrapolate the test load, a new method for selection
problem of kernel functions in nonparametric extrapolation

is developed based on MCDM technology. First, the basic
principle of nonparametric extrapolation is introduced, and
then the characteristics and application conditions of four
kernel functions are analyzed. Meanwhile, three criteria to
evaluate the dispersion degree of the mean and amplitude
of loads are selected. Finally, the selection method of kernel
functions is obtained, and an example to illustrate the
availability of the proposed method is given.

2. Nonparametric Extrapolation Based on
Kernel Functions

2.1. Superiority of Nonparametric Extrapolation. Rainflow
counting method is an algorithm that maintains the consis-
tency between the counting results and the material stress-
strain hysteresis loops. Each element in the rainflow matrix
represents a stress-strain hysteresis loop. The parametric
method, which is usually required to count the mean and
amplitude of the load using rainflow counting method sep-
arately, will destroy the structure of the hysteresis loop. The
extreme obtained by parametric method is different from the
actual load largely sometime. Nonparametric extrapolation
can obtain the frequency of each cycle that may appear
in full life and ensure that each hysteresis loop is not
broken.Therefore, nonparametric extrapolation is suitable to
extrapolate HEV loads which do not show large fluctuation
generally, and it will avoid the big fitting error [16].

2.2. Application of Kernel Function. Kernel functions can
be applied to the nonparametric estimation method [17].
Meanwhile, the rules-of-thumb algorithm, which is used for
the bandwidth selection of kernel functions, can improve
the accuracy of the nonparametric estimation results. The
local likelihood method is also introduced to nonparametric
estimation [18], and this approach improved nonparametric
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estimation greatly. The specific algorithm of nonparametric
extrapolation is expressed as follows [8].

Suppose that 𝑌
𝑖
is the function value of data point 𝑥

𝑖
, 𝑖 =

1, 2, . . . , 𝑁, alongwith themeasurement error 𝜀
𝑖
, and then the

following equation is obtained:

𝑌
𝑖
= 𝑓 (𝑥

𝑖
) + 𝜀
𝑖
. (1)

If 𝑓(𝑥) is a continuous smooth function, its estimation
function 𝑓(𝑥) in neighborhood 𝑢(𝑥) of any point 𝑥 can be
expressed as

𝑓(𝑥) =
1

𝑁
𝑥

∑

𝑖:𝑥𝑖∈𝑢(𝑥)

𝑌
𝑖
, (2)

where 𝑁
𝑥
is the cardinality of the set {𝑖 : 𝑥

𝑖
∈ 𝑢(𝑥)}. Taking

the effect of the different neighborhood 𝑥
𝑖
on 𝑥 into account,

the estimation function 𝑓(𝑥) can be weighted as

𝑓(𝑥) =
1

𝑁

𝑁

∑

𝑖=1

𝑤
𝑖 (𝑥) 𝑌𝑖, (3)

where

𝑁

∑

𝑖=1

𝑤
𝑖 (𝑥) = 1. (4)

Then, a kernel function 𝑘(𝑢) is chosen. After selecting the
appropriate bandwidth ℎ, the kernel function can be scaled
as follows:

𝑘
ℎ (𝑢) =

1

ℎ
𝑘 (
𝑢

ℎ
) (5)

and transferred length 𝜂:

𝑘
𝜂

ℎ
(𝑢) =

1

ℎ
𝑘 (
𝑢

ℎ
− 𝜂) . (6)

Then, the normalized weighting function 𝑤
𝑖
(𝑥; ℎ) can be

written as

𝑤
𝑖 (𝑥; ℎ) =

𝑘
𝑥𝑖

ℎ
(𝑥)

(1/𝑁)∑
𝑁

𝑖=1
𝑘
𝑥𝑖
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. (7)

By inserting (7) into (3), the estimation function can be esti-
mated as follows:

𝑓(𝑥; ℎ) =
(1/𝑁)∑

𝑁

𝑖=1
𝑘
𝑥𝑖

ℎ
(𝑥) 𝑌𝑖
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𝑖=1
𝑘
𝑥𝑖

ℎ
(𝑥)

. (8)

Using the above method, full life load could be estimated.
Common kernel functions contain Gaussian and Epane-

chnikov kernels. They are divided into one-dimensional and
two-dimensional, and their one-dimensional expressions are:

Gaussian kernel function:

𝑘 (𝑢) =
1

√2𝜋

𝑒
−(1/2)𝑢

2

. (9)
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Figure 3: “From-to” diagram of rainflow matrix.

Epanechnikov kernel function:

𝑘 (𝑢) =

{

{

{

3

4
(1 − 𝑢

2
) , |𝑢| ≤ 1,

0, 𝑢 < −1, 𝑢 > 1.

(10)

The density estimation principle of two-dimensional
kernel function is the same as the one-dimension, and the
level sets of the Gaussian will always be ellipses. For illus-
trative purposes, the density estimation of one-dimensional
Gaussian kernel is shown in Figure 2. In the extrapolation
process, two-dimensional kernel function is needed to fit the
mean and amplitude of the load.

After selecting suitable bandwidth and kernel function
[19, 20], PDF of the load data can be estimated effectively.

2.3. Variation of the Load Data in Rainflow Matrix. In
nonparametric extrapolation, the obtained rainflow matrix
can be expressed in the form of “from-to” diagram, as shown
in Figure 3.The actual variation trend of the load is concluded
from large numbers of calculation.The number of load cycles
is zero on the main diagonal of “from-to” diagram. The
variation trends of the mean and amplitude are indicated
by arrows separately in Figure 4. Mean shifts are parallel to
the main diagonal. Amplitude shifts parallel to the minor
diagonal and increases away from the main diagonal.
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2.4. Characteristics of Four Kernel Functions. Both type
selection and determination of bandwidth of kernel function
affect the accuracy of the extrapolation. However, the effect
of the determination of bandwidth can be reduced using
the adaptive bandwidth [20]. Therefore, the type selection of
kernel function needs to be explored. Focused on this issue,
common kernel functions, which mainly include the range-
based ellipse, mean-based ellipse, circular, and Epanechnikov
kernels, are studied to reduce the extrapolation errors. Their
forms are shown in Figure 5.

The application condition of the kernel function in non-
parametric extrapolation is based on the characteristics of the
load data.The range-based ellipse is usually applied when the
load data, distributed along the minor diagonal in the “from-
to” diagram, as shown in Figure 5(a), Thus, the range-based
ellipse can be used in a case of a large amplitude fluctuation
under a fixed mean in one loop. By contrast, the mean-based
ellipse is mainly used when the data distribution is along the
main diagonal in the “from-to” diagram, as shown in Figure
5(b). Epanechnikov kernel function is also a common kernel
function. Due to the presence of boundary conditions, the
square shape of Epanechnikov kernel function is shown in
Figure 5(c). This function can be applied when a balanced
distribution exists for the mean and amplitude of the load
data in the rainflow diagram. Circular kernel function, in
Figure 5(d), similar to Epanechnikov kernel function, can
also be applied when themean and amplitude of the load data
are equally significant; that is, there is not a large difference
between their extrapolation results.

2.5. Comparison of Extrapolation Results Based on Different
Kernel Functions. The results obtained by extrapolating a
load set using the four kernel functions mentioned above
are shown in Figure 6. Seen from Figure 6, the highest
frequencies and extremes of the load after extrapolation are
different. In particular, the obtained maximums of the mean
and amplitude of the load are greatly different. However, the
effect of maximum on fatigue life is very large. Therefore,
in order to improve the extrapolation results, selecting an
appropriate kernel function is of vital importance. When
the circular and Epanechekov kernel functions are used to
extrapolate the load data, the mean and amplitude of the
load data are usually treatedwith equal importance.However,

when themean-based ellipse and range-based ellipse are used
to extrapolate a load set, the characteristics of the load data
are fully taken into account. Meanwhile, the data variation
characteristics are reflected more clearly by comparing the
dispersion degrees of the mean and amplitude. Therefore,
themean-based ellipse and range-based ellipse are frequently
applied in nonparametric extrapolation.

3. Proposed Selection Method for
Kernel Function

3.1. Criteria Selection to Evaluate the Dispersion Degree of the
Load. Currently, a new and systematical method is needed
to select kernel functions. The dispersion degree of the mean
and amplitude of the load in the “from-to” diagram can be the
judgment condition for selecting the mean-based ellipse or
the range-based ellipse. If the dispersion degree of the mean
is larger, the mean-based ellipse should be selected. Similarly,
when the dispersion of the range is larger, the range-based
ellipse should be selected. Hence, the kernel function can be
determined by studying the dispersion degree of the mean
and amplitude of the load according to its distribution cha-
racteristics in the “from-to” diagram.

The dispersion degree reflects the distribution charac-
teristics of the load data. Many indicators, such as range,
variance, standard deviation, and quartile range, can be uti-
lized to evaluate the dispersion degree. However, using only
one indicator to evaluate the dispersion degree of the load
data is insufficient to reduce the judgment errors. This paper
proposes to useMCDMtechnology to evaluate the dispersion
degree of the load data. The range, standard deviation, and
quartile range of the mean and amplitude are selected as
criteria to identify the larger dispersion degree between the
mean and amplitude. The weight of each criterion is calcu-
lated by the eigenvector and entropy methods. Furthermore,
the comprehensive weight values can be obtained using
optimization theory and Jaynes’ maximum entropy princi-
ple. After comparing the dispersion degrees of mean and
amplitude, the appropriate kernel function is selected, and the
flowchart of kernel function selection is shown in Figure 7.

3.1.1. Range. Range (𝑅) is the difference between the maxi-
mum and minimum values of a load set. For example, the
𝑅
1
and 𝑅

2
are the range of two sets of loads, respectively, as

shown in Figure 8.The larger the range is, the larger the vari-
ability will be and vice versa. Using the range to reflect the dis-
persion degree of the load is acceptable for the small sample.

3.1.2. Quartile Range. Quartile range (𝑄) of the load is the
difference between the upper quartile𝑄U (P75) and the lower
quartile 𝑄L (P25), for example, the 𝑄

1
and 𝑄

2
, as shown

in Figure 8. Quartile range can be regarded as the range of
middle 50% of the load data. The larger the value is, the
larger the variation degree will be and vice versa. Quartile
range is often preferred to the range, as it is not affected by
the maximum or minimum values of a load set.

3.1.3. Standard Deviation. The range and quartile range do
not take all load data into account. Hence, the standard
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deviation (𝜎), which requires calculating the differences
between each load 𝑋 and the mean 𝜇 of the load data, is
used to measure the dispersion degree of the load data, as
shown in Figure 8. A large standard deviation indicates that
the dispersion degree of the load is large and vice versa.
Standard deviation can be calculated as follows:

𝜎 =
√
∑ (𝑋 − 𝜇)

2

𝑛
.

(11)

3.2. Calculation of Criteria Weights

3.2.1. Subjective Weights of Criteria. The eigenvector method
[21, 22] can be adopted to calculate the subjective weights of
range, quartile range, and standard deviation. Supposing that
three criteria, namely, the range, quartile range, and standard
deviation, are 𝐴

1
, 𝐴
2
, 𝐴
3
, and the corresponding weights are

𝑤
1
, 𝑤
2
, 𝑤
3
, respectively, and then the comparison matrixA =

(𝑎
𝑖𝑗
)
3 × 3

can be obtained by calculating relativeweights of two
criteria, respectively, as follows:

A = [
[

𝑎
11
𝑎
12
𝑎
13

𝑎
21
𝑎
22
𝑎
23

𝑎
31
𝑎
32
𝑎
33

]

]

, (12)

where 𝑎
𝑖𝑗
= 𝑤
𝑖
/𝑤
𝑗
, 𝑎
𝑖𝑖
= 1. Matrix A is called the judgment

matrix. The weight vector w is introduced, and the following
equation is derived:

Aw = 𝜆w. (13)

In the previous formula, w is the feature vector of matrix
A, and 𝜆 is the eigenvalue of matrix A. Then the nonzero
largest eigenvalue 𝜆max is taken to the homogeneous linear
equation:

(A − 𝜆maxI)w = 0. (14)

The eigenvector w = [𝑤
1
, 𝑤
2
, 𝑤
3
] of 𝜆max can be obtained

from the above equation.
If the consistency of the judgment matrix A is sufficient,

the obtained eigenvector can represent the weight vector.
To verify the consistency of the judgment matrix A, the
consistency index CI is defined as follows:

CI =
(𝜆max − 𝑛)

(𝑛 − 1)
, (15)

where 𝑛 is the number of criteria, here 𝑛 = 3.
The larger CI is the worse consistency the judgment

matrix A has. The consistency ratio CR is defined as follows:

CR = CI
RI
, (16)
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Figure 6: Comparison among extrapolated results based on different kernel functions. (a) circular, (b) mean-based ellipse, (c) range-based
ellipse, and (d) epanechekov.

RI is the rank of the judgment matrix A. If the value of CR
is less than 0.1 [12], the consistency of the judgment matrix
A is acceptable. Otherwise, the judgment matrixA should be
re-selected. Owing that to the eigenvector is not unique, the
weights of the range, quartile range, and standard deviation
should be normalized as follows:

w
1
= [𝑤
11
, 𝑤
12
, 𝑤
13
]
𝑇
, (17)

where

𝑤
1𝑗
=

𝑤
𝑗

∑
3

𝑗=1
𝑤
𝑗

. (18)

3.2.2. Objective Weights of Criteria. The entropy method [23]
can avoid subjectivity in choosing the judgment matrix A as
the values of objects in judgment matrix are calculated by

considering a variety of vehicle models, driving conditions,
and driver characteristics. Then the objective weights of the
above three criteria are calculated.

If the values of different objects under each criterion in
the evaluation matrix are not very different, the criterion is
not very important. Conversely, if the values are greatly differ-
ent, the criterion is given more importance. In evaluating 𝑚
objects, where each object contains three evaluation criteria,
the evaluation matrix is established as follows:

R = (𝑏
𝑖𝑗
)
𝑚×3
, (𝑖 = 1, 2, . . . , 𝑚; 𝑗 = 1, 2, 3) , (19)

where 𝑏
𝑖𝑗
is the value of 𝑖th object under 𝑗th criterion.

The ratio of the 𝑖th evaluation object in the 𝑗th criteria can
be expressed as follows:

𝑃
𝑖𝑗
=

𝑏
𝑖𝑗

∑
𝑚

𝑖=1
𝑏
𝑖𝑗

, (𝑗 = 1, 2, 3) . (20)
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Entropy is calculated using the following formula:

𝐸
𝑗
=

− (∑
𝑚

𝑖=1
𝑝
𝑖𝑗
ln𝑝
𝑖𝑗
)

ln𝑚
, (𝑗 = 1, 2, 3) . (21)

The weight of each criterion is obtained. Consider

𝑤
2𝑗
=

1 − 𝐸
𝑗

3 − ∑
3

𝑗=1
𝐸
𝑗

, (𝑗 = 1, 2, 3) , (22)

where
0 ≤ 𝑤

2𝑗
≤ 1,

𝑤
21
+ 𝑤
22
+ 𝑤
23
= 1.

(23)

Therefore, weight vector can be expressed as

w
2
= [𝑤
21
, 𝑤
22
, 𝑤
23
]
𝑇
. (24)

As the entropy method can eliminate subjective bias in
the weight distribution problem, the objective weights of
three criteria can be calculated using the previous equation.
To judge the dispersion degree of the load, the comprehensive
weight is necessary to synthesize the subjective weight and
objective weight.

3.2.3. Comprehensive Weights of Different Criteria. To obtain
the comprehensive weight, two coefficients of subjective and
objective weights are assigned [24], respectively. Thus, the
comprehensive weights are calculated using the following
formula:

w = 𝛼
1
w
1
+ 𝛼
2
w
2
, (25)

where 𝛼
1
+ 𝛼
2
= 1 and 𝛼

1
, 𝛼
2
≥ 0.
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To calculate the parameters in formula (25), a preferred
coefficient, which is used to synthesize the subjective and
objective weights, can be selected directly based on the
optimization theory [25]. Furthermore, a linear combination
assigning method, which can eliminate the bias of the
decision maker toward the subjective and objective weights,
is proposed based on the optimization theory and Jaynes’
maximum entropy principle [26]. To minimize the weighted
generalized distance between the objective project and ideal
project, the single objective optimization function is con-
structed as follows:

min 𝛽

2

∑

𝑖=1

3

∑

𝑗=1

𝑙

∑

𝑘=1

𝛼
𝑘
𝑤
𝑘𝑗
(1 − 𝑟

𝑖𝑗
)

+ (1 − 𝛽)

𝑙

∑

𝑘=1

𝛼
𝑘
ln𝛼
𝑘
,

(26)

s.t.
𝑙

∑

𝑘=1

𝛼
𝑘
= 1, 𝛼

𝑘
≥ 0, (27)

where the equilibrium coefficient of the two objects is 0 <
𝛽 < 1 and 𝑙 is the number of the weight coefficient, here 𝑙 = 2.
Coefficient 𝑟

𝑖𝑗
is

𝑟
𝑖𝑗
=

𝑏
𝑖𝑗
− 𝑏

min
𝑗

𝑏
max
𝑗

− 𝑏
min
𝑗

, (𝑖 = 1, 2; 𝑗 = 1, 2, 3) . (28)

The above optimization problem has a unique solution:

𝛼 = [
𝑠
1

∑
2

𝑘=1
𝑠
𝑘

,
𝑠
2

∑
2

𝑘=1
𝑠
𝑘

]

𝑇

, (29)

where,

𝑠
𝑘
= exp

{

{

{

−[

[

1 + 𝛽

2

∑

𝑖=1

3

∑

𝑗=1

𝑤
𝑘𝑗

(1 − 𝑟
𝑖𝑗
)

(1 − 𝛽)

]

]

}

}

}

. (30)

The comprehensiveweights of three criteria are calculated
by (25). Then the dispersion degrees of the mean and
amplitude of the load can be calculated through three criteria
multiplied by their weights. The appropriate kernel function
for extrapolation can be selected, through the comparison of
dispersion degrees.

4. Case Study and Discussions

In prior research, the project team developed a power split
device (PSD) [27] of series-parallel HEV based on the differ-
ential velocity principle of differential. The output torque of
PSD in HEV is simulated in ADVISOR software. The initial
conditions of ADVISOR simulation are shown in Table 1.
To simulate real driving conditions and enable a wide speed
range, a combined driving condition of theWVUCITY (West
Virginia University City), CSHVR (City Suburban Heavy
Vehicle Route), and WVUINTER (West Virginia University
Interstate) is selected in accordance with the proportion of

Table 1: Initial conditions of ADVISOR simulation.

Parameter Value Unit
veh mass 1368 kg
fc max pwr 43 kW
fc max trq 102 Nm
mc max trq 305 Nm
gc max crrnt 300 A
gc max spd 976 rad/s
veh mass: test mass; mc max trq: maximum torque of the motor;
fc max pwr: engine peak power; gc max crrnt: maximum current allowed
in generator; fc max trq: maximum torque output of fuel converter;
gc max spd: maximum speed of the generator.
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Figure 9: Speed variation curves under different driving conditions.

55 : 28 : 17.The above three driving conditions are verified and
accepted by many research institutions, and the combination
of these conditions is adequate to simulate actual conditions.
The speeds required under the above three simulation con-
ditions are shown in Figure 9. The simulated output torque
of PSD under the combined driving condition is obtained, as
shown in Figure 10.

To determine the subjective weight of each criterion
according to their relative importance, the relative impor-
tance of the range, quartile range and standard deviation are
set that 𝑤

1
/𝑤
2
= 1/2 and 𝑤

1
/𝑤
3
= 1/3. The judgment matrix

A is then obtained as follows:

Α =

[
[
[
[
[
[

[

1
1

2

1

3

2 1
2

3

3
3

2
1

]
]
]
]
]
]

]

. (31)

The largest eigenvalue can be solved using (14): 𝜆max =
3. The eigenvector is then obtained according to (14): w =

[1, 2, 3]
𝑇. To determine the consistency of the matrix, CR

is calculated according to (16): CR = 0 < 0.1. So the
judgmentmatrixA is acceptable.The subjectiveweight vector
is obtained according to (17) as follows:

w
1
= [0.1667, 0.3333, 0.5]

𝑇
. (32)
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Table 2: Rainflow matrix characteristics of three driving conditions.

Criteria WVUCITY WVUINTER CSHVR
Amplitude Mean Amplitude Mean Amplitude Mean

Range 1079.523 463.1618 92.8086 91.8897 620.8835 593.1666
Quartile range 215.9045 71.2557 17.8478 21.2053 174.2831 97.0635
Standard deviation 198.3584 74.9959 18.2679 13.2895 156.4656 87.8336
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Figure 10: Simulated output torque of PSD under the combined
driving condition.

To determine the objective weight of each criterion,
the output torque of PSD under conditions of WVUCITY,
CSHVR, and WVUINTER is simulated, respectively, in
ADVISOR software. The range, quartile range and standard
deviation of the mean and amplitude of each load set are
shown in Table 2. The evaluation matrix R is established
according to (19) as follows:

R =

[
[
[
[
[
[
[

[

463.1618 71.2557 74.9959

1079.523 215.9045 198.3584

91.8897 21.2053 13.2895

92.8086 17.8478 18.2679

593.1666 97.0653 87.8336

620.8835 174.2831 156.4656

]
]
]
]
]
]
]

]

. (33)

The proportion of each criterion is calculated according to
(20) as follows:

P =

[
[
[
[
[
[
[

[

0.1575 0.1192 0.1366

0.3670 0.3613 0.3612

0.0312 0.0355 0.0242

0.0316 0.0299 0.0333

0.2017 0.1624 0.1599

0.2110 0.2917 0.2848

]
]
]
]
]
]
]

]

. (34)

The weight vector of each criterion is calculated using the
entropy method according to (22) as follows:

w
2
= [0.3091, 0.3423, 0.3486]

𝑇
. (35)

According to (25), the subjective weight and objective
weight are synthesized. To optimize the weights by (26), 𝛽 =
0.5 is assumed, and then the optimization results show that
𝛼
1
= 0.509 and 𝛼

2
= 0.491.The comprehensive weights of the

range, quartile range, and standard deviation are calculated as
follows:

w = [0.2366, 0.3377, 0.4257]𝑇. (36)

Seen from the calculation results, the standard deviation
whose weight value is close to 0.5 has the greatest effect on
the dispersion degree of the mean and amplitude of the load.
It can be concluded that the standard deviation will affect
the selection of kernel function to a large extent. Then the
minimal effect criterion is the range.

The calculation results conform to the analysis of the
effect degree of the three criteria. Therefore, the calculated
weights of three criteria are reasonable. When the range,
quartile range, and standard deviation of the mean and
amplitude of the load are obtained, the dispersion degree of
themean and amplitude of the load can be calculated through
three criteria multiplied by their weights. If the dispersion
degree of the mean is larger, the mean-based ellipse kernel
function should be selected. If the dispersion degree of the
amplitude is larger, the range-based ellipse kernel function
should be selected.

The load data of HEV under the combined driving
conditions is extrapolated using the improved nonparametric
extrapolation method. The rainflow matrix is obtained after
rainflow counting, as shown in Figure 11(a). The dispersion
degree of the mean, which shifts along the main diagonal,
is calculated as 156.61Nm, and the dispersion degree of the
amplitude is 398.69Nm. After the comparison of two above
dispersion degrees, the fluctuation of the amplitude data is
found to be larger. Therefore, in order to be consistent with
the characteristics of the load, the range-based ellipse kernel
function is used to extrapolate the load. The result of the
extrapolation is shown in Figure 11(b).

The dispersion degree of the amplitude of the overall load
after extrapolation is larger than the mean, which indicates
that the extrapolated load characteristic is consistent with
the initial characteristic before extrapolation. The selecting
method of the appropriate kernel function for nonparametric
extrapolation according to the load characteristics can pre-
dict long-mileage load data appropriately. As nonparametric
extrapolation has inherent advantages in extrapolation and
the proposed selection method of kernel functions is based
on MCDM technology, the obtained extrapolation result is
more reasonable.

5. Conclusions

To avoid subjectivity in the load extrapolation, the non-
parametric extrapolation is introduced to compile the load
spectrum. It is an urgent topic to explore the type selection
method of kernel function in nonparametric extrapolation.
In this paper, the characteristics of the rainflow matrix are
analyzed, and the data distribution of the nonparametric
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Figure 11: Comparison of the extrapolation results. (a) Rainflow matrix before extrapolation. (b) Rainflow matrix after extrapolation.

extrapolation is studied in the form of “from-to” diagram.
The types and characteristics of four kernel functions are
introduced in detail, and the effects of kernel function on
the extrapolation results are studied by comparing the results,
which are obtained by extrapolating the load using four
kernel functions, respectively.

The range, standard deviation, and quartile range are then
selected as criteria to judge the dispersion of the amplitude
and mean of the load. The weights of each criterion are
calculated using the eigenvector and entropy methods of
MCDM, and the comprehensive weight of each criterion
is calculated by optimization theory and Jaynes’ maximum
entropy principle. The results show that the greatest affection
criterion to the dispersion degree of the mean and ampli-
tude is the standard deviation, and then following effect
criteria are the quartile range and the range. The calcula-
tion results conform to the analysis of importance of three
criteria, which verifies the objectivity of this method.The sel-
ection method between the two kernel functions is obtained.
Through comparing the dispersion degrees of the mean and
amplitude using three criteria multiplied by their weights, the
kernel function selection problem concerning nonparametric
extrapolation is solved. The load data of PSD in HEV
under the combined driving condition is extrapolated using
the improved nonparametric extrapolation method. As the
kernel function selection is based onMCDM technology and
nonparametric extrapolation has its inherent advantages, the
results of extrapolation are more reasonable.
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[22] H. Çalışkan, “Selection of boron based tribological hard coat-
ings using multi-criteria decision making methods,” Materials
& Design, vol. 50, pp. 742–749, 2013.
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