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The aim of this paper is to give several characterizations for the property of weak exponential expansiveness for evolution families in
Banach spaces. Variants for weak exponential expansiveness of some well-known results in stability theory (Datko (1973), Rolewicz
(1986), Ichikawa (1984), and Megan et al. (2003)) are obtained.

1. Introduction

In recent years, the exponential stability theory of one param-
eter semigroups of operators and evolution families has wit-
nessed significant development. A number of long-standing
open problems have been solved, and the theory seems to
have obtained a certain degree of maturity. One of the most
important results of the stability theory is due to Datko, who
proved in 1970 in [1] that a strongly continuous semigroup
of operators {𝑇(𝑡)}

𝑡≥0
is uniformly exponentially stable if and

only if for each vector𝑥 from the Banach space𝑋 the function
𝑡 → ‖𝑇(𝑡)𝑥‖ lies in 𝐿

2
(R
+
). Later, Pazy generalizes the result

in [2] for 𝐿
𝑝
(R
+
), 𝑝 ≥ 1. In 1973, Dakto [3] generalized the

results above and proved that an evolutionary process U =

{𝑈(𝑡, 𝑠)}
𝑡≥𝑠≥0

with uniform exponential growth is uniformly
exponentially stable if and only if there exists an exponent
𝑝 ≥ 1 such that sup

𝑠≥0
∫
∞

𝑠
‖𝑈(𝑡, 𝑠)𝑥‖

𝑝
𝑑𝑡 < ∞, for each 𝑥 ∈ 𝑋.

This result was improved by Rolewicz in 1986 (see [4]). In
[5, 6], the authors generalized the results above in the case
of 𝐶
0
-semigroups and evolutionary process, respectively, and

presented a unified treatment in terms of Banach function
spaces.

In the last few years, new concepts of exponential expan-
siveness and in particular, of exponential instability, have
been introduced and characterized (see[7–14]). The cases of
uniform exponential instability have been considered in [8]
for evolution families and in [10] for linear skew-product
flows.

In the present paper, we introduce the concept of weak
exponential expansiveness for evolution families which is an
extension of classical concept of exponential expansiveness.
Ourmain objective is to give some characterizations for weak
exponential expansiveness properties of evolution families in
Banach spaces, and variants for weak exponential expansive-
ness of some well-known results in stability theory (Datko
[3], Rolewicz [4], Ichikawa [15], and Megan et al. [8]) are
obtained.

2. Preliminaries

Let 𝑋 be a real or complex Banach space.The norm on 𝑋 and
on the space 𝐵(𝑋) of all bounded linear operators on 𝑋 will
be denoted by ‖ ⋅ ‖.

Definition 1. A family U = {𝑈(𝑡, 𝑠)}
𝑡≥𝑠≥0

of bounded linear
operators is called an evolution family if the following condi-
tions are satisfied:

(i) 𝑈(𝑡, 𝑡) = 𝐼, the identity operator on 𝑋, for all 𝑡 ≥ 0;
(ii) 𝑈(𝑡, 𝑟)𝑈(𝑟, 𝑠) = 𝑈(𝑡, 𝑠) for all 𝑡 ≥ 𝑟 ≥ 𝑠 ≥ 0;
(iii) there exist 𝑀 ≥ 1 and 𝜔 > 0 such that ‖𝑈(𝑡, 𝑠)𝑥

0
‖ ≤

𝑀𝑒
𝜔(𝑡−𝑠)

‖𝑥
0
‖ for all 𝑡 ≥ 𝑠 ≥ 0 and 𝑥

0
∈ 𝑋;

(iv) for every 𝑥
0

∈ 𝑋 and every 𝑡
0

≥ 0, the mapping 𝑟 →

‖𝑈(𝑟, 𝑡
0
)𝑥
0
‖ is continuous on [𝑡

0
, ∞);

(v) for every 𝑡 ≥ 𝑠 ≥ 0, the operator 𝑈(𝑡, 𝑠) is injective.
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Definition 2. An evolution familyU = {𝑈(𝑡, 𝑠)}
𝑡≥𝑠≥0

is called
uniformly expansive if there exists a constant𝑁 > 0 such that

𝑈 (𝑡, 𝑡
0
) 𝑥
0

 ≥ 𝑁
𝑈 (𝑟, 𝑡

0
) 𝑥
0

 , (1)

for all 𝑡 ≥ 𝑟 ≥ 𝑡
0

≥ 0 and 𝑥
0

∈ 𝑋.

Definition 3. An evolution family U = {𝑈(𝑡, 𝑠)}
𝑡≥𝑠≥0

is said
to be uniformly exponentially expansive if there are 𝑁, V > 0

such that
𝑈 (𝑡, 𝑡

0
) 𝑥
0

 ≥ 𝑁𝑒
V(𝑡−𝑟) 𝑈 (𝑟, 𝑡

0
) 𝑥
0

 , (2)

for all 𝑡 ≥ 𝑟 ≥ 𝑡
0

≥ 0 and 𝑥
0

∈ 𝑋.

Remark 4. It is obvious that an evolution family U is uni-
formly exponentially expansive if and only if there are 𝑁, V >

0 such that
𝑈 (𝑡, t

0
) 𝑥
0

 ≥ 𝑁𝑒
V(𝑡−𝑡0) 𝑥

0

 , (3)

for all 𝑡 ≥ 𝑡
0

≥ 0 and 𝑥
0

∈ 𝑋.

Remark 5. If the evolution family U is uniformly exponen-
tially expansive, then it is uniformly expansive. The converse
is not necessarily valid. To show this, we consider the fol-
lowing example.

Example 6. Let 𝑓 : R
+

→ R
+
be a monotone increasing and

bounded continuous function, 𝑋 = R
+
. The evolution family

U defined by

𝑈 (𝑡, 𝑡
0
) 𝑥
0

= 𝑒
𝑓(𝑡)−𝑓(𝑡0)𝑥

0
, (4)

for all 𝑡 ≥ 𝑡
0

≥ 0 and 𝑥
0

∈ 𝑋.

Proof. As a first step, we prove thatU is uniformly expansive.
The evolution familyU satisfies the inequality

𝑈 (𝑡, 𝑡
0
) 𝑥
0

 = 𝑒
𝑓(𝑡)−𝑓(𝑡0) 𝑥0

 ≥ 𝑒
𝑓(𝑟)−𝑓(𝑡0) 𝑥0



= 𝑁
𝑈 (𝑟, 𝑡

0
) 𝑥
0

 ,
(5)

for all 𝑡 ≥ 𝑟 ≥ 𝑡
0

≥ 0 and 𝑥
0

∈ 𝑋, where 𝑁 = 1. Hence,U is
uniformly expansive.

As a second step, we prove thatU is not uniformly expo-
nentially expansive. If we suppose thatU is uniformly expo-
nentially expansive, then, by Remark 4, there exist some con-
stants 𝑁, V > 0 such that

𝑒
𝑓(𝑡)−𝑓(𝑡0) ≥ 𝑁𝑒

V(𝑡−𝑡0), (6)

for all 𝑡 ≥ 𝑡
0

≥ 0.
In particular, for 𝑡

0
= 0, we obtain 𝑒

𝑓(𝑡)−𝑓(0)
≥ 𝑁𝑒

V𝑡, which
is absurd for 𝑡 → ∞. Hence, U is not uniformly exponen-
tially expansive.

Definition 7. An evolution family U = {𝑈(𝑡, 𝑠)}
𝑡≥𝑠≥0

is called
weakly exponentially expansive if there are𝑁, V > 0 such that
for all 𝑥

0
∈ 𝑋 there exists 𝑡

0
≥ 0 with

𝑈 (𝑡, 𝑡
0
) 𝑥
0

 ≥ 𝑁𝑒
V(𝑡−𝑟) 𝑈 (𝑟, 𝑡

0
) 𝑥
0

 , (7)

for all 𝑡 ≥ 𝑟 ≥ 𝑡
0
.

Remark 8. If the evolution family U is uniformly exponen-
tially expansive, then it is weakly exponentially expansive.

The following example shows that the converse is not
valid.

Example 9. Let 𝑋 = R2 with the Euclidean norm. Consider
the evolution family generated by the matrix 𝑈(𝑡, 𝑡

0
) = 𝑃(𝑡,

𝑡
0
)𝑄(𝑡
0
), where

𝑃 (𝑡, 𝑡
0
) = (

𝑒
𝑡−𝑡0 sin 𝑡 𝑒

−(𝑡−𝑡0) cos 𝑡

−𝑒
𝑡−𝑡0 cos 𝑡 𝑒

−(𝑡−𝑡0) sin 𝑡
) ,

𝑄 (𝑡
0
) = (

cos 𝑡
0

sin 𝑡
0

sin 𝑡
0

− cos 𝑡
0

) .

(8)

Proof. We divide the proof into two steps.
As a first step, we prove that U is weakly exponentially

expansive. For every 𝑥
0

∈ R2, there exist 𝜌 ≥ 0 and 𝑡
0

∈

[0, 2𝜋) such that 𝑥
0

= (𝜌 cos 𝑡
0
, 𝜌 sin 𝑡

0
)
𝑇.

It is easy to see that

𝑈 (𝑡, 𝑡
0
) 𝑥
0

= 𝑃 (𝑡, 𝑡
0
) 𝑄 (𝑡
0
) 𝑥
0

= 𝑃 (𝑡, 𝑡
0
) (𝜌, 0)

𝑇

= (𝜌𝑒
𝑡−𝑡0 sin 𝑡, −𝜌𝑒

𝑡−𝑡0 cos 𝑡)
𝑇

,
(9)

and hence
𝑈 (𝑡, 𝑡

0
) 𝑥
0

 = 𝜌𝑒
𝑡−𝑡0 ≥ 𝑁𝑒

𝑡−𝑟 𝑈 (𝑟, 𝑡
0
) 𝑥
0

 , (10)

for all 𝑡 ≥ 𝑟 ≥ 𝑡
0
with 𝑁 = 1, which shows that U is weakly

exponentially expansive.
As a second step, we prove that U is not uniformly

exponentially expansive. If we assume that U is uniformly
exponentially expansive, then there exist some constants 𝑁,

V > 0 such that
𝑈 (𝑡, 𝑡

0
) 𝑦
0

 ≥ 𝑁𝑒
V(𝑡−𝑟) 𝑈 (𝑟, 𝑡

0
) 𝑦
0

 , (11)

for all 𝑡 ≥ 𝑟 ≥ 𝑡
0

≥ 0 and 𝑦
0

∈ 𝑋.
In particular, for 𝑦

0
= (sin 𝑡

0
, − cos 𝑡

0
)
𝑇, we obtain

𝑈 (𝑡, 𝑡
0
) 𝑦
0

= 𝑃 (𝑡, 𝑡
0
) (0, 1)

𝑇

= (𝑒
−(𝑡−𝑡0) cos 𝑡, 𝑒

−(𝑡−𝑡0) sin 𝑡)
𝑇

,
(12)

and hence
𝑈 (𝑡, 𝑡

0
) 𝑦
0

 = 𝑒
−(𝑡−𝑡0) = 𝑒

−(𝑡−𝑟) 𝑈 (𝑟, 𝑡
0
) 𝑦
0

 , (13)

which shows thatU is not uniformly exponentially expansive.

3. The Main Results

Theorem 10. The following assertions are equivalent:

(i) U is weakly exponentially expansive;
(ii) there are 𝛿 > 0 and 𝑐 > 1 such that for every 𝑥

0
∈ 𝑋

there exist 𝑡
0

≥ 0 and ℎ
0

∈ (0, 𝛿] with
𝑈 (ℎ
0

+ 𝑟, t
0
) 𝑥
0

 ≥ 𝑐
𝑈 (𝑟, 𝑡

0
) 𝑥
0

 , (14)

for all 𝑟 ≥ 𝑡
0
;
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(iii) there exist 𝛿 > 0 and 𝑐 > 1 such that for each 𝑥
0

∈ 𝑋

there exists 𝑡
0

≥ 0with the property that for every 𝑟 ≥ 𝑡
0

there is ℎ
0

∈ (0, 𝛿] with
𝑈 (ℎ
0

+ 𝑟, 𝑡
0
) 𝑥
0

 ≥ 𝑐
𝑈 (𝑟, 𝑡

0
) 𝑥
0

 . (15)

Proof. (i)⇒(ii) If U is weakly exponentially expansive, then
by Definition 7, there exist 𝑁, V > 0 such that for all 𝑥

0
∈ 𝑋

there exists 𝑡
0

≥ 0 with the property
𝑈 (𝑡, 𝑡

0
) 𝑥
0

 ≥ 𝑁𝑒
V(𝑡−𝑟) 𝑈 (𝑟, 𝑡

0
) 𝑥
0

 , (16)

for all 𝑡 ≥ 𝑟 ≥ 𝑡
0
. Let 𝛿 > 0 satisfy that 𝑁𝑒

V𝛿
> 1. Then, for

ℎ
0

= 𝛿, we have
𝑈 (𝑟 + ℎ

0
, 𝑡
0
) 𝑥
0

 ≥ 𝑁𝑒
V𝛿 𝑈 (𝑟, 𝑡

0
) 𝑥
0

 = 𝑐
𝑈 (𝑟, 𝑡

0
) 𝑥
0

 ,

(17)

for all 𝑟 ≥ 𝑡
0
.

(ii)⇒(iii) It is obvious.
(iii)⇒(i) We define 𝑁 = 1/𝑀𝑒

𝜔𝛿 and V = ln 𝑐/𝛿, where
𝛿 > 0 and 𝑐 > 1 are given by (iii).

From (iii), it results that for each 𝑥
0

∈ 𝑋, there exists 𝑡
0

≥

0 with the property that for every 𝑟 ≥ 𝑡
0
there is ℎ

0
∈ (0, 𝛿]

such that
𝑈 (ℎ
0

+ 𝑟, 𝑡
0
) 𝑥
0

 ≥ 𝑐
𝑈 (𝑟, 𝑡

0
) 𝑥
0

 . (18)

Let 𝑟 ≥ 𝑡
0
, and we have that there is ℎ

1
∈ (0, 𝛿] with

𝑈 (ℎ
1

+ ℎ
0

+ 𝑟, 𝑡
0
) 𝑥
0

 ≥ 𝑐
𝑈 (ℎ
0

+ 𝑟, 𝑡
0
) 𝑥
0



≥ 𝑐
2 𝑈 (𝑟, 𝑡

0
) 𝑥
0

 .
(19)

By induction, we have that
𝑈 (𝑟
𝑛

+ 𝑟, 𝑡
0
) 𝑥
0

 ≥ 𝑐
𝑛 𝑈 (𝑟, 𝑡

0
) 𝑥
0

 , ∀𝑛 ∈ N, (20)

where

𝑟
𝑛

=

{{{

{{{

{

0, 𝑛 = 0,

𝑛−1

∑
𝑖=0

ℎ
𝑖
, 𝑛 ∈ N∗,

ℎ
𝑖
∈ (0, 𝛿] . (21)

It is easy to see that (𝑟
𝑛
) is unbounded. In fact, if (𝑟

𝑛
) is

bounded, then there exists 𝑟
∗

∈ R with 𝑟
𝑛

→ 𝑟
∗ (𝑛 → ∞).

From the relation (20) and 𝑐 > 1, it follows that
𝑈 (𝑟 + 𝑟

∗
, 𝑡
0
) 𝑥
0

 ≥ lim
𝑛→∞

𝑐
𝑛 𝑈 (𝑟, 𝑡

0
) 𝑥
0

 → ∞, (22)

which is a contradiction because {𝑈(𝑡, 𝑠)}
𝑡≥𝑠≥0

⊆ 𝐵(𝑋).
So, (𝑟
𝑛
) is unbounded, and then for 𝑡 ≥ 𝑟, there is 𝑛 ∈ N

such that

𝑟
𝑛

≤ 𝑡 − 𝑟 ≤ 𝑟
𝑛+1

≤ (𝑛 + 1) 𝛿. (23)

Then,
𝑈 (𝑟
𝑛+1

+ 𝑟, 𝑡
0
) 𝑥
0

 ≤ 𝑀𝑒
𝜔(𝑟+𝑟𝑛+1−𝑡) 𝑈 (𝑡, 𝑡

0
) 𝑥
0



≤ 𝑀𝑒
𝜔(𝑟𝑛+1−𝑟𝑛) 𝑈 (𝑡, 𝑡

0
) 𝑥
0



≤ 𝑀𝑒
𝜔𝛿 𝑈 (𝑡, 𝑡

0
) 𝑥
0

 ,

(24)

and hence

𝑈 (𝑡, 𝑡
0
) 𝑥
0

 ≥
1

𝑀𝑒𝜔𝛿
𝑈 (𝑟 + 𝑟

𝑛+1
, 𝑡
0
) 𝑥
0



≥
1

𝑀𝑒𝜔𝛿
𝑐
𝑛+1 𝑈 (𝑟, 𝑡

0
) 𝑥
0



=
1

𝑀𝑒𝜔𝛿
𝑒
V(𝑛+1)𝛿 𝑈 (𝑟, 𝑡

0
) 𝑥
0



≥ 𝑁𝑒
V(𝑡−𝑟) 𝑈 (𝑟, 𝑡

0
) 𝑥
0

 .

(25)

Remark 11. Theorem 10 can be considered a generalization of
some results from uniform exponential instability proved in
[8].

An important set in what follows is F
1
, the set of all

nondecreasing functions 𝐹 : R
+

→ R
+
with the properties:

(f1) 𝐹(𝑡𝑟) ≤ 𝐹(𝑡)𝐹(𝑟), for all (𝑡, 𝑟) ∈ R2
+
;

(f2) 𝐹(𝑡) > 0, for every 𝑡 > 0.

Theorem 12. An evolution family U is weakly exponentially
expansive if and only if there are 𝐹 ∈ F

1
and 𝐾 > 0 such that

for every 𝑥
0

∈ 𝑋 \ {0} there is 𝑡
0

≥ 0 with

∫
∞

𝑟

𝐹 (
1

𝑈 (𝜏, 𝑡
0
) 𝑥
0


) 𝑑𝜏 ≤ 𝐾𝐹 (

1
𝑈 (𝑟, 𝑡

0
) 𝑥
0


) ,

(26)

for all 𝑟 ≥ 𝑡
0
.

Proof. Necessity. IfU is weakly exponentially expansive, then
byDefinition 7, there are𝑁, V > 0 such that for all 𝑥

0
∈ 𝑋\{0}

there exists 𝑡
0

≥ 0 with

∫
∞

𝑟

1
𝑈 (𝜏, 𝑡

0
) 𝑥
0


𝑑𝜏 ≤ ∫

∞

𝑟

1

𝑁𝑒V(𝜏−𝑟)
𝑈 (𝑟, 𝑡

0
) 𝑥
0


𝑑𝜏

=
1

𝑁V 𝑈 (𝑟, 𝑡
0
) 𝑥
0


,

(27)

for all 𝑟 ≥ 𝑡
0
.

Thus, the inequality (26) is satisfied for 𝐹(𝑡) = 𝑡 and 𝐾 =

1/𝑁V.

Sufficiency. We assume for a contradiction that for all 𝛿 > 0

and 𝑐 > 1 there exists 𝑥
0

∈ 𝑋 such that for every 𝑡
0

≥ 0 there
is 𝑟 ≥ 𝑡

0
with

𝑈 (𝑡 + 𝑟, 𝑡
0
) 𝑥
0

 < 𝑐
𝑈 (𝑟, 𝑡

0
) 𝑥
0

 , (28)

for all 𝑡 ∈ (0, 𝛿].
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In particular, for 𝛿 = 𝐾𝐹(3) and 𝑐 = 3, the inequality (28)
implies

𝐹 (3) ∫
∞

𝑟

𝐹 (
1

𝑈 (𝑡, 𝑡
0
) 𝑥
0


) 𝑑𝑡

≥ ∫
∞

𝑟

𝐹 (
3

𝑈 (𝑡, 𝑡
0
) 𝑥
0


) 𝑑𝑡

= ∫
∞

0

𝐹 (
3

𝑈 (𝜏 + 𝑟, 𝑡
0
) 𝑥
0


) 𝑑𝜏

≥ ∫
𝛿

0

𝐹 (
3

𝑈 (𝜏 + 𝑟, 𝑡
0
) 𝑥
0


) 𝑑𝜏

> ∫
𝛿

0

𝐹 (
1

𝑈 (𝑟, 𝑡
0
) 𝑥
0


) 𝑑𝜏

= 𝛿𝐹 (
1

𝑈 (𝑟, 𝑡
0
) 𝑥
0


) ,

(29)

which contradicts the inequality (26). This contradiction
proves thatU is weakly exponentially expansive.

Itmakes sense to consider also the setF
2
all non-decreas-

ing functions 𝐹 : R
+

→ R
+
with the properties:

(g1) 𝐹(𝑡𝑟) ≥ 𝐹(𝑡)𝐹(𝑟), for all (𝑡, 𝑟) ∈ R2
+
;

(g2) 𝐹(𝑡) > 0, for every 𝑡 > 0.

Theorem 13. An evolution family U is weakly exponentially
expansive if and only if there are 𝐹 ∈ F

2
and 𝐾 > 0 such that

for every 𝑥
0

∈ 𝑋 \ {0} there is 𝑡
0

≥ 0 with the relation (26).

Proof. Necessity. This is a simple verification for 𝐹(𝑡) = 𝑡.

Sufficiency. It is similar to the proof of Theorem 12. Indeed,
from (28) for 𝑐 ∈ (1, +∞) and 𝛿 = 2𝐾/𝐹(1/𝑐), we have

∫
∞

𝑟

𝐹 (
1

𝑈 (𝑡, 𝑡
0
) 𝑥
0


) 𝑑𝑡 = ∫

∞

0

𝐹 (
1

𝑈 (𝜏 + 𝑟, 𝑡
0
) 𝑥
0


) 𝑑𝜏

≥ ∫
𝛿

0

𝐹 (
1

𝑈 (𝜏 + 𝑟, 𝑡
0
) 𝑥
0


) 𝑑𝜏

≥ ∫
𝛿

0

𝐹 (
1

𝑐
𝑈 (𝑟, 𝑡

0
) 𝑥
0


) 𝑑𝜏

≥ 𝛿𝐹 (
1

𝑐
) 𝐹 (

1
𝑈 (𝑟, 𝑡

0
) 𝑥
0


)

> 𝐾𝐹 (
1

𝑈 (𝑟, 𝑡
0
) 𝑥
0


) ,

(30)

which contradicts the inequality (26).

Remark 14. The preceding theorems are variants for the case
of weak exponential expansiveness property of a well-known
theorem due to Rolewicz [4].

Corollary 15. An evolution family U is weakly exponentially
expansive if and only if there are 𝑝 > 0 and 𝐾 > 0 such that for
all 𝑥
0

∈ 𝑋 \ {0} there exists 𝑡
0

≥ 0 with

∫
∞

𝑟

1
𝑈(𝑡, 𝑡

0
)𝑥
0


𝑝

𝑑𝑡 ≤ 𝐾
1

𝑈(𝑟, 𝑡
0
)𝑥
0


𝑝

, (31)

for all 𝑟 ≥ 𝑡
0
.

Proof. It is immediate fromTheorem 12 for 𝐹(𝑡) = 𝑡
𝑝.

Remark 16. Corollary 15 is the version of a well-known
theorem due to Datko [3], for the case of weak exponential
expansiveness of evolution families.

In the following corollary, we give a discrete version of
Theorems 12 and 13.

Corollary 17. An evolution family U is weakly exponentially
expansive if and only if there are 𝐹 ∈ F

1
∪F
2
and 𝐾 > 0 such

that for all 𝑥
0

∈ 𝑋 \ {0} there exists 𝑡
0

≥ 0 with

∞

∑
𝑛=0

𝐹 (
1

𝑈 (𝑟 + 𝑛, 𝑡
0
) 𝑥
0


) ≤ 𝐾𝐹 (

1
𝑈 (𝑟, 𝑡

0
) 𝑥
0


) ,

(32)

for all 𝑟 ≥ 𝑡
0
.

Proof. Necessity. This is a simple verification for 𝐹(𝑡) = 𝑡.

Sufficiency. By Definition 1, we know that ‖𝑈(𝑟 + 𝜏, 𝑟 + 𝑛)‖ ≤

𝑀𝑒
𝜔, 𝜏 ∈ [𝑛, 𝑛 + 1] and 𝜏 → ‖𝑈(𝑟 + 𝜏, 𝑟 + 𝑛)‖ is continuous

on [𝑛, 𝑛 + 1] for all 𝑛 ∈ N, so there exist 𝐿
𝑛

> 0 such that

𝐿
𝑛

= min
𝜏∈[𝑛,𝑛+1]

‖𝑈 (𝑟 + 𝜏, 𝑟 + 𝑛)‖ , 𝑛 ∈ N. (33)

Let 𝐿 = inf
𝑛
𝐿
𝑛
. We suppose that 𝐹 ∈ F

1
, and from (32),

it results that

∫
∞

𝑟

𝐹 (
1

𝑈 (𝑡, 𝑡
0
) 𝑥
0


) 𝑑𝑡

=

∞

∑
𝑛=0

∫
𝑛+1

𝑛

𝐹 (
1

𝑈 (𝑟 + 𝜏, 𝑟 + 𝑛) 𝑈 (𝑟 + 𝑛, 𝑡
0
) 𝑥
0


) 𝑑𝜏

≤

∞

∑
𝑛=0

∫
𝑛+1

𝑛

𝐹 (
1

𝐿
𝑈 (𝑟 + 𝑛, 𝑡

0
) 𝑥
0


) 𝑑𝜏

≤ 𝐹 (
1

𝐿
)

∞

∑
𝑛=0

𝐹 (
1

𝑈 (𝑟 + 𝑛, 𝑡
0
) 𝑥
0


)

≤ 𝐾𝐹 (
1

𝐿
) 𝐹 (

1
𝑈 (𝑟, 𝑡

0
) 𝑥
0


) ,

(34)

for all 𝑟 ≥ 𝑡
0
.
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If 𝐹 ∈ F
2
, in a similar way we have

𝐹 (𝐿) ∫
∞

𝑟

𝐹 (
1

𝑈 (𝑡, 𝑡
0
) 𝑥
0


) 𝑑𝑡

≤ ∫
∞

0

𝐹 (
𝐿

𝑈 (𝑟 + 𝜏, 𝑡
0
) 𝑥
0


) 𝑑𝜏

=

∞

∑
𝑛=0

∫
𝑛+1

𝑛

𝐹 (
𝐿

𝑈 (𝑟 + 𝜏, 𝑟 + 𝑛) 𝑈 (𝑟 + 𝑛, 𝑡
0
) 𝑥
0


) 𝑑𝜏

≤

∞

∑
𝑛=0

∫
𝑛+1

𝑛

𝐹 (
1

𝑈 (𝑟 + 𝑛, 𝑡
0
) 𝑥
0


) 𝑑𝜏

≤ 𝐾𝐹 (
1

𝑈 (𝑟, 𝑡
0
) 𝑥
0


) ,

(35)

for all 𝑟 ≥ 𝑡
0
.

Applying Theorems 12 and 13, we conclude that U is
weakly exponentially expansive.

Corollary 18. An evolution family U is weakly exponentially
expansive if and only if there is 𝐾 > 0 such that for all 𝑥

0
∈

𝑋 \ {0} there exists 𝑡
0

≥ 0 with
∞

∑
𝑛=0

1
𝑈 (𝑟 + 𝑛, 𝑡

0
) 𝑥
0


≤ 𝐾

1
𝑈 (𝑟, 𝑡

0
) 𝑥
0


, (36)

for all 𝑟 ≥ 𝑡
0
.

Another characterization of the weak exponential expan-
siveness is given by the following.

Theorem 19. An evolution family U is weakly exponentially
expansive if and only if there are 𝐾, 𝛼 > 0 such that for every
𝑥
0

∈ 𝑋 \ {0} there is 𝑡
0

≥ 0 with

1

𝑡 − 𝑟
∫
𝑡

𝑟

𝑒
𝛼(𝜏−𝑟) 1

𝑈 (𝜏, 𝑡
0
) 𝑥
0


𝑑𝜏 ≤ 𝐾

1
𝑈 (𝑟, 𝑡

0
) 𝑥
0


,

(37)

for all 𝑡 > 𝑟 ≥ 𝑡
0
.

Proof. Necessity. IfU is weakly exponentially expansive then
byDefinition 7, there are𝑁, V > 0 such that for all𝑥

0
∈ 𝑋\{0}

there is 𝑡
0

> 0 with the property that for 𝛼 = V/2 we have

1

𝑡 − 𝑟
∫
𝑡

𝑟

𝑒
𝛼(𝜏−𝑟) 1

𝑈 (𝜏, 𝑡
0
) 𝑥
0


𝑑𝜏

≤
1

𝑁 (𝑡 − 𝑟)
∫
𝑡

𝑟

𝑒
−𝛼(𝜏−𝑟)

𝑑𝜏
1

𝑈 (𝑟, 𝑡
0
) 𝑥
0



=
1 − 𝑒
−𝛼(𝑡−𝑟)

𝑁𝛼 (𝑡 − 𝑟)

1
𝑈 (𝑟, 𝑡

0
) 𝑥
0



≤ 𝐾
1

𝑈 (𝑟, 𝑡
0
) 𝑥
0


,

(38)

for all 𝑡 > 𝑟 ≥ 𝑡
0
, where 𝐾 = (1/𝑁)sup

𝜆>0
((1 − 𝑒

−𝜆
)/𝜆) < ∞.

Sufficiency. Let 𝛿 > 0 be such that 𝑒
𝛼𝛿

> 1 + 3𝛼𝛿𝐾, where
𝐾 and 𝛼 are given by (37). We suppose that U is not weakly
exponentially expansive. Then, by Theorem 10, for 𝑐 = 3,
there exists 𝑥

0
∈ 𝑋 such that for all 𝑡

0
≥ 0 and all 𝑢 ∈ (0, 𝛿]

there is 𝑟 ≥ 𝑡
0
with

𝑈 (𝑢 + 𝑟, 𝑡
0
) 𝑥
0

 < 3
𝑈 (𝑟, 𝑡

0
) 𝑥
0

 . (39)

Then, for 𝑡 = 𝑟 + 𝛿, we have

1

𝑡 − 𝑟
∫
𝑡

𝑟

𝑒
𝛼(𝜏−𝑟) 1

𝑈 (𝜏, 𝑡
0
) 𝑥
0


𝑑𝜏

=
1

𝛿
∫
𝛿

0

𝑒
𝛼𝑢 1

𝑈 (𝑢 + 𝑟, 𝑡
0
) 𝑥
0


𝑑𝑢

≥
1

3𝛿
∫
𝛿

0

𝑒
𝛼𝑢

𝑑𝑢
1

𝑈 (𝑟, 𝑡
0
) 𝑥
0



=
𝑒
𝛼𝛿

− 1

3𝛼𝛿

1
𝑈 (𝑟, 𝑡

0
) 𝑥
0



> 𝐾
1

𝑈 (𝑟, 𝑡
0
) 𝑥
0


,

(40)

which contradicts the inequality (37), the proof is completed.
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