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This paper presents advanced signal processing methods and command synthesis for memory-
limited complex systems. For accurate measurements performed on limited time interval, some
specific methods should be added. For signal processing, a robust filtering and sampling
procedure performed on a specific working interval is required, so as the influence of low-
amplitude and high-frequency fluctuations to be diminished. This study shows that such a signal
processing method for the case of memory-limited complex systems requires the use of certain
differentiation/integration procedures performed by oscillating systems, so as robust results
suitable for efficient command synthesis to be available. A brief comparison with uncertainty
aspects in modern physics (where quantum aspects can be considered as features of complex
systems) is also presented.

1. Introduction

As it is known, an important aspect in observing and modeling dynamic environmental
phenomena consists inmeasuringwith higher accuracy some physical quantities correspond-
ing to changes in the environment. Yet for accurate measurements performed on limited
time interval, for memory-limited complex systems, some specific methods should be used.
Sudden (sharp) changes in the environment require a pair of consecutive values for the
measured quantity so as any difference to be detected as soon as possible. Moreover, any
value taken into consideration by the complex system should be established using a robust
filtering and sampling procedure performed on a specificworking interval, so as the influence
of low-amplitude and high-frequency fluctuations to be decreased in a significant manner.
Being quite possible for sharp (sudden) changes in the environment to appear during such a
working interval (on which filtering and sampling procedures are performed), it results that
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specific signal processing methods based on the values achieved on a set of succesive time
intervals are necessary.

Filtering and sampling devices usually consist of asymptotically stable systems,
sometimes an integration of the output over a certain time interval being added. Yet
such structures are very sensitive at random variations of the integration period, being
recommended for the signal which is integrated to be approximately equal to zero at the
end of the integration period. For this reason, oscillating systems for filtering the received
signal should be used, so as the filtered signal and its slope to be approximately zero at the
end of a certain time interval (at the end of an oscillation). For avoiding instability of such
oscillating systems on extended time intervals, certain electronic devices (gates) controlled
by computer commands should be added, so as to restore the initial null conditions for the
oscillating system before a new working cycle to start [1].

The filtering performances of asymptotically stable systems are determined by their
transfer function. a Filtering and sampling devices consisting of low-pass filters of first or
second order having the transfer function

H(s) =
1

T0s + 1
(1.1)

(for a first-order system) and

H(s) =
1

T2
0 s

2 + 2bT0s + 1
(1.2)

(for a second-order system) attenuate an alternating signal of angular frequency ω � ω0 =
1/T0 about ω/ω0 times (for a first-order system) or about (ω/ω0)

2 times (for a second-order
system). The response time of such systems at a continuous useful signal is about 4−6T0 (5T0
for the first-order system and 4T0/b for the second-order system). If the signal given by the
first- or second-order system is integrated over such a period, a supplementary attenuation
for the alternating signal of about 4 − 6ω/ω0 can be obtained.

But such structures are very sensitive at the random variations of the integration
period (for unity-step input, the signal which is integrated is equal to unity at the sampling
moment of time), and the use of oscillators with a very high accuracy cannot solve the
problem due to switching phenomena appearing at the end of the integration period (when
an electric current charging a capacitor is interrupted).

These random variations cannot be avoided if we use asymptotically stable filters. For
robustness, the signal processing structure based on an integration procedure should provide
a null value for the integrating signal at the end of a certain working interval. This property
is similar to wavelets aspects presented in [2, 3].

Mathematically, an ideal solution could consist in using an extended Dirac function
for multiplying the received signal before the integration (see [1]) but is very hard to
generate such extended Dirac functions (a kind of acausal pulses) using nonlinear differential
equations for (i) symmetrical pulses (see [4]) or (ii) asymmetrical pulses (see [5] for more
details).

A heuristic algorithm for generating practical test functions using MATLAB proce-
dures was presented in [4]. First, it has been shown that ideal test functions cannot be
generated by differential equations, being emphasized the fact that differential equations can
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only generate functions similar to test functions (defined as practical test functions). Then a
step-by-step algorithm for designing the most simple differential equation able to generate
a practical test function was presented, based on the invariance properties of the differential
equation and on standard MATLAB procedures. The result of the algorithm consists in an
oscillating second-order system working at the stability limit from initial null conditions, on
a limited working interval corresponding to the period of the generated oscillations.

It was shown that the simplest structure possessing such properties is represented by
an oscillating second-order system having the transfer function

Hosc =
1

T2
0 s

2 + 1
, (1.3)

receiving a step input and working on the time interval [0, 2πT0]. For initial conditions equal
to zero, the response of the oscillating system at a step input with amplitude A will have the
form

y(t) = A
(
1 − cos

(
t

T0

))
. (1.4)

By integrating this result on the time interval [0, 2πT0], we obtain the result 2πAT0, and we
can also notice that the quantity which is integrated and its slope are equal to zero at the
end of the integration period. Thus, the influence of the random variations of the integration
period (generated by the switching phenomena) is practically rejected.

This oscillating system attenuates about (ω/ω0)
2 times such an input, and the

influence of the integrator consists in a supplementary attenuation of about

[
1

(2π)

(
ω

ω0

)]
(1.5)

times. The oscillations having the form

yosc = a sin(ω0t) + b cos(ω0t) (1.6)

generated by the input alternating component have a lower amplitude and give a null result
after an integration over the time interval [0, 2πT0].

These results have shown that such a structure provides practically the same
performances as a structure consisting of an asymptotically stable second-order system and
an integrator (response time of about 6T0, an attenuation of about (1/6)(ω/ω0)

3 times for
an alternating component having frequency ω) moreover being less sensitive at the random
variations of the integration period. For restoring the initial null conditions after the sampling
procedure (at the end of the working period), some electronic devices must be added. Yet the
previous analysis is valid for step inputs which are active on the whole working interval (the
integration period).

In [6] has been performed the analysis of this structure by considering that the input
is represented by a unity short-step pulse (instead of a unity step pulse) which differs to
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zero on the time interval [0, τ]. It was shown that certain free oscillations of the second-
order oscillating system are generated for t > τ (when the action of the external short-step
command u has ceased). These free oscillations have the angular velocity ω0, the amplitude

A = 2 sin
(ω0τ

2

)
, (1.7)

and the initial phase

φ = −ω0τ

2
. (1.8)

Thus, the output y(t) corresponding to the free oscillations of the system for t > τ
(when the action of the external short-step command u has ceased) can be written as

y(t) = 2 sin
(ω0τ

2

)
sin

(
ω0t − ω0τ

2

)
. (1.9)

However, wemust notice that, usually, such a filtering and sampling structure receives
an electronic signal presenting possible step changes from an already measured value to
a final unknown value. Since the previously measured value can be substracted from the
received signal during subsequent working intervals, the analysis of sudden (sharp) changes
in the environment could start by considering that the input of the second-order oscillating
system is represented by a null signal for t ≤ τ (the first part of the working interval) and by
a signal with amplitude A for t > τ (the second part of the working interval).

2. The Oscillating Signal Processing System for the Case of
Short-Step Inputs

We will continue the analysis of this structure by considering that the input is represented
by a short-step pulse which differs to zero on the time interval [τ, 2πT0]. This means that the
input u can be represented under the form

u(t) = 0, for t < τ,

u(t) = A, for t ∈ [τ, 2πT0],
(2.1)

or using the Heaviside function

u(t) = Ah(t − τ) for t ∈ [0,∞), (2.2)

where h(t) corresponds to the function 1/s if we apply the Laplace transformation.
The transfer function of the second-order oscillating system is

H(s) =
1

T2
0 s

2 + 1
. (2.3)
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On the time interval [0, τ], the output of the second-order oscillating system equals zero

y(t) = 0. (2.4)

On the time interval [τ, 2πT0], the output of the second-order oscillating system is
represented (using the Laplace transformation) as

y(s) = H(s)u(s) =
1

T2
0 s

2 + 1
A

s
exp(−τs), (2.5)

which corresponds to the output

y(t) = A
(
1 − cos

(
t − τ
T0

))
, (2.6)

which can be written as

y(t) = A[1 − cos(ω0(t − τ))], (2.7)

where ω0 = 1/T0.
By denoting with z(t) the integral of y(t) (considering as initial moment the zero

moment of time), it results at the time moment tf = 2πT0 the set of values:

y
(
tf
)
= A[1 − cos(ω0(2πT0 − τ))] = A[1 − cos(ω0τ)],

y′(tf) = Aω0 sin(ω0(2πT0 − τ)) = −Aω0 sin(ω0τ),

z
(
tf
)
=
∫2πT0

τ

A[1 − cos(ω0(t − τ))]dt = A
(
2π
ω0

− τ
)
+
A

ω0
sin(ω0τ).

(2.8)

It can be easily noticed that

ω0z
(
tf
)
+

1
ω0

y′(tf) = A(2π −ω0τ), (2.9)

which can be written also as

z
(
tf
)
+

1
ω2

0

y′(tf) = A(2πT0 − τ). (2.10)

This result shows that the sampled values for z(t) (the integral of y(t)) and for y′(t) at
the time moment tf = 2πT0 (the end of the working interval) can be used in a simple manner
for obtaining the quantity

S
(
tf
)
= A(2πT0 − τ) = AtA. (2.11)
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For this purpose, we can divide the sampled value for y′(t) by 1/ω2
0 and add this result

to the sampled value for z(t) (the integral of y(t)). All these operations can be performed
electronically (using analog devices) in an accurate manner. It can be easily noticed that the
quantity

tA = 2πT0 − τ (2.12)

represents the active time (on which the step input A acts upon the second-order oscillating
system).

On the subsequent working interval, we can consider that the input of the second-
order oscillating system equalsA on the whole time interval [0, 2πT0]. As a consequence, the
integral of the generated output equals

znext = 2πT0A, (2.13)

which allows a robust estimation of the amplitude A of the step change for the input as

A =
znext
2πT0

, (2.14)

where znext is the sampled quantity for the integral over a period for the oscillating system
output (starting to work from initial null conditions on the next working interval), and 2πT0
is a constant value. This operation can be also performed electronically in an easy manner.

However, this result is far of being useful for practical applications. Since the
differential equation of the second-order oscillating system is

y(t) +

(
1
ω2

0

)
y′′(t) = u(t), (2.15)

it results that

S
(
tf
)
=
∫ tf

0

[
y(t) +

(
1
ω2

0

)
y′′(t)

]
dt =

∫ tf

0
u(t)dt, (2.16)

where u(t) represents the amplitude of the received signal. So the algorithm previously
presented performs the integral of the received signal on a period, without any filtering
procedure. The influence of low-amplitude high-frequency alternating components of the
received signal is not diminished in a significant manner, the advantages of a filtering
procedure based on second-order systems being lost.

The previously presented algorithm could be accepted if the integral can be performed
on an extended time interval. In this case, we can simply estimate the quantity S(tf) on a
time period TF several times greater that 2πT0 (the period of the oscillating system) so as
requirements regarding filtering performances (for rejecting the influence of low-frequency
high-amplitude components) to be fulfilled. Thus, the influence of an alternating component
with time constant T and angular frequency ω = 2π/T is decreased about ωTF = TF/T times.



Mathematical Problems in Engineering 7

The sampling procedure is not robust any more (the signal which is integrated differs to zero
at the end of the integration interval, in case of step changes) but for extended intervals, the
relative error generated by switching phenomena can be neglected (the switching interval
is very narrow as related to the integration interval, so the integral of stochastic switching
phenomena represents a low value as related to the integral performed on the whole working
interval).

3. Synthesis of Quick Command for Compensating Dynamic
Environmental Changes

In case of electric drives, an extended integration interval for quantity u(t) (as presented in
the second section of this paper) could be allowed if it corresponds not to the controlled
quantity (the angular frequency Ω of a shaft, for example) but to its derivative (supposing
that the resistive torque can vary). As a consequence, u(t) can be written as

u(t) = c
dΩ
dt

(3.1)

(c being a constant). It results that

S
(
tf
)
=
∫ tf

0
u(t)dt =

∫ tf

0
c
dΩ
dt

dt = c
(
Ω
(
tf
) −Ω(0)

)
, (3.2)

so it corresponds to the variation of the angular frequency Ω on the time interval TF which
should be adjusted by a supplementary active torqueMs represented by

Ms =Ma −Mr, (3.3)

where Ma corresponds to the active torque and Mr corresponds to the resistive torque. The
active and resistive torque should be equal in the stationary regime, so the supplementary
torque should act on a limited time interval, so as to compensate the difference Ω(tf) −Ω(0)
previously detected.

For this purpose, we could notice that quantity S(tf) is proportional to this difference,
so a supplementary active torque can be transmitted in a limited time interval (tf , tf + Ts) as

Ms(t) = b
(
1 − cos

(
2π

t − tf
Ts

))
S
(
tf
)

(3.4)

(b being a constant). When t = tf + Ts, both functionMs(t) and its derivative C′(t) have null
values, so the action of the supplementary torque can be stopped avoiding the influence of
any switching phenomena (which can generate errors).

Since

Ms =Ma −Mr = c
dΩ
dt

, (3.5)
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it results that the action of this supplementary torque on this time interval Ts can be rep-
resented as

Ω
(
tf + Ts

) −Ω
(
tf
)
=

1
c

∫ tf+Ts

tf

Ms(t)dt =
b

c

∫ tf+Ts

tf

(
1 − cos

(
2π

t − tf
Ts

))
S
(
tf
)
dt. (3.6)

While S(tf) is proportional to the differenceΩ(tf)−Ω(0) (as has been shown), it finally
results that

Ω
(
tf + Ts

) −Ω
(
tf
)
= bTs

(
Ω
(
tf
) −Ω(0)

)
. (3.7)

By adjusting the relation between b and Ts, we can set quantity bTs to unity, so as the
action of the step change in the environment upon the angular velocity to be compensated in
a subsequent finite time interval.

This intuitive model is also valid for any complex (biological) system which should
maintain its position or the velocity of certain components at a specific value.

4. Efficient Signal Processing Methods Based on Two State Variables

The signal processing method presented in previous paragraph is based on sampled values
for three successive working intervals of the second-order oscillating system. Considering
that a step change for the input is detected on a certain working interval, the previous value
for the input is determined on an initial working interval (on which the input equals a certain
value Ain), and the final value for the input is determined on a final working interval (when
the input equals a final value Anext). During the middle working interval, the quantity Ain is
substracted from the received signal, and the quantity

AtA = (Anext −Ain)(2πT0 − τ) = z
(
tf
)
+

1
ω2

0

y′(tf) (4.1)

is available at the end of the interval (using amplifying and sampling procedures). Finally,
the step change A = Anext − Ain and the time moment τ are determined (using substracting
and dividing procedures).

However, the linearity of this second-order oscillating system allows a more efficient
and robust procedure to be used. The algorithm presented in the previous paragraph requires
two identical oscillating second-order systems working at the same time: one for processing
the input (so as to determine the estimated values for an input considered to be constant
on that interval) and another for processing the difference between the received signal and
the previously sampled value (so as to detect a possible step change during this interval
by determining the quantity AtA, where A stands for the step change and tA stands for the
active time). Moreover, filtering aspects could require extended time intervals for processing
the input signal (as was shown), and the absence of any control action during such an interval
could allow significant changes for the output of the complex system from the desired value.

In previous paragraph, it was shown that filtering properties and robustness require
an extended time interval for processing the input signal (received from transducers). For
this purpose, we can use either a second-order oscillating system with a period equal to
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the working interval (which means 2πT0 = TF), or a second-order oscillating system with a
period corresponding to a submultiple of the working interval (which means 2πT0 = TF/N).
The last choice is far more convenient, as it will be shown in this paragraph. Let us suppose
that on the whole working interval the input u(t) is represented just by the constant valueAin.
In this case, the output y(t) is represented by Ain(1 − cos(ω0t)). Supposing that quantity Ain

was determined on previous working interval, we can determine in a very simple manner the
expected values yex(k) which would be sampled for y(t)when phase φ equals kπ (this means
0, 2Ain, 0,−2Ain, . . ., the effect of high-frequency low-amplitude fluctuations being neglected).
At these time moments quantity y′(t) would be zero, so the sampling procedure would be
robust as related to the constant input Ain.

This suggests the possibility of sampling y(t) at these timemoments (this means when
ω0t equals kπ) and subtracting the expected values previously presented. Due to the linearity
of the second-order oscillating system, if a step change with amplitude A is detected during
the working interval, the sampled values y(k) at the moments of time tk = kπ/ω0 will be
represented by a sum of values determined by step inputAin and by a step changeA starting
to act at moment τ . Thus, the result is

yA(k) = y(k) − yex(k). (4.2)

Thus, the successive values yA(k) of the subtracting procedure will correspond just to
the influence of the step change A.

A quick analysis for first pair of values for yA(1) and yA(2) after the step change starts
to act (when significant differences from expected values are detected) can be performed by
comparing quantities

yA(1) = A[1 − cos(ω0(t1 − τ))] = A
[
1 − cosφ1

]
= 2A sin2φ1

2
,

yA(2) = A[1 − cos(ω0(t2 − τ))] = A
[
1 − cosφ2

]
= 2A sin2φ2

2
,

(4.3)

where

φ1 = ω0(t1 − τ),
φ2 = ω0(t2 − τ).

(4.4)

The phase difference between φ1 and φ2 equals π (as it was shown). It results that

yA(1) = 2A sin2φ1

2
, yA(2) = 2A sin2φ1 + π

2
= 2A cos2

φ1

2
. (4.5)

It can be easily noticed that the ratio yA(1)/yA(2) can be written as

yA(1)

yA(2)
= tan2φ1

2
. (4.6)
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A quick comparison of yA(1) and yA(2) is useful for an approximation of φ1. For high
values for yA(1) and low values for yA(2), φ1/2 can be approximated as π/2, and 2A can
be approximated as yA(1). For low values for yA(1) and high values for yA(2), φ1/2 can be
approximated as 0 and 2A can be approximated as yA(2). For similar values for yA(1) and
yA(2), φ1/2 can be approximated as π/4, and 2A can be approximated as yA(1)/2 = yA(2)/2.
Using φ1, τ can be determined as

τ = ω0
(
t1 − φ1

)
, (4.7)

where t1 stands for the first time moment in the set determined by ω0tk = kπ, k ∈ Z, for
which significant differences from expected values yex(k) are detected for sampled values yk.
This algorithm is efficient because it allows a preliminary command to be transmitted to the
controlled system before the working interval (on which the received signal is integrated
and sampled) to come to an end. It is more effective if the working interval includes several
periods of the second-order oscillating system (thus, more moments for estimative sampling
are established inside the working interval, and the preliminary command is transmitted
faster).

5. Aspects Connected with the Uncertainty Principle

In the third section of this paper has been presented an algorithm for a preliminary estimation
of a step change in the environment based on two state variables (two successive values
for a sin2φ function sampled at two successive time moments) with the phase difference
corresponding to these time moments determined as

Δφ = φ2 − φ1 =
π

2
. (5.1)

It can be noticed that measurements performed for sinusoidal functions at time
moments when the phase difference equals π/2 imply some aspects regarding opposite
requirements for sampling moments of time. Let us suppose that we are sampling just a sine
function for phase

φ1 = ψ,

φ2 = ψ +
π

2
.

(5.2)

It results that sampled values correspond to the pair

sinψ, cosψ. (5.3)

This pair can be considered also as a value for a sine function and a value for its
derivative for the same phase ψ. By taking into account the fact that any sampling procedure
requires a nonzero time interval, it results that it is desirable for these functions sinψ, cosψ
to be almost constant on a very short time interval necessary for this sampling procedure.
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Mathematically, this would imply the necessity of both functions to have null values at
sampling moments of time. However, it is well known that a maximum/minimum value
for sine function (when the differential of sine function equals zero) corresponds to a null
value for its derivative, the cosine function (at these time moments, the differential of the
cosine function has the greatest value for its slope, considered as modulus). Quite similar,
a maximum/minimum value for cosine function (when the differential of cosine function
equals zero) corresponds to a null value for its derivative, the − sin function (at these time
moments, the differential of the sine function has the greatest value for its slope, considered
as modulus). So it is impossible to select a suitable phase ψ so as the measurement accuracy
for both sine and cosine functions to be the best possible if nonzero sampling intervals are
taken into account.

This aspect is similar to the uncertainty principle in physics, when measurements
corresponding to a certain physical variable and to its conjugated variable (usually
corresponding to a derivative of a function in respect to the previous variable) are involved.
Moreover, it should be noticed that for a cosine function

f = A cosψ = ReA exp
(
iψ
)
, (5.4)

the action of the operator

Cr = 1 − i d
dψ

(5.5)

would correspond to

Cr
(
f
)
=
(
1 − i d

dψ

)
f = Re

[
A exp

(
iψ
) − (i)2A exp

(
iψ
)]

= Re
[
2A exp

(
iψ
)]
. (5.6)

It can be noticed that another cosine function cosψ has been generated.
Quite similar, the action of the operator

An = 1 + i
d

dψ
(5.7)

would correspond to

An
(
f
)
=
(
1 + i

d

dψ

)
f = Re

[
A exp

(
iψ
)
+ (i)2A exp

(
iψ
)]

= 0. (5.8)

It can be noticed that the cosine function cosψ has been annihilated. This aspect is
similar to creation/annihilation of particles in advanced quantum mechanics, where such
operators are derived using the decomposition of certain fields in plane waves. However,
aspects connected with momentum and position operators are hard to be noticed at this stage
of research.

As a conclusion for memory-limited complex systems, we can notice that the use of
second-order oscillating systems allows ot just robust sampling procedures on extended time
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intervals for certain quantities corresponding to step changes in the environment, but also the
use of just two state variables (corresponding to sampled values for sine and cosine function
at certain moments of time) for a preliminary estimation of such step changes during the
working interval. For an extended working interval which includes several alternances of the
oscillations generated by the received signal, this implies the possibility of transmitting quick
preliminary commands towards the actuators, a final adjustment being determined at the
end of the whole working interval, based on the difference between required action and the
already-performed action. Similar to aspects presented in previous section, these preliminary
commands Com(t) should be better transmitted as a pulse defined by

Com(t) = C[1 − cos(ω0(t − t2))], (5.9)

for t ∈ (t2, t2 + 2πT0) (a period of the oscillating signal considered from the second moment
of time when the preliminary sampling procedure for y(t) was performed, and the pair of
values sampled at t1 and t2 has been analyzed). Thus, subsequent expected values for y(t)
and y′(t) at time moments determined by ω0t = kπ could be computed in an easy manner
by the signal processing device, and any differences could be analyzed (for a preliminary
conclusion) in an easy manner on next periods of the oscillating system until the working
interval comes to an end.

For this reason, the algorithm previously presented is suitable for memory-limited
complex systems since it performs both a preliminary analysis of signal received from
environment for detecting step changes (with preliminary commands transmitted towards
actuators) and a final accurate estimation for the required action on next extended time
intervals (computed as a difference between the whole action required by the step change
and the action already performed by preliminary commands).

As in case of biological systems, this algorithm is based on values sampled at some
successive moments of time. It generates a sequence of certain commands towards the
environment as a sequence of pulses, analyzes the difference between expected values and
real values for the signal received from the environment, and adjusts the command with
higher accuracy after an extended time interval (a kind of multilevel control and command).
Another important similarity between this algorithm and behaviour of biological systems
should be noticed; the sampling moments of time (when the processed signal is recorded)
differ to the time moments when the filtered (processed) signal has a great slope (considered
as modulus) so as to allow a robust estimation using just two sampled (recorded) values.
The fact that less memory is involved is essential for complex systems which have to survey
a great number of parameters (motion parameters, for instance) in the environment and to
check the effect of commands transmitted towards a great number of actuators, see the case
of vision processing studied in [7, 8].

6. Conclusions

This study has presented advanced signal processing methods and command synthesis
for memory-limited complex systems. It was shown that for observing, modeling, and
controlling dynamic environmental phenomena in case of memory-limited complex systems,
some specific methods based on accurate measurements performed on limited time intervals
are required. Starting from the necessity of a set of consecutive measurements performed
in a robust manner for detecting step changes in the environment, it was shown that an
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extended time interval for processing the input signal is necessary. For this reason, the use
of second-order oscillating systems was improved by adding a supplementary algorithm so
as preliminary values for step changes in the environment to be available for control and
command during the signal processing interval. A method for generating a robust command
towards the control equipment on a limited time interval in order to compensate the step
changes detected on previous working interval was also presented. Finally, similarities
between measurements of a certain quantity and of its derivative for a sine function, by one
side, and the uncertainty principle in physics (by the other side) were briefly mentioned.
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