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Currently, complete or partial genome sequences of more than 150 human rhinovirus (HRV) isolates are known. Twelve species
A use members of the low-density lipoprotein receptor family for cell entry, whereas the remaining HRV-A and all HRV-B bind
ICAM-1. HRV-Cs exploit an unknown receptor. At least all A and B type viruses depend on receptor-mediated endocytosis for
infection. In HeLa cells, they are internalized mainly by a clathrin- and dynamin-dependent mechanism. Upon uptake into acidic
compartments, the icosahedral HRV capsid expands by∼4% and holes open at the 2-fold axes, close to the pseudo-3-fold axes and
at the base of the star-shaped dome protruding at the vertices. RNA-protein interactions are broken and new ones are established,
the small internal myristoylated capsid protein VP4 is expelled, and amphipathic N-terminal sequences of VP1 become exposed.
The now hydrophobic subviral particle attaches to the inner surface of endosomes and transfers its genomic (+) ssRNA into the
cytosol. The RNA leaves the virus starting with the poly(A) tail at its 3′-end and passes through a membrane pore contiguous with
one of the holes in the capsid wall. Alternatively, the endosome is disrupted and the RNA freely diffuses into the cytoplasm.

1. Introduction

Human rhinoviruses (HRVs) are icosahedral (30 nm in
diameter) and nonenveloped with a (+) ssRNA genome
of ∼7100 bases. Belonging to the family Picornaviridae,
genus Enterovirus, they are composed of 60 copies each of
four capsid proteins, VP1 to VP4. In 1987, HRVs from
clinical samples were serotyped into 100 strains [1]. Recently,
complete genome sequences of all known HRVs were
determined. Phylogenetic analyses grouped them into 3
species; 74 HRV-A, 25 HRV-B, and 6 HRV-C [2]. Since
then, many more rhinoviruses (mostly of type C) were
identified in clinical specimens [3–5]. Independent from
this classification, HRV-A and HRV-B are divided into
two groups based upon the receptors exploited for host
cell attachment; the minor receptor group, including the
so far identified 12 HRV-A, bind low-density lipoprotein
receptor (LDLR), very-LDLR (VLDLR), and LDLR-related
protein 1 (LRP1) [6–9], while the remaining HRVA and
HRV-B (constituting the majority, that is, the major group)

use intercellular adhesion molecule 1 (ICAM-1) for cell
entry [10]. Some major group HRVs (HRV8, 54, and 89)
can also use heparan sulfate proteoglycans (HSPG) as an
additional receptor [7, 11, 12] either as wild type (wt) or after
adaptation to grow in cells lacking ICAM-1. This is achieved
by numerous cycles alternating between blind passages and
boosting in permissive cells [13, 14]. The receptor(s) for
HRV-Cs is unknown [15].

Species A and B viruses are the cause of more than
50% of all mild infections of the upper respiratory tract
known as the common cold [16]. The typical symptoms
are inflammatory reactions of the nasal epithelium with
the release of kinins, leukotrienes, histamine, interleukin
1 (IL-1), IL-6, IL-8, TNF-α, and RANTES [17]. HRV
infections are usually benign and self-limiting, but recurrent,
and therefore generate enormous economic costs. In 2001,
the socioeconomic burden for noninfluenza virus-related
respiratory infections due to expenses for medication and
working days lost amounted to $40 billion in the USA alone
[18, 19]. Since 1957 [20] evidence has been accumulating
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that HRVs are associated with asthma and wheeze by also
infecting the lower airways. It is now well acknowledged that
HRVs are involved in the exacerbations of asthma, cystic
fibrosis, chronic obstructive pulmonary disease, pneumonia,
sinusitis, otitis media, and wheezing of infants [21]. In
addition to the costs detailed above, direct and indirect costs
from such complications in asthmatics amount to $60 billion
per year in the USA [22]. Global spending for respiratory
infections can be estimated to be in the trillions of US dollars
per year [18].

The recently discovered HRV-Cs appear to give rise to
more severe respiratory tract illness especially in pediatric
patients. HRV-C infections, in addition to symptoms of the
common cold, cause pharyngitis, croup, otitis media, bron-
chiolitis, or pneumonia. This species must have circulated
in the population for at least 10 years, but probably much
longer, as they escaped detection because of being refractive
to propagation in tissue culture [15]. The establishment of
highly sensitive PCR methods now enables detection and
strain typing within hours from clinical samples [3]. In
hospitalized children HRV-Cs were also found in plasma,
pericardial fluid, and stool samples [4, 23, 24] and the quite
high concentrations question whether their replication is
definitely limited to the respiratory system. Interestingly,
the novel technologies detected HRV-As and HRV-Bs in
fecal specimens as well. It is thus possible that all HRVs
are not exclusively transmitted by the nasal/oral route but
exploit a fecal-oral pathway as well. The viremia observed
(preferentially) in HRV-C infections may be indicative for
a distinct pathogenicity as compared to A and B viruses
[16, 23].

At the time of writing, 148 HRV types had been found
circulating in the human population [4]. Since recovery from
infection with one serotype does not protect against rein-
fection with another serotype, vaccination appears difficult
although common antigens have been identified [25–28].
A mixture of recombinant capsid proteins might thus be
worthwhile to consider as a possible vaccine [28, 29]. Never-
theless, so far other means of disease prevention are believed
to be more effective [30]. These include antiviral agents
inhibiting either uncoating (by binding into a hydrophobic
pocket within the capsid) or replication (by targeting virally
encoded enzymes, such as the proteases). Such drugs are
highly desirable for people suffering conditions like asthma
where infection with a rhinovirus might heavily aggravate the
symptoms. However, so far none of the initially promising
compounds has reached clinical application.

2. Overview of the HRV Life Cycle

HRV infection typically involves the following sequence of
events: (i) virus binding to the respective cognate receptors
at the plasma membrane, (ii) entry into the cell by receptor-
mediated endocytosis, (iii) transition from the native virus to
a hydrophobic subviral particle, (iv) release of the viral RNA
(uncoating), (v) RNA penetration into the cytoplasm, (vi)
synthesis of viral proteins, (vii) RNA replication, and (viii)
assembly and release of new, infectious virions.

Concomitant with HRV cell entry structural changes of
the viral capsid occur that ultimately result in release of the
genomic RNA. It is believed that native HRVs first lose the
innermost capsid protein VP4 resulting in the generation
of subviral A-particles [31]; these are further converted
to (empty) B-particles after the release of the RNA. This
view is supported by the finding that A-particles of the
related poliovirus are infective, although at a substantially
reduced rate [32]. Native virions and subviral particles can
be separated by ultracentrifugation; native virions sediment
at 150S, A-particles sediment at 135S, and empty B-particles
have a sedimentation constant of 80S [33].

Upon arrival of the viral genome in the cytosol the
RNA is translated into a polyprotein that is autocatalytically
and cotranslationally cleaved by the viral proteinases 2Apro,
3Cpro, and its precursor 3CDpro, into structural proteins
VP1, VP0, VP3, and the nonstructural proteins required for
virus replication [34]. These include the RNA-dependent
RNA polymerase 3Dpol as well as the precursor proteins
(3CD, 2AB) that induce the formation of membrane vesicles
derived from intracellular membrane-bounded compart-
ments acting as scaffold for the RNA polymerase. Upon virus
assembly maturation cleavage of VP0 into VP2 and VP4
occurs by an unknown protease [35].

3. HRV Receptors and Their Virus
Binding Properties

In the following we will concentrate on the receptors for
HRV-A and HRV-B since HRV-C receptors have not been
identified. The physiological function and cell-type-specific
expression of ICAM-1 and LDL-receptors are different.
ICAM-1, a type 1 transmembrane protein, is predominantly
involved in cell-cell adhesion in endothelial cells and in
immune reactions by binding to the integrins lympho-
cyte function antigen 1 (LFA1 i.e., CD11a/CD18) and
macrophage 1 antigen (Mac1, i.e., CD11b/CD18) [36]. Its
extracellular part is composed of five typical immuno-
globulin-like domains [37] and its short cytoplasmic tail
has no known clathrin-coated pit localization signals. In
cryo-EM 3D-reconstructions of complexes between soluble
recombinant fragments of ICAM-1 and HRV3, HRV14, and
HRV16, its first domain is seen to contact the virus inside the
canyon, a cleft encircling the dome at the vertex, whereas the
other domains protrude from the surface [38–41].

As will be detailed below, the structural alterations of
the viral capsid of major group viruses during uncoating
are catalyzed by ICAM-1 in a pH- [42] and temperature-
dependent manner [43, 44]. This is similar to poliovirus
where receptor binding leads to uncoating [45]; however,
the structural changes of poliovirus are independent of low
pH [46–49]. In contrast to ICAM-1 and the poliovirus
receptor, members of the LDLR family only function in
ligand internalization but do not catalyze uncoating. They
transduce signals and undertake multiple rounds of recycling
to the plasma membrane and reinternalization [50]. Their
ligand-binding domains are composed of different numbers
of ligand-binding (type A) repeats (LDLR has 7, VLDLR has
8, and LRP1 has 31). In LDLR, they are at the N-terminus and
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Figure 1: Receptors for minor group viruses are expressed in nasal epithelial cells. Paraffin-embedded nasal tissue sections were prepared,
rehydrated, and subsequently incubated with anti-LDLR [60] or anti-LRP1 [70] antibodies, followed by the respective fluorophore-labeled
antichicken or antirabbit Alexa-488-IgG. Nuclei were stained with Hoechst dye. Pictures shown are overlays of immunofluorescence and
phase contrast images. LDLR (a) and LRP1 (b) are present at the apical (yellow arrow heads) surface in ciliated as well as in basal cells (white
arrow heads). A mucous secreting cell is indicated by a red arrow head.

followed by three regions with similarity to the epidermal
growth factor precursor (EGF-domain) containing YWTD
motives forming a 6-bladed β-propeller, a domain with O-
glycosylation proximal to the membrane, a transmembrane
domain, and a cytoplasmic tail with an NPXY internalization
motive [51, 52]. The other members of the LDLR family
exhibit similar domain arrangements [53, 54]. In tissue
culture cells LDLR and LRP1 mediate productive entry of
minor group viruses [6]. It is likely that this also holds true
for VLDLR as its downregulation inhibits infection with
minor group HRVs [55]. As demonstrated for HRV2 and a
recombinant fragment of VLDLR, the ligand binding repeats
attachment to the top of the star-like mesa at the vertex at the
five-fold axis of symmetry in a multimodular manner; thus,
the binding site is distinct from that of ICAM-1 [56–59]. As
mentioned above, minor group virus uncoating is receptor
independent and might even be inhibited to some extent by
the bound receptor; presumably, it prevents movements of
the five copies of VP1 that occurs during conversion to the
subviral particle [60, 61].

HRVs replicate in (polarized) epithelial cells in the upper
and lower airways [62–64]. As known for HRV-A and -B
viruses, only a few ciliated cells become infected and this
without obvious cytopathic effect. This is in agreement
with the receptor for major group viruses, ICAM-1, being
expressed in only 1% of these cells in nasal tissue in the
absence of inflammation [65, 66]. The very low level of
ICAM-1 expression in highly differentiated ciliated epithelial
cells, as compared to undifferentiated basal cells, appears to
limit infection [67, 68]. No such in vivo data are available for
minor group HRVs. Immunostaining for LDLR and LRP1
of normal nasal tissue revealed the presence of the receptors
at the apical surface in ciliated as well as in basal cells. As

shown in Figure 1, receptor expression between individual
ciliated cells varies considerably. Neither the expression of
ICAM-1 nor of LDLR/LRP1 in the nasal epithelium has
been quantified in situ. The polarity of ICAM-1 expression
is also unknown. Receptor expression obviously determines
the amount of virus that can bind and enter the cells.
However, the presence of a suitable receptor is not sufficient
for productive infection, as subsequent events such as
entry, uncoating, RNA penetration into the cytoplasm, and
replication must also function properly in a given cell [69].

4. HRV Structure and Capsid Alterations
during Uncoating

As all picornaviruses, HRVs possess T = 1, P = 3 icosahedral
symmetry with 60 copies of each of the capsid proteins VP1,
2, 3, and 4. Except from the small internal myristoylated VP4,
they fold similarly into a beta-barrel whose eight antiparallel
beta-sheets are connected with long (external) and short
(internal) loops. The former are exposed and make up the
antigenic sites, targets for type-specific antibodies [71–76].
The inner capsid wall is stabilized by an intricate network
built by interacting residues of the N-terminal extensions of
VP1 and VP2 under contribution of the backbone of VP3;
residues of both VP1 and VP2 interact with the RNA [77].

Concomitant with HRV cell entry the viral capsid suffers
structural alterations. Induced by interacting with ICAM-1
(major group HRVs, [44, 78, 79]) or exclusively triggered
by the low pH (minor group HRVs) the virus loses the
pocket factor, presumably a fatty acid residing in a void
within VP1, and expands by about 4% [80, 81]. In major
group viruses, depending on the serotype, the low pH may
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aid the “catalytic” function of ICAM-1 [42]. For HRV2, it
was recently shown that on expulsion of the pocket factor,
the empty space allows for Met213 of VP1 to move in. This
results in a substantial part of the chain pivoting over this site
[80]. The final result is a loosing of intra- and intersubunit
interactions and the opening of three types of holes [77];
the largest ones at the twofold axes and smaller ones at the
pseudo three-fold axes and at the base of the star-shaped
domes at the vertices. The small innermost myristoylated
capsid protein VP4 escapes (its exit site is unknown but the
holes are big enough for an unfolded protein to pass) and N-
terminal sequences of VP1 become exposed most probably
on exiting through the pore close to the pseudo-threefold
axes [77]. A similar exit point has been proposed earlier for
HRV3 [38] and poliovirus [82–84]. Due to the amphipathic
nature of the N-terminal VP1 sequences these A-particles
then attach to endosomal membranes and release the RNA.
Native virus is thereby converted into B-particles (i.e., empty
capsids).

Recent cryo-EM data demonstrated that the RNA is
much more structured than previously thought; in addition
to the well-known contacts with the conserved Trp38 of VP2
([85] and references therein) it also interacts with residues
of VP1. These latter are part of an interaction network
contributed by the N-terminal extensions of VP1 and VP2.
Comparison of the 3D X-ray structures of native HRV2 and
its empty capsid and a model of the 135S-particle at close
to atomic resolution reveals that this network is broken in
the subviral particles [77]. Since a number of acid-sensitive
residues are nearby it is likely that their protonation weakens
this network letting go the RNA to escape through one of the
holes. In A-particles the RNA-protein contacts have changed
with respect to the native virion; those at the 2-fold axes
are maintained but new ones are being established with N-
terminal residues of the VP3 ß-cylinder that have become
accessible after VP4 has escaped.

5. HRV Entry Pathways and
Intracellular Trafficking

5.1. Entry into Tissue Culture Cells. Early on, the low pH
sensitivity of HRVs suggested cell entry by endocytosis and
uncoating in endosomal compartments [31, 33, 86]. Endocy-
tosis, the uptake of extracellular material within membrane-
bound vesicles, has first been described by Metschnikoff
about 130 years ago [87]. It starts by binding of ligands to
specific receptors, concentration of these complexes in spe-
cialized domains at the plasma membrane (e.g., coated pits,
caveolae, and lipid rafts) followed by membrane invagination
and pinching off of primary endocytic vesicles. Viruses have
proven to be valuable tools for studying the mechanisms of
primary endocytic vesicle formation [88]. So far, clathrin-
mediated endocytosis is best characterized [89]. It depends
on particular sequence motives in the cytoplasmic tail of the
transmembrane receptors for clathrin-coated pit formation
[90]. Caveolae-dependent as well as clathrin- and caveolin-
independent pathways are less defined. In addition to specific
coat proteins (clathrin, caveolin, flotillin) and accessory

molecules (adaptor proteins), the GTPase dynamin plays
an essential role in the constriction/fission process during
clathrin-, caveolin-, and lipid-raft-mediated uptake [91].
Based on the distinct requirements for clathrin, caveolin,
dynamin, cholesterol, and various other accessory molecules,
10 different endocytic pathways have been differentiated so
far [88]. Irrespective of the uptake mechanism, internalized
receptors and ligands are first delivered to early (sorting)
endosomes [92–95]. From early endosomes, internalized
material can then follow different intracellular routes [95,
96]: (i) transport to lysosomes, resulting in degradation of
ligands and certain receptors, (ii) recycling to the cell surface,
and (iii) in polarized cells, transport from one plasma mem-
brane domain to the opposite plasma membrane domain
(transcytosis).

A main feature of endosomes is their ability to acidify
their interior by a vacuolar proton ATPase (V-ATPase) [97–
99]. Due to the concerted action of the V-ATPase, Na+/K+-
ATPase, transporters, and ion channels, distinct pH values
are established in endocytic subcompartments that play an
important role in trafficking of macromolecules through
endocytic pathways, in ligand degradation, and inactivation
of internalized pathogens [100, 101]. Although endocytic-
coated vesicles may not be acidic [102], the mildly acidic
pH in early endosomes causes the dissociation of many
ligands from their receptors [103] allowing for receptor
recycling; a small fraction of internalized fluid containing
the released ligands is routed through late endosomes to
lysosomes for rapid degradation (Figure 2). The formation
of “nascent” late endosomes may involve budding and fission
events from early endosomes resulting in “endosomal carrier
vesicle” (ECV) formation [104]. In any case, nascent late
endosomes undergo a sequence of maturation events until
fusion with lysosomes can take place [101]. Material en route
to lysosomes (pH 4.5–4.0) is exposed to an increasingly
acidic pH during transport from early endosomes (pH 6.5–
6.0) through ECV/late endosomes (pH ≤ 5.6) [100, 105–
108]. Concomitantly with the decrease in pH the internal
ionic milieu of endosomes undergoes major alterations as
compared to the outside environment [99]; the calcium
and chloride concentration first decreases and subsequently
increases, and the continuous decrease in sodium ions
is paralleled by potassium ion increase. These alterations
are brought about by ATPases, transporters, channels, and
passive ion permeabilities in the membrane of endosomes.

Receptors (e.g., the transferrin receptor, LDLR), certain
ligands (e.g., transferrin), plasma membrane proteins, and
the majority of internalized fluid are recycled to the cell sur-
face [95]. As exemplified by transferrin, recycling can occur
via two pathways; from early endosomes with t1/2 ≈ 2 min
(fast) and from the perinuclear recycling compartment
(PNRC) with t1/2 ≈ 12 min (slow) [109, 110]. In CHO and
Hep2 cells, the pH of the PNRC is higher than that of
early endosomes, whereas it is more acidic than in early
endosomes in HeLa cells [95, 105].

Due to distinct mechanisms of endosomal transport to
lysosomes and recycling to the plasma membrane, different
drugs and dominant negative mutants, for example, of rab
GTPases, may be used to arrest ligands, receptors, and
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Figure 2: Influence of bafilomycin, nocodazole, and low temper-
ature on endocytic pathways in HeLa cells. The recycling pathway
(transferrin, LDLR) and the transport of ligands (LDL) and fluid-
phase marker to lysosomes are shown. Iron-loaded transferrin
binds to its receptor at the plasma membrane. The complex is
internalized via clathrin-coated vesicles (CCV) and delivered into
early endosomes within 2–5 minutes, where the iron is released
and transferred into the cytoplasm. Apotransferrin remains bound
to the receptor and recycles via a fast and a slow pathway. At
the plasma membrane, apotransferrin is released at the neutral
pH. Similarly, internalized LDL is released from its receptor in
early compartments allowing for LDLR to return to the plasma
membrane via the same pathways as apotransferrin. Although a
major portion of fluid-phase marker (e.g., dextran) is recycled, the
remaining fluid and released ligands (LDL) are delivered from early
endosomes (within 5 min), via endosomal carrier vesicles (ECV)
and late endosomes (within 15 min), to lysosomes (within 25 min).
Transferrin transport to and recycling via the perinuclear recycling
compartment is blocked by nocodazole, whereas bafilomycin and
lowering the temperature to 20◦C are without effect. In contrast,
bafilomycin arrests fluid-phase markers in early endosomes by pre-
venting budding of ECV, whereas nocodazole leads to accumulation
of cargo in ECV. Finally, incubation at 20◦C prevents delivery of
markers from late endosomes to lysosomes. For further details and
endosomal pH determination see [105, 108]. Adapted from Fuchs
and Blaas [112].

fluid in specific endosomal subcompartments (see Figure 2).
Furthermore, when ligands destined to lysosomes are taken
up at reduced temperature (e.g., at 20◦C), internalization
takes place (albeit at reduced rate) and sorting does occur but
fusion of late endosomes and lysosomes is prevented [111].
In contrast, the kinetics of transferrin endocytosis and recy-
cling is unaffected at 20◦C [105]. Consequently, these treat-
ments are valuable tools for investigating whether viruses
follow a recycling or degradative pathway and to identify the
compartment where virus penetration/uncoating takes place.

One particular virus can use multiple entry pathways
[113–115], but not all may result in delivery to the com-
partment where the internal milieu allows for the structural
alterations and genome release (i.e., for productive uncoat-
ing) leading to infection of the host cell. Why is it important
to define the virus entry route and the compartment
of productive uncoating and genome penetration? Since
distinct cellular factors are necessary for virus internalization
and intracellular routing these molecules may represent

potential drug targets for antivirals. For example, Urs
Greber’s group recently demonstrated that niclosamide, an
antihelminthic drug approved by the FDA since a long
time, prevents infection by various HRVs via neutralizing
acidic endosomes [116]. Another example is HIV; this
enveloped virus penetrates into the cytoplasm by fusion
with the plasma membrane but it can be routed into an
unproductive pathway by enhancing its endocytosis [117,
118]. Redirection from a productive to an unproductive
endocytic compartment was also shown for coxsackievirus
B3, another picornavirus [119].

Combining small molecule inhibitors, dominant-
negative mutants, RNAi, immunofluorescence microscopy,
FISH, and subcellular fractionation with infectivity assays,
we have been studying the productive entry route(s) of
HRVs into tissue culture cells [12, 108, 120–125]. Because of
the high particle to infectious particle ratio (between 24 : 1
and 240 : 1; [126] or even much higher [127]) determining
infectious virus was and is of particular importance in such
investigations.

The entry mechanism of major group HRVs appears
to by cell-type specific. In HeLa cells (Figure 3(a)), HRV14
uptake occurs by a dynamin- and presumably clathrin-
dependent route [128, 129], whereas endocytosis in ICAM-
1 overexpressing rhabdomyosarcoma cells is independent
of clathrin, caveolin, flotillin, and lipid rafts [123]. HRV14
endocytosis and productive uncoating in these cells were
partially inhibited by blocking dynamin function with dyna-
sore and by disrupting the actin cytoskeleton. Conversely, the
Na+/H+ exchange inhibitor amiloride prevented uptake and
uncoating indicative for macropinocytosis as infectious entry
route [123]. Some major group viruses (HRV8, HRV54,
and HRV89) either use or can be adapted to use HSPG
as an alternative receptor for cell binding in addition
to ICAM-1 [11–13]. Entry and infection of the HSPG-
binding variant of HRV8 (HRV8v) in rhabdomyosarcoma
cells devoid of ICAM-1 were very similar to entry and
infection of HRV14 in these cells [12]. Our recent studies on
the productive entry route of HRV89, another major group
virus, in HeLa cells are in agreement with a clathrin- and
dynamin-dependent mechanism [130]. This is surprising
since ICAM-1 has no known clathrin-coated pit localization
signals in its cytoplasmic tail and GPI-linked ICAM-1 can
mediate HRV14 internalization and infection [131]. After
plasma membrane binding, HRV14-ICAM-1 complexes are
delivered into mildly acidic early endosomes [124, 132]. It
has not been investigated in vivo whether major group HRVs
dissociate from ICAM-1 at low endosomal pH, as suggested
from in vitro experiments [133]. Neither is the further
trafficking of major group HRVs in HeLa cells completely
clear. By using immunofluorescence microscopy, HRV14 was
found in early and late endosomes when internalized at 20◦C
[124] but not when uptake occurred at 34◦C. Under the
former condition the conformational modification of the
capsid catalyzed by ICAM-1 and thus infection is inhibited.
These results contradict recent data by Khan et al. [123]
where HRV14 exhibited some colocalization with the fluid-
phase marker dextran after co-internalization at 34◦C in
ICAM-1 overexpressing rhabdomyosarcoma cells. Whether
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Figure 3: Entry, intracellular trafficking, and uncoating of HRVs in HeLa cells. (a) The major group virus HRV14 is internalized via
clathrin-mediated endocytosis and delivered into early endosomes from where it presumably further traffics into the perinuclear recycling
compartment. Structural modification of the viral capsid catalyzed by ICAM-1 is probably coupled to RNA release and rupture of the
endosomal membrane. These events lead to delivery of free RNA and empty capsids into the cytoplasm. Most likely, uncoated virus and the
RNA escape from the perinuclear recycling compartment. (b) HRV2 enters via clathrin-dependent and independent pathways and dissociates
from its receptors at mildly acidic pH in early endosomes. Receptors are recycled and HRV2 is transferred to ECV/late endosomes where the
more acidic pH (≤5.6) induces the structural modification resulting in uncoating and RNA transfer into the cytosol. Finally, residual native
virus, subviral particles, and viral RNA are transported via late endosomes to lysosomes where they are degraded. Adapted from Fuchs and
Blaas [112]. Note that the pathways might differ in other cell types.

this discrepancy is due to ICAM-1 overexpression or the
different cell type remains to be demonstrated. As already
shown by Lonberg-Holm and Korant [31] the virus is
apparently not transported to lysosomes as viral RNA is not
degraded after 60 min incubation at 34◦C. Collectively, these
data may indicate that HRV14 follows the recycling pathway,
is targeted to other organelles, or disrupts the endosomes for
escape (Figure 3(a)).

The so far investigated major group HRVs were found
to be dependent on ICAM-1 for capsid modification; some
HRVs are additionally “primed” by low endosomal pH
for receptor-catalyzed uncoating [42]. Infection by these
serotypes is either completely (HRV16), partially (HRV14),
or not (HRV3) blocked by raising the endosomal pH with
bafilomycin [42, 132]. Inability of bafilomycin to completely
block infection by major group HRVs would indicate
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RNA uncoating/penetration in/from early endosomes or the
PNRC since this drug not only increases endosomal pH but
also halts transport of cargo to late endosomes [134]. In
contrast, transfer from early endosomes to the PNRC persists
in the presence of bafilomycin [105, 135].

HRV2, a prototype minor group HRV, is internalized
by clathrin-mediated endocytosis into early endosomes
(Figure 3(b)) [125]. However, when this pathway is blocked
by cytosol acidification or overexpression of nonfunctional
dynamin, HRV2 enters via a clathrin- and dynamin-
independent pathways [122, 136]. Similar to the natural
ligand LDL the virus dissociates from its receptors in
early endosomes. Obviously, the specific internal milieu in
these compartments (low calcium) facilitates dissociation by
destabilizing the conformation of the ligand-binding repeats.
This is supported by the finding that little LDL and HRV2
are released from the receptors at the plasma membrane at
pH 6.5–6.0 [52, 60, 137]. Furthermore, LDLR and HRV2
release depend on intramolecular competition with the beta-
propeller domain of the receptor [60]. LDLR is recycled to
the plasma membrane [60] and the virus is targeted via
typical LAMP-positive late endosomes to lysosomes where
it is rapidly degraded [31, 138]. Impeding HRV2-LDLR
dissociation by deletion of the beta-propeller and the EGF-
C domain of human LDLR results in degradation of the
entire complex and thus in receptor downregulation [60]. In
contrast to major group HRVs and their receptor ICAM-1,
uncoating and membrane penetration can take place in the
absence of LDLR/LRP and this process is solely dependent
on pH ≤ 5.6 in vitro and in vivo [139, 140]. In accordance
with this pH requirement, HRV2 has been found to release
its RNA in ECV/late endosomes in vivo [124, 138].

5.2. Entry into Airway Epithelial Cells. Although HRV repli-
cation in HeLa cells and in primary human bronchial
epithelial cells is comparable [141], HeLa cells are not a valid
model for the airway epithelium. The respiratory epithelium
is built from different cell types; predominantly ciliated
columnar (epithelial) cells and mucous-secreting goblet
cells (Figure 1). Both are polarized with their apical and
basolateral plasma membrane separated by tight junctions.
The basal cells are small and rounded and are in contact with
the basal lamina; they can differentiate into the other cell
types [142]. For studying the mechanisms of virus replication
outside the human body either organ cultures of biopsy
material [143] or cultures of primary nasal, tracheal cells,
bronchial epithelium [144], or immortalized airway cell lines
(Calu3, 16HBE) [145] were used. Since no comparative
studies on the productive entry pathways of HRVs in all these
systems have been carried out, it is unknown which cell line
or cell type would best represent the in vivo situation.

The clinical symptoms of an HRV infection are the
consequence of the immune response of the infected res-
piratory epithelium. Thus, it is apparent that HRV binding
to its receptor and virus entry activate various signaling
pathways leading to secretion of inflammatory mediators.
The nonreceptor protein tyrosine kinase Syk has been
identified as an early signaling molecule that ultimately leads
to IL-8 expression [146, 147]. Upon binding of HRV16 to

ICAM-1 in primary bronchial epithelial cells Syk is recruited
to the plasma membrane together with ezrin that in turn
can interact with filamentous actin. Both Syk and ezrin
associate with clathrin in response to virus binding. These
data suggest—in agreement with studies in HeLa cells—
that the major group virus HRV16 enters via a pathway
involving clathrin and actin. Following virus entry, Syk and
ezrin appear to redistribute from the plasma membrane
to endosomal compartments [148] suggesting that they
might continue signaling from endosomes. Syk recruitment
to ezrin also results in activation of the p85 regulatory
subunit of the phosphatidylinositol (PI) 3-kinase and the
Akt signaling pathway [147, 149]. Another target activated
by binding of the major group virus HRV39 to ICAM-1 that
is also involved in regulation of IL-8 expression has been
shown to be Src [149, 150]. Src functions as an upstream
regulator of p110β catalytic subunit of PI 3-kinase (that in
turn forms a complex with p85 PI 3-kinase) and of Akt.
Furthermore, HRV39 internalization and/or intracellular
trafficking appear to depend on PI 3-kinase activation [149].

In contradiction to the observations described by Lau et
al. [148], Dreschers and coworkers noticed the induction of
ceramide-enriched membrane domains by major group and
minor group viruses in nasal mucosa, isolated nasal epithelial
cells, HeLa cells, and fibroblasts [151, 152]. Such domains
may be important for p38-MAPkinase activation in response
to HRV14 infection [153] as well as for HRV39-induced Src
signaling in airway cells [150]. Remarkably, viral replication
is not required for activation of p38-MAPkinase. Thus, most
likely, receptor clustering by the multivalent virus on the
one hand induces signals facilitating virus entry and/or
replication and, on the other hand, signals upregulating the
immune response.

Despite considerable information on induction of
inflammatory mediators by minor group viruses and inhi-
bition of infection by various drugs, essentially no data have
been published on the mechanism of entry and uncoating
of minor group HRVs in airway cells. In situ, infection by
major group HRVs leads to inflammation and increased
ICAM-1 expression [66]. It is thus interesting that LDLR
expression was found to be upregulated upon infection with
the major group virus HRV14 or the minor group virus
HRV2 in primary cultures of human tracheal epithelial cells
[144]. Vice versa, in the same cells, ICAM-1 expression was
also increased after infection with HRV14 or HRV2 [154].
These effects may be explained by HRV-induced activation of
nuclear factors SP1 and (NF)-κB that regulate both ICAM-1
and LDLR expressions.

6. Mechanism of RNA Uncoating

6.1. Penetration and Uncoating of Major Group Viruses.
Although major group HRVs bind ICAM-1 at 4◦C, the
receptor-catalyzed structural modifications required for
RNA release only occur at temperatures ≥26◦C in vitro
(shown for HRV3) [44] as well as in vivo (HRV14)[155].
In agreement with the inability of ICAM-1 to induce
virus uncoating below 26◦C, HRV14 was found in endo-
somes when internalized at 20◦C. Although the pH in this
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compartment is about 5.6 [138] this is not sufficient for
HRV14 uncoating in the absence of the receptor [156]. How-
ever, when the virus was internalized at 34◦C, a condition
where the viral RNA is released, HRV14 was not detected
in endosomal compartments. We thus concluded that it
penetrates into the cytoplasm by rupturing the endosomal
membrane [124]. Further evidence for this mechanism was
derived from different experimental approaches; (i) by elec-
tron microscopy, free HRV14 was seen in the cytosol 30 min
after entry [129]. (ii) HeLa cell endosomes were labeled
with the pH-sensitive FITC and the pH-insensitive Cy5-
dextran. FACS and single-organelle flow analysis (SOFA)
[120] demonstrated an increase in the mean pH from
6.0 (control, in the absence of virus) to 7.0 upon co-
internalization of these fluid-phase markers with HRV14
(see Figure 3 in [112]). This correlated with a reduction in
the number of the labeled endosomes by 23% indicating
that the fluorescent markers had been released into the pH
neutral cytoplasm. For comparison, adenovirus was analyzed
in parallel. This virus is known to penetrate into the cytosol
by very efficient endosome lysis, reducing the number of
fluid-phase marker-labeled endosomes by 37%. At least in
HeLa cells, uncoating and subsequent infection of HRV14
can also take place when the endosomal pH is neutralized
by bafilomycin [132]. This drug, in addition to inhibition
of V-ATPases, arrests markers en route to lysosomes in early
endosomes [134]. In its presence HRV14 was not detected in
isolated endosomes suggesting that the virus penetrates into
the cytosol by rupture of early endosomes. Since the recycling
pathway is not affected by elevating the endosomal pH it
might be also considered that the virus penetrates from and
ruptures the PNRC [105, 135]. Nevertheless, as long as the
RNA has not been traced on its way from within the intact
capsid into the cytosol, the localization of the process will
remain indirect and lacking definite proof.

6.2. Uncoating and RNA Penetration of HRV2. In contrast to
HRV14, HRV2 was localized in ECV/late endosomes in intact
HeLa cells by immunofluorescence microscopy as well as by
subcellular fractionation of isolated endosomes [124, 157].
Various experimental setups support a mechanism where
the RNA is transferred from these compartments into the
cytoplasm through a pore in the membrane [120, 121,
124]. As recently shown, under conditions of productive
uncoating, HRV2 induces ion permeable channels presum-
ably lined by viral proteins (see Figure 6 in [112]). Most
likely, the RNA travels through these pores into the cytosol.
RNA transfer is stimulated by a trans-negative membrane
potential (endosome interior positive) as compared to inside
positive potential but is unaffected by the pH gradient
between endosomes and cytoplasm [158].

Taken together, at present, data on rhinoviruses and
poliovirus from different laboratories support a model in
that VP4 and the amphipathic N-terminal extensions of
VP1 insert into the membrane of late endosomes to form
an ion-conducting pore. This channel would be exploited
by the RNA to pass. The previous, quite suggestive model
positioned the exit site of the RNA at a fivefold axis;
this places five receptor molecules and five copies of the

VP1 N-terminal extensions upright onto the membrane.
However, according to the present model RNA exit occurs
at a twofold axis leaving us with the question of how this
opening in the viral shell can be positioned on the membrane
(by receptors and/or the amphipathic extensions of the
capsid proteins of the subviral particle) in a way as to form a
contiguous channel.

RNA exit from poliovirus inside the cell has been lo-
calized to endosomal compartments by life cell microscopy
[159] and membrane penetration of the viral genome has
been demonstrated in intact liposomes on acidification of
bound HRV2 [140]. Nevertheless, direct visualization of the
RNA passing through this putative channel is lacking.

In contrast to a number of older textbook illustrations,
at least in vitro, the RNA leaves the virion with its 3′-end
first and not with the 5′-end carrying the peptide VPg [160].
Since the 5′-end is being synthesized first, encapsidation is
likely to start with this end and might terminate with the
poly-(A) tail left close to the location where a hole is going
to open at one of the 2-fold axes when the subviral particle
forms [161, 162].

7. Future Perspectives

Although considerable progress has been made in unraveling
the entry mechanisms of rhinoviruses into tissue culture
cells, amazingly little is known on the entry route leading to
productive infection of the airway epithelium. Identification
of receptors for HRV-C type viruses, characterization of
their entry pathways, and comparison with A and B types
will shed light on the distinct pathology of infection
caused by this virus species. A systems biology approach in
combination with new high-throughput technologies may
lead to identification of cellular host factors essential for
HRV entry, trafficking, uncoating, signaling, and replication
and thus point to novel drug targets [163, 164]. Structural
studies using electron microscopy and X-ray crystallogra-
phy of viruses and virus-(receptor)-liposome complexes in
combination with novel technologies have shed light on the
capsid modifications occurring during uncoating and the
mode of RNA exit. Such techniques need now to be utilized
to study the in vivo situation, that is, to characterize the
molecular mechanisms of virus-endosome interaction and
to visualize the RNA during transit from the protective viral
shell through a membrane into the cytosol.
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