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Combination of annealing particle filter
and belief propagation for 3D upper body
tracking
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Abstract. 3D upper body pose estimation is a topic greatly studied by the computer vision society because it is useful in a
great number of applications, mainly for human robots interactions including communications with companion robots. However
there is a challenging problem: the complexity of classical algorithms that increases exponentially with the dimension of
the vectors’ state becomes too difficult to handle. To tackle this problem, we propose a new approach that combines several
annealing particle filters defined independently for each limb and belief propagation method to add geometrical constraints
between individual filters. Experimental results on a real human gestures sequence will show that this combined approach leads
to reliable results.

Keywords: Body tracking, particle filter, belief propagation

1. Introduction

Robot companion is considered as the key element
of service and domestic robotics [1]. Mainly for home-
care in assisting elderly and disabled people, these
robots may perform soon tasks that could help for
home nursing or assisted living facility. One of the
principal requirements expected from these machines
is communication. Indeed, the co-living and collo-
cated robots must be able to exchange information
easily and naturally with users: robots might be anthro-
pomorphic by understanding human intents on one
hand, and displaying a directly interpretable status on
the other hand [41]. This bi-directional information
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flow passes through the called human-robot-interface
(HRI). The later is more and more considered as a
research field itself in robotics. Indeed, even if HRI
shares sensory-based concepts and tools with classical
robotics autonomy [2], it considers communication as a
specific autonomic process itself and the robot sensory
system must capture users intents. This task concerns
both the medium and the content. The first is dealing
with the sensory channel through which the informa-
tion is addressed; the second one is more related to
semantics of the exchanged messages. For instance,
gestures are generated by arms and recognized by eyes:
arms and eyes are mediums while arms movement
are human intent signals. In our work, we concen-
trate on gestures. Mainly, we are aiming to develop a
cost-effective system, to be embedded on home robots,
able to recognize and to understand human gestures.
It is a fact that gestures constitute an important part
of means humans employ to communicate with each
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others. Gestures are used for everything from pointing
at a person to get his attention to conveying informa-
tion about space and temporal characteristics [3], they
can complete other modalities, and some times can be
central when speech-based communication is not pos-
sible [4] or has to be completed [5]. However, gestures
recognition is known to be a complex problem. From
robotics and computational points of view, gestures
are sequences of movements performed by non-rigid
bodies. The recognition of such sequences must first
solve the human body pose estimation problem. Once
the pose is known over time, one can tackle the clas-
sification problem. Exact solutions of the first part of
the problem can be found on the shelf. Indeed, a lot
of commercial products providing in real time human
body poses exist. Unfortunately, the use of such sys-
tems is constraining: one needs to rely on an ad-hoc
infrastructure such as markers for vision based systems
or specific sensors (electromagnetic, IR or US) making
these solution inaccessible to a large and cost-effective
dissemination for home robots.

In our case, we choose vision sensing based system.
Many researchers for a large spectrum of applications
have adopted this choice where localization, tracking
and 3D modeling are the applications’ core. Follow-
ing that, ‘pose estimation’ problem can be stated as
the localization of moving and/or static articulated
and linked parts from a sequence of 2D images. This
involves the identification of the set of subparts (head,
arms, hands, etc.), the estimation of their respective
poses in the three-dimensional space and the tracking
of each of them when possible.

This paper reports on the work we achieved concern-
ing low-cost human body pose estimation. It is a part
of a larger project dealing with homecare robotics. We
use a minimalistic hardware, namely, a single camera
and a normal PC allowing the algorithm we developed
to run in real time. The outline of the paper is as fol-
lows. In section 2, we sum up some related works,
while in section 3 we state the problem. In section 4,
we introduce the model representing the human body
on which we based all the steps of our algorithm. In
section 5, we detail the image processing steps lead-
ing to the extraction of the 2D features on which the
pose estimation is based. Sections 6 and 7, introduces
the proposed stochastic algorithm, a combination of
Annealed Particle Filters and Belief Propagation con-
cepts and their application to upper body tracking.
Experimental results are shown and discussed in sec-
tion 8, while conclusions are drawn in section 9.

2. Related work

A great number of works deals with vision-based
human motion capture and a recent review can be
found in [6]. Human pose estimation can be obtained
in a tracking context, or directly, by analysing video
images. In a general way, these methods can be classi-
fied in three categories:

• Methods based on a probabilistic limb combi-
nation. The first step of these methods is an
independent detection of each limb, according
to 2D features, that can be achieved thanks to
pictorial structure [7, 8], SVM [9] or AdaBoost
algorithm [10]. Body pose is then estimated using
geometrical constraints obtained with dynamic
programming [11], with Integer Quadratic Pro-
gramming [12] or with Markov networks [13].
Temporal coherence of limbs can then be enforced
using Hidden Markov Model [14]. The advantage
of these approaches is that, as any assumption
is made on the movement, they are robust to
complex and fast motion. Conversely their main
drawback is that their performances strongly
depend on limbs detection quality that is a difficult
task, especially in presence of complex back-
ground.

• Examples based learning methods. These meth-
ods compare the observed image with a database
of samples. Mapping between 2D observed image
features and 2D or 3D pose can be reached using
HMM [15], neural networks [16], lookup tables
[17], parameter-sensitive hashing [18] or linear
[19]/non-linear regression [20]. A limitation of
these approaches concerns the generality of the
database: appearance variability due to 3D pose
configurations, view points, body dimensions,
clothes, lighting changes, backgrounds, and so on,
yields to an infinite number of 2D images.

• Model based methods. For these methods, 3D
pose can be estimated with several views [21] or
unique view [22] (which is a more challenging
problem). However, in some applications, such
as human/robot interaction, it is not possible to
observe the human with different viewpoints. The
first model-based approaches were grounded on
a deterministic gradient descent technique [23],
or on Kalman filter [24]. As only one track-
ing hypothesis is considered, these methods are
not robust and fail with complex motion. In
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probabilistic approaches [25], motion analysis is
expressed as a Bayesian inference problem that
can be solved with particle filters based strategies
[26] where posterior distribution is represented
by a set of samples (or particles) with associated
weights. This weighted particles set is updated
over time taking into account the measurements
and a prior knowledge on the system dynamics,
and observation models. Particle filters cannot
be directly applied to body tracking due to the
important degree of freedom (DoF) of the tar-
get. In fact, a realistic articulated model of human
body is usually composed by at least 20 DoF,
and as computational costs increase exponentially
with the number of DoF, the exploration of the
configuration space has to be optimized. Differ-
ent methods have been investigated to reduce
the large number of particles necessary to solve
this high dimensional problem. MacCornick and
Isard [27] proposed the partionned sampling of
the state space, Deutscher et al. [28] introduced
the annealed particle filter and Sminchisescu and
Trigss [29] presented the stochastic sampling.
Another solution consists in working with the
likelihoods of each limb, which are then combined
according to the geometrical human body model
thanks to Markov chain Monte Carlo (MCMC)
[30] or sequential Monte Carlo approaches [31].

Another way to cope with the high dimensionality
is to decompose the state space of the 3D human body
in several state spaces with lower dimension: one for
each body part. Human body is then represented as a
graphical model where individual limbs are character-
ized by nodes and relationships between body parts are
represented by edges connecting nodes and encoded
by conditional probability distributions. This graphi-
cal model allows tracking each subpart individually,
and then adding constraints between adjacent limbs
thanks, for example, to Belief Propagation (BP) infer-
ence algorithm [32, 33, 34, 21, 35]. In this way, the
high dimensionality problem is expressed as a set of
lower dimension, and thus the complexity of the search
task is linear, rather than exponential, according to the
number of body parts.

3. Problem statement

Finding human body poses and tracking its subparts
is a highly combinatory problem. In fact, a realistic

articulated model of the human body is usually com-
posed by at least 20 DoF, and as computational costs
increase exponentially with the number of DoF, the
configurations space and its exploration have to be opti-
mized. In the following, we give some hints concerning
both aspects.

3.1. Configurations space

Configuration space is the space in which each point
or vector encodes a human posture. The encoding tech-
nique is sensed data-dependent: the vectors are related
to the sensing data that one can extract from the images.
To achieve this goal, three main approaches are devel-
oped. The first one relies on 3D body models. The
second one is dealing with 3D based reconstruction
and the last one uses a priori knowledge, namely some
learned human body poses. These approaches are in
fact derived from classical computer vision techniques
for object recognition or/and reconstruction.

For 3D models based approaches, the object (the
human body) is represented by a set of connected
and mobile geometrical primitives. Sticks, cylinders or
more sophisticated shapes (spheres for instance) rep-
resent body parts. Human body pose is then obtained
by fitting the projection of the 3D model on the image
plane to the 2D image features (contours, skin color,
apparent motion, etc.).

Reconstruction based approach uses generally
multi-views techniques and projective geometry such
as Shape from Silhouette, Shape From motion, Bun-
dle adjustment, etc. to fuse information provided by
multi-imaging systems (at least two images).

The last solution deals with learning. Pre-registered
data are first obtained from different points of view as
well as for different body configurations. This database
is then visited to search for the current observation.

Unfortunately, for all previous approaches, the pose
estimation problem is an inverse and ill-posed problem.
Indeed, images are 2D projective entities that are used
to derive 3D entities and the analytic solution does not
exist. This derivation is based mainly on regulariza-
tion and optimization by using redundant information
in order to reduce the solutions space. Stereoscopy
for instance reduces the solution space through the
epipolar constraint. In addition, some other issues like
occlusions and mechanical singularities increase the
complexity. Finally, additional complexity has to be
taken into for the tracking of articulated body due to
the sizeable degrees of freedom of the target.
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Regarding the previous discussion, the configura-
tions space appears complex because it has a high
dimensionality and its relationship with the image
space is not bijective.

3.2. Search strategies

One way to solve the tracking problem is to use,
as already seen, a probabilistic approach. Indeed, the
motion analysis can be expressed as a Bayesian infer-
ence problem. As the body parts are dependant, the
probability of a given configuration is conditioned by
the upper body topology. Among known Bayesian
solvers, one is well adapted for our problem, namely,
the particle filters based. The strategies supported by
this method, allow representing the posterior distribu-
tion as a set of samples (or particles) with associated
weights [26]. This set is updated over time taking into
account the measurements (image features in our case),
a prior knowledge on the system dynamics, and obser-
vation models. Unfortunately, it is well known that

1- the number of particles required raises exponen-
tially with the dimensionality of the configura-
tion space.

2- to have an accurate and plausible solution, we
need a maximum of particles.

To avoid these antagonist requirements, we con-
sidered different developed methods that have been
investigated with the aim to reduce the particles num-
ber. Some techniques proposed the Annealed Particle
Filter (APF). This last performs a coarse-to-fine lay-
ered search [28]. This modified particle filter uses a
continuation principle based on annealing, to introduce
the influence of narrow peaks in the fitness function,
gradually. This allows reducing by a factor of 10 the
number of particles and, as a consequence, to signifi-
cantly decrease computation times.

To adapt the previous approach to our problem,
we represent 3D human body as a graphical model,
where individual limbs are characterized by nodes and
relationships between body parts are represented by
edges connecting nodes and encoded by conditional
probability distributions. Additional edges can also be
introduced to manage partial or fully occlusions. This
graphical model allows to track each subpart individ-
ually, and then to add constraints between adjacent
limbs. By doing so, it was possible for us to add the
Belief Propagation (BP) inference algorithm [21, 35–
39]. In this way, the initial high dimensionality problem

is expressed as several problems of lower dimension,
and thus the complexity of the search task is linear
rather than exponential according to the number of
body parts.

This article presents the development of a marker-
less human motion capture system that works with
a standard camera coupled with a PC and does not
require additional equipments. The system is based on
a 3D articulated upper human body model and com-
bines the advantages of above mentioned approaches
to decrease the algorithm complexity induced by the
high dimensionality of the problem. Rather than track
the whole articulated body, each limb is tracked inde-
pendently thanks to several particles filters (one for
each limb); then, a BP method on factor graphs is used
to estimate the current marginal of each limb accord-
ing to geometrical constraints between limbs. Indeed,
since belief propagation messages are represented as
sums of weighted samples, the belief of each limb
is approximated by a collection of samples. So, the
association of belief propagation and particles filters
algorithms is quite natural. Rather than a simple par-
ticle filter, we propose to use the annealing particle
filter in this context. This combination of APF and BP
allows decreasing the number of particles required per
limb (and thus computation times) without modifying
the quality of results.

4. The articulate body model

The body is represented by a graphical model [12,
36] of nodes and edges, where each node in the graph
corresponds to a body part, and each edge represents
the spatial constraints between adjacent connected
body parts. Each node has an associated configuration
vector defining position and orientation of the body
part in the 3D space and a corresponding image likeli-
hood function that models the probability of observing
image measurements conditioned on the position and
orientation of the part. Each edge has an associated
conditional distribution that models the probabilistic
relationship between parts. Additional edges related
to non collision constraints or to the propagation of
state variables across the temporal domain are added.
A factor graph [40] is then constructed to decompose
the join probability as product of factors.

The considered factors are of three different types:
link factors between two nodes at the same time,
image likelihood factors between all parts and their
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corresponding observations at the same time and time
coherence factors that link a part at two consecutive
times (Fig. 1). The individual motion of subparts is left
to evolve and be detected independently, so that each
subpart may be solved individually, while the full body
is assembled by inference over the graphical model.

Let us denote with Xk
µ (µ ∈ [1, n]) the state vector

associated to limb µ at time k (k ∈ [0, K]), and with
Yk

µ the corresponding observation. We introduce the
following model parameters of each limb µ:

• the interaction potentials (or link factors)
�µ,ν(Xk

µ, Xk
ν), which measure the likelihood

between two connected body parts µ and ν;
• the observations probabilities �µ(Xk

µ, Yk
µ), which

measure the likelihood between the state vector
and the corresponding observation (image likeli-
hood factors);

• and the time coherence factors T (Xk
µ, Xk−1

µ ),
which determine the likelihood for the same limb
between two consecutive times.

Then the joint probability at time k can be written as
a product of independent factors [35]:

P(X|Y ) =
K∏

k=0

�(Xk, Yk)�(Xk)
K∏

k=1

T (Xk, Xk−1), (1)

where

�(Xk, Yk) =
n∏

µ=1

�µ(Xk
µ, Yk

µ), (2)

�(Xk) =
∏

(µ,ν) ∈ S

�µ,ν(Xk
µ, Xk

ν), (3)

Fig. 1. Factor graph for a five part articulated structure. Circles rep-
resent state nodes, squares link factors, triangles time coherence
factors and stars image likelihood factors.

T (Xk, Xk−1) =
n∏

µ=1

T (Xk
µ, Xk−1

µ ), (4)

and S is the set of all links between connected body
parts.

In our application of upper body human tracking, the
graph is composed of nine nodes as we consider the
motion of 9 limbs including the head, two clavicles,
two arms, two forearms and two hands (Fig. 2). At
each node is associated a five-dimensional space vector
(x, y, z, ϕ, θ) excepting for the head represented by a
four-dimensional one (x, y, z, θ). A 3D point and two
angles are enough to localize a limb, such as an arm,
modelled by a cylinder because the rotation of the limb
around its main axis is not considered. For the head, as
we suppose that it is faced to the camera, a 3D point
and a single angle are employed. The first step of a
tracking iteration consists to track each limb with a
particle filter.

5. Particle filtering

The classical filtering problem consists in estimating
an unknown signal from observed measurements. In
computer vision the observations are image sequences,
and the discrete time steps are given by the frame rate.
Particle filters approximate conditional densities as a
collection of weighted point samples. These approx-
imations are stochastically updated by using Monte
Carlo methods on the set of weighted point samples.

Fig. 2. Soft articulated human model.
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Essentially, tracking with a classical particle fil-
ter works by performing three steps: (i) re-sampling
from the weighted particle set obtained at the previous
iteration, (ii) predicting stochastic movement and dis-
persion of particles, (iii) measuring and consequently
updating the particle set. The main method drawback is
that the number of particles needed to approximate the
conditional densities grows exponentially as dimen-
sionality increases. So, for a high dimensional problem
such as human upper body tracking, the complexity
becomes substantial.

The marginal probability of each limb is represented
by a sum of N weighted particles:

Pk
µ(Xµ)∝

N∑
i=1

ωk
µ,iδ(Xk

µ − Xk
µ,i), (5)

where the weights are normalized so that
∑N

i=1
ωk

µ,i = 1. Each particle Xk
µ,i represents a hypothetical

position of the limb µ with a corresponding likelihood
ωk

µ,i at time k. Then, the marginal probability density
function is obtained recursively in a prediction and an
update stage [26]. The stability and robustness of par-
ticle filters can often be improved by various methods.
Among them, a particle-based stochastic search algo-
rithm, called Annealed Particle Filtering (APF) [28],
was developed. It uses a continuation principle, based
on annealing, to introduce gradually the influence of
narrow peaks in the conditional density function.

In each time-step, a multi-layered search (starting
from layer m = M to layer 1) is conducted. A smoothing
of the weighting functions ω

k,m
µ,i = (ωk

µ,i)
βm is achieved

by a set of values βM < βM – 1 < . . . < β1, where ωk
µ,i

is the original weighting function.
A large βm produces a peaked weighting function

ωm resulting in a high rate of annealing. Small values of
βm will have the opposite effect. At the same time, the
amount of diffusion added to each successive anneal-
ing layer decreases according to [P(Xk

µ,i/Xk−1
µ,i )]

αm
,

where the series αm is such as αM < αM – 1 < . . . < α1.
Method efficiency for recovering full articulated

body motion depends on the choice of the tracking
parameters αm, βm and on the particles number N.
The purpose of the annealing filter is meanly to gain
robustness and at the same time to reduce the particles
number N.

At the end of an annealing iteration, the marginal
probability of each limb is represented as a sum of
weighted samples as for the standard particle filter.

During this first step, the prediction and weighting are
performed independently for each limb. Then, before
considering the next iterations of annealing or the next
frame, the final marginal probability is re-estimated
with the belief propagation algorithm on the factor
graph to take into account geometrical constraints
between limbs.

6. Belief propagation

In the BP algorithm, human body and relationships
between body parts are represented by a graphical
model, called factor graph. The factor graph is com-
posed of a variable node for each variable Xµ (body
part) and a factor node on each edge connecting
variable node µ to variable node ν. The algorithm
recovers the pose of each body part by considering the
relationships between every two adjacent body parts.
Additional edges have also been introduced to add non-
collision constraints between some limbs (this avoids
for example that the two hands remain together).

After designing interaction functions and observa-
tion functions, BP is used to search for body parts’
belief by iteratively updating messages sent from a
node to another one. Messages are propagated for all
nodes at each frame for a variable number NBP of iter-
ations, and then propagated only once from a frame to
the following one [35].

In practice, each message of the BP algorithm is
approximated by a set of N weighted samples. The
message mν→µ,i sent from the node ν to the particle i
of node µ is written:

mk
ν→µ,i =

∑
j

�µ,ν(Xk
µ,i, X

k
ν,j)�k

ν,j(Xk
ν,j)

∏
ν′ ∈ S(ν)\µ

mk
ν′→ν,j, (6)

where S(ν)\µ is the set of the neighbours of node ν

except µ, and �k
ν,j(Xk

ν,j) is the local likelihood of the
sample j of node ν. The belief at the node µ is then
estimated by:

Pk
µ(Xµ) ∼

N∑
i=1

ω̂k
µ,iδ(Xk

µ − Xk
µ,i), (7)

where

ω̂k
µ,i = �k

µ,i(X
k
µ,i)

∏
ν ∈ S(µ)

mk
ν→µ,i. (8)
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The resulting combined APF-BP algorithm is des-
cribed in Table 1.

As we want to be able to track unconstrained human
motions, any specific movement model could be used
and the prediction is achieved according to Gaussian
distributed diffusion. The amount of diffusion for each
joint angle j is dependent on the image frames per sec-
ond (fps). In our experiments σj ranges from 10 degrees
to about 40 degrees to take in account the different
extension field of each limb. For example, variations of
rotation angles are smaller for clavicles than for hands.

7. Application to body tracking

The images features used to estimate the image com-
patibility factors �k

µ,i(X
k
µ,i, Y

k
µ) have to be strongly

discriminant to allow limbs detection and tracking. For
each limb, the 3D model corresponding to the particle
i of the state vector is projected on the image plane
and the likelihood between this projection and image
observations is estimated. This measure is based on ori-
ented edge matching, motion energy and background
subtraction. For the head and the two hands, factors are
also based on a skin colour probability map [22].

In tracking movements, the background subtraction
is useful to focus limbs detection around the body
contours avoiding possible mistakes caused by the
environment; to surely keep in consideration body con-
tours it is not necessary to have a really precise body
detection but rather a fast one.

At each frame, a background subtraction is made by
thresholding the absolute value difference between the
background image and the actual one for each pixel and
comparing each value with the average one (Fig. 3).

The resulting image is used to enhance the motion
energy and the skin color probability map.

To measure limb movements so calculate their like-
lihood two scores are calculated: a gradient score S

µ
R

and a movement energy score S
µ
M .

The gradient score is based on contours and is equal
to

S
µ
R =

∑
r ∈ p(µ)

f (|| �R(r)||)G[ϑµ(r) − dir(�R(r))]. (9)

where:

− p(µ) is the set of points belonging to the projec-
tion in the image of the considered limb µ.

− f (|| �R(r)||) is a function of the gradient norm
|| �R(r)|| at pixel r, that penalizes the highest values
of || �R(r)||:

f (|| �R(r)||) = 1

λ
|| �R(r)|| tanh

λ

|| �R(r)|| (10)

where λ is the mean of the gradients norm of each
frame.

− G[ϑµ(r) − dir(�R(r))] is the Gaussian of the dif-
ference between the orientation of each point of
the considered limb ϑµ(r) and the orientation of
the gradient dir(�R(r)).

The movement energy score S
µ
M evaluate the prob-

ability of having the considered limb in the location in
which the movement has been detected.

A first step of motion detection is achieved by
thresholding the absolute difference of two successive
images, leading to a binary map. Then, a value is given

Table 1
Algorithm resulting from the combination of APF and BP methods

• Initialisation: X0
µ,i = X0

µ

• For each time k
� For m = M, . . . , 1 of the APF

– Evolution: A new set of particles is drawn according to the system dynamic [P(Xk
µ,i/Xk−1

µ,i )]αm

– Weight: Compute the weight �
k,m
µ,i = [P(Xk

µ,i, Y
k
µ)]

βm

– NBP iterations of BP m
k,m
ν→µ,i =

∑
j

�µ,ν(Xk
µ,i, X

k
ν,j)�k,m

ν,j (Xk
ν,j)

∏
ν′ ∈ S(ν)\µ

m
k,m

ν′→ν,j
and re-estimation of ω

k,m
µ,i

with ω
k,m
µ,i ∝ �

k,m
µ,i

∏
ν ∈ S(µ)

m
k,m
ν→µ,i

– Resample the set of particles according to ω
k,m
µ,i

� End for
• End for



450 I. Renna et al. / Combination of annealing particle filter and belief propagation for 3D upper body tracking

Fig. 3. Environment, frame image, background substraction.

Fig. 4. Map of gradient score and a movement energy score.

at each pixel according to its distance d to motion pixels
leading to a movement energy image:

IM(r) = exp

(
− d

σd

)
. (11)

where σd is a parameter depending on image resolu-
tion. On the so obtained image (Fig. 4), huge values are
given to pixels near to moving areas, while low values
are set to pixels in static areas. The movement energy
score S

µ
M is then obtained with:
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S
µ
M = 1 +

∑
r ∈ p(µ)

P(IM(r) = 1). (12)

where

− as before, the summation takes into account all
pixels belonging to the projection of the limb;

– 1 is added to neutralize results on static limbs.

Moreover, to recognize the position of head and
hands in each frame a map skin is calculated (Fig. 5)
by learning a skin area in the subspace CbCr from the
YCbCr colorspace.

Link factors �µ,ν(Xk
µ,i, X

k
ν,j) representing the

likelihood between two connected body parts are
expressed as Gaussians of the distance between the ref-
erence points for the articulation between two succes-

sive limbs. For hands and head non collision constraints
are added to avoid occlusions problems.

Fig. 5. Map of skin.

Fig. 6. Human posture estimations for some usual gestures. These results are obtained with 100 particles per limb, 3 iterations of simulated
annealing and 1 iteration of BP.
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8. Experiments

This algorithm was tested on sequences of images
with a resolution of 360 × 288 pixels, acquired with a
frequency of 15 frames per second with a PC HP, pro-
cessor Intel® CoreTM2 Duo, CPU 2.00 GHz, 1.99GB
of RAM. In this paper we report the results obtained
with two video sequences in which a person makes dif-
ferent everyday movements, like pointing, beckoning
or waiting.

Moreover the videos were made in different envi-
ronments (illumination, background, clothes) and

movements are made in different order and fashion.
The performance of our algorithm was evaluated by
varying relevant model parameters, that are, the num-
ber of particles N, the layer number M of APF and
the number NBP of cycles of BP, with the proposal
of reducing tracking time without losing robustness.
Some sequence frames with the corresponding track-
ing results are shown in Figs 6 and 7. These results
are obtained with 100 particles per limb, 3 iterations
of simulated annealing and 1iteration of BP. It was
very difficult to quantitatively evaluate the results.
Furthermore, no ground truth was available for the

Fig. 7. Human posture estimations for some usual gestures. Parameters as in Fig. 6.
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collected data. Hence, for each image of the sequence,
we decided to manually click on the body joints in
order to obtain the coordinates of interest. Although
these data are not completely accurate (for some body
positions it is quite difficult to properly locate the coor-
dinates of a joint), they constituted our 2D ground
truth. This allowed to evaluate in a quantitative way
the accuracy of algorithm results: we computed the
distance between the 2D point of the ground truth and
the projection on the image of the 3D point represent-
ing the limb articulation point. The articulation point
was obtained making the mean between the values
estimated by the algorithm for two consecutive limbs.

These distances represent the tracking error for each
articulation.

In order to quantify the advantages of the combina-
tion of simulated annealing and BP, we have performed
several tests with different sets of parameters. We con-
sidered as results the mean distance errors for all the
limbs (all these results have been obtained by aver-
aging 5 realisations of tracking because of stochastic
variables in the algorithm). Moreover, it is worth to
precise that the algorithm has not been yet optimised.
So only the order of magnitude between the different
times has been considered. We tested the algorithm
making all the possible combination about the number
of BP (from 1 cycle to 10), the number of APF (one
cycle or three cycles) and the particles number (100 or
300). In a first time we observe that just one BP cycle
is enough to obtain a good cohesion between limbs.
Moreover when several iterations of BP are performed

to reach the convergence, results are damaged proba-
bly because human body doesn’t exactly validate the
articulated model. Nevertheless, it is important to note
that without BP cycles, all limbs are disconnected and
the tracking diverges quickly.

The best results are obtained with 300 particles and
3 iterations of annealing but computation time is con-
siderable (around 3.5 s). To reduce it, one can either
decrease the number of particles or the number of
annealing iterations. Errors evaluation shows that it
is better to preserve the annealing that allows to use
fewer particles without tracking failure and with an
acceptable computation time. In fact, in our algorithm
100 particles per limb with 3 annealing loops leads to
accurate results with a reasonable error and a small
standard deviation on this error. As shown in Table 2,
the use of 3 APF layers allows to utilize less particles
(just 100) keeping robustness with a lower computation
time of 0.75 s compared to a time of 1.43 s when just
a layer but more particles are used (results quality is
then quite similar). Moreover, it appears that results on
shoulder and wrist are more reliable: in fact, shoulders
move more lightly than other limbs and wrist tracking
is easier thanks to hands skin color.

The outputs are correlated except for some parts
because of the random characteristics that affect in
partially and locally the solution space.

In Table 3 we show that same results are obtained
for the two videos (it is worth to remember that lit-
tle differences are normal considering the randomized
procedures used within the algorithm).

Table 2
Error in pixel for different sets of parameters

Method Error Shoulder Elbow Wrist Global Computation
error time

N = 100 M = 3 Mean 3.3 5.2 4.7 4.4 0.35
NBP = 1 Standard deviation 1.9 4.3 2.5 2.9
N = 300 M = 3 Mean 3.2 5.2 4.3 4.1 2.4
NBP = 1 Standard deviation 2.0 4.5 2.5 2.6
N = 300 M = 1 Mean 3.2 5.4 5.4 4.7 1.43
NBP = 1 Standard deviation 1.9 4.0 2.7 2.9

Table 3
Error in pixel using N = 100, M = 3, NBP = 1

Video Error Shoulder Elbow Wrist Global Computation
error time

1 Mean 3.3 5.2 4.7 4.4 0.35
Standard deviation 1.9 4.3 2.5 2.9

2 Mean 5.84 4.68 4.56 5.70 0.36
Standard deviation 3.35 5.82 4.2 4.05
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In Fig. 8 we have the right and the left elbows mean
positions error (in pixel) versus time. We have some
maxima for the error rate. For the right elbow, for

example, one maximum is reached at the frame 1700.
This corresponds to a specific configuration of occlu-
sion and mechanical singularity. As one can see in

Fig. 8. Elbow left and right mean of 5 Trials.

Fig. 9. Configuration with an occlusion and a singularity.
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Fig. 9, the arm, the forearm and the hand limbs are
aligned and are perpendicular to the image plane in the
first picture, i.e., the projection of each of them is a
point. The figure shows that when there is a configura-
tion with occlusion the algorithm is capable to correct
itself just after few frames.

9. Conclusion and future work

In this paper we proposed a new approach for upper
body pose estimation using an algorithm that combines
annealed particle filter and belief propagation methods.
This algorithm shows that the use of this combination
is effective to reduce the number of particles and, as a
consequence, reduces computation time without losing
robustness: (i) the use of simulated annealing decreases
the number of particles used to track each limb thanks
to the introduction of narrow peaks in the fitness func-
tion; (ii) BP method assures spatial coherence and an
independent tracking for each limb decreasing, more-
over, the dimensionality of state space.

This work is part of a larger project dealing with
natural gestures-based communication. The ongoing
work and the extension of presented here is dealing
with both improvement of the tracking process and the
semantic interpretation of the arms sequences.

The first point is dealing with the introduction of a
geometrical-based regularization in order to improve
the tracking and to learn gradually a color model of
the target. The other possible improvement concerns
the transfer of the algorithm on a highly parallel archi-
tecture. Indeed, our formulation is well adapted to such
architecture and execution times should be reduced
consequently to fit real-time constraints.

The second point is more semantic oriented. It is
dealing with the classification and the recognition of
the upper body sequences in terms of commands and
intents and we are working both on computational and
social aspects.
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