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Actuarial Transform Pricing

Abstract

This article studies four transform pricing methods in the context of general

equilibrium (GE) framework. The four methods, viz. the Esscher transform, in-

difference pricing, the Wang transform, and the standard deviation loading, are

popular among actuarial literature and practice. The transform pricing methods

offer a convenient solution to contingent claim pricing problem when the under-

lying risk exposure cannot be fully hedged. We show analytically that these four

methods are similar and close to the GE approach if the utility has an exponential

function, and the underlying distribution is Normal. When the payoff distribution

is non-gaussian, prices produced by the four methods vary widely. Moreover, some

transform methods may lead to prices that are not coherent, violating one or more of

the following properties; additivity, homogeneity, scale invariance and monotonicity.

We discuss the implications of our findings on incomplete market pricing.

Keywords: Genral Equilibrium, Esscher transform, indifference pricing, Wang trans-

form, standard deviation loading

JEL Classification: D52, G13, C22
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Actuarial Transform Pricing

1 Introduction

Asset prices can be uniquely determined when its payoffs can be replicated by traded

securities. This no-arbitrage principle is the cornerstone of well known models such

as Black and Scholes (1973) and Cox, Ross and Rubinstein (1979). However, uncer-

tain payoffs often cannot be fully replicated.1 The result is that there is no unique

price but, rather, a range of no-arbitrage prices exist2 resulting in a situation known

as incomplete markets. Typical examples of incomplete markets include catastro-

phe and mortality bonds, weather derivatives, wage-indexed pension fund liabilities,

equity gap risk, and GDP linked bonds. The actuaries have been dealing with such

a pricing problem for centuries since insurance contracts came into existence.3 In

this article we compare four well known transform pricing methods popular among

actuaries; viz. the Esscher transform, indifference pricing, the Wang transform and

the standard deviation loading method that are potential solutions for pricing con-

tingent claims in incomplete markets. In particular, we relate all four methods to

the general equilibrium (GE) approach that has a deep foundation in Economics.

All four transform pricing methods have been used widely: the Esscher trans-

form by Gerber and Shiu (1994), the indifference price method by Musiella and Za-

1Replication failure could be due to the number of independent securities being smaller than

the number of future states, or the fact that the underlying asset and its associated contingent

claims are not tradable.
2See for instance Merton 1973; Perrakis and Ryan 1984; Perrakis 1986; Bernardo and Ledoit

2000; Bizid and Jouini 2005.
3Karl Borch (1963, p.322) claims that “actuarial mathematics and the scientific basis of insur-

ance were developed into a self-contained and fairly complete theory long before economists could

claim the name of science for their subject.”
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riphopoulou (2004), the Wang transform by Wang (2004) and Lin and Cox (2008),

and the standard deviation loading method by Roustant, Laurent, Bay and Carraro

(2004). We show that under specific conditions, all four methods will give the same

price, but these conditions will not always be fulfilled. In a case study in Section 5,

we show substantial differences in prices produced by the four methods. We exam-

ine some of the properties of these pricing methods against the conditions required

for a coherent pricing measure, such as additivity, homogeneity, scale invariance and

monotonicity. We find that the four methods will satisfy all these conditions again

only in special cases. The potential violation of coherent pricing properties makes

it difficult to apply these methods to price, for example, liquidly traded contingent

claims. If claims are liquidly traded, market participants expect pricing additivity

(i.e. the price of a portfolio of claims is equal to the sum of the prices of the in-

dividual claims) even if the cash flows or assets underlying these contingent claims

are not market traded. As such, the prices produced by these transform pricing

method could present arbitrage opportunities.

The rest of this paper proceeds as follows: Section 2 reviews the four pricing

methods and examine their connections with the GE approach. Section 3 considers

the special case of normally distributed cash flows. In Section 4, we examine how

well each of the four pricing methods adhere to the concept of coherent pricing

measures. Section 5 applies the four methods to price Argentina’s GDP linked bonds

and compare the pricing results. Finally, Section 6 provides some discussion on the

conceptual issues related to the four transform pricing methods and concludes.
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2 Equilibrium vs. Transform Pricing

Broadly, there are two non-mutually exclusive approaches for pricing contingent

claims that involve unhedgeable underlying cash flows. The first approach is the

general equilibrium approach where prices are derived based on the preference of a

single representative agent given the joint distributions of the state variables and

underlying cash flows. The second approach is to specify the set of properties that

a coherent pricing measure must satisfy and choose the transform pricing methods

that are consistent with these properties. All transform pricing methods are based

on some heuristic adjustments of cash flow to reflect risk bearing. In this section,

we provide an overview of these two main pricing approaches. We will show that if

utility function is exponential and cash flows are normally distributed, not only that

the two main approaches give very similar results, the pricing formulae produced by

the four transform methods are also very close to each other. Unfortunately, the

exponential utility assumption has many criticisms, and in reality asset cash flows

and insurance liability typically have heavy tails. This is when the different ap-

proaches and the different transform methods start to depart and produce markedly

different prices as will be illustrated in our case study later in Section 5.

2.1 The general equilibrium approach

The general equilibrium (GE) approach to pricing contingent claim has a long his-

tory (see e.g. Samuelson and Merton 1969; Rubinstein 1976; and Brennan 1979).

In this framework, the risk averse representative agent seeks to maximise expected

utility of terminal wealth. At equilibrium, the forward price of uncertain payoff xt

can be expressed as

FGE(xt) =
EP [U 0(Wt)xt]

EP [U 0(Wt)]
= EP [φGE(Wt)xt] , (1)
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where Wt is the aggregate wealth at time t and U 0(·) is the representative agent’s

marginal utility function. The superscript P of E(·) means the expectation is taken

with respect to the physical probability. The relative marginal utility of wealth of

the representative investor, written as

φGE(Wt) =
U 0(Wt)

EP [U 0(Wt)]
, (2)

is called the (forward) pricing kernel, and is key to GE pricing theory. Equation (1),

which requires the solution of double integrals, can be further simplified by taking

conditional expectations yielding

FGE(xt) = EP [ψGE(xt)xt] , (3)

where

ψGE(xt) = EP [φGE(Wt) | xt] . (4)

The expectation in (1) is calculated using the joint probability distribution of Wt

and xt, whereas the expectation in (4) is calculated using the probability distribu-

tion of xt and the conditional distribution of Wt given xt. The conditional pricing

kernel ψGE(xt) is termed the asset specific pricing kernel by Camara (2003), the

conditional expected relative marginal utility function by Brennan (1979) or the sto-

chastic discount factor by Cochrane (2001). Given the functional form of U 0(·)

and the distributions of Wt and xt, ψGE(xt) can be deduced and used for pricing all

claims whose payoffs are functions of xt. If the solution for ψGE(xt) is unique, the

market is said to be complete.

The classical results under the GE approach were presented by Rubinstein (1976)

and Brennan (1979). Assuming that aggregate consumption and the underlying

asset are bivariate lognormally distributed, Rubinstein (1976) obtains the Black-

Scholes model with constant proportional risk aversion preferences. Brennan (1979)

derives preference free pricing formulae by assuming a representative agent who has
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a negative exponential utility function and a bivariate normal distribution for ag-

gregate wealth and the underlying asset. These results were generalised by Camara

(2003), who shows that these pricing relationships also hold under more general

conditions; namely, transformed normal distributions for the underlying asset and

wealth (which need not belong to the same family of distributions) and exponential

marginal utility. Later, Camara (2005) extended these results further to allow for

multivariate state variables and payoffs of several assets, while Vitiello and Poon

(2008 and forthcoming) provides solutions for payoffs that have a mixture of two g

distributions and transformed gamma distribution. While the GE framework could

lead to a single pricing kernel and a unique price, there is no consensus on the

treatment of utility function (see e.g. Friedman and Savage 1948; Rubinstein 1976;

Epstein and Zin 1989; and Abel 1990). Also the GE approach is the most effec-

tive if the joint distrubutions of the state variables and uncertain payoffs have well

defined functional forms. This will facilitate the conditional expectation in (4).

Otherwise, there is no straightforward way of calculating contingent claim prices

since the state variables are usually unobservable. Lately, Vitiello and Poon (2010)

extend the distributions, in which solutions exist, to a mixture of N transformed

normal distributions significantly widen the shapes of distributions that uncertain

payoffs may have. So the GE approach is indeed very flexible. The fact that the

theory is firmly based on preference makes the GE approach very attractive.

2.2 Properties of exponential utility

The exponential utility plays an important role in most of the transform pricing

methods and is an important link between the GE approach and the transform

pricing approach. Specifically, an exponential utility function has the form

U(Wt) = 1− e−ηWt, (5)
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where η is the risk aversion parameter. It follows that

U 0(Wt) = ηe−ηWt > 0

and

U 00(Wt) = −η2e−ηWt < 0.

The coefficient of absolute risk aversion, given by

α(Wt) = −
U 00(Wt)

U 0(Wt)
=

η2e−ηWt

ηe−ηWt
= η

is constant, i.e. under exponential utility the representative investor does not change

the amount invested in risky assets as wealth increases.

The coefficient of relative risk aversion is given by

r(Wt) = α(Wt)Wt = ηWt.

That is the exponential utility function is characterised by increasing relative risk

aversion.

Exponential utility has been criticised on several grounds. The implication of

increasing relative risk aversion is that investors will put the same amount of money

in risky assets and hence the ratio invested in risky asset gets smaller as investors

get wealthier. Empirical studies, however, suggest that relative risk aversion among

individuals with different levels of wealth is roughly constant (e.g. Friend and Blume

1975). Another shortcoming is that exponential utility implies that optimal con-

sumption is linear in wealth, but not proportional to wealth, meaning that the

consumption to wealth ratio is not stationary, which is inconsistent with a balanced

growth path (Merton 1992).

Nevertheless, given the exponential utility function in (5), we can express the

pricing kernel in equation (2) as

φGE,Exp(Wt) =
e−ηWt

EP [e−ηWt]
, (6)

8



and the forward price in equation (1) becomes

FGE,Exp(xt) =
EP £xte−ηWt

¤
EP [e−ηWt ]

. (7)

2.3 Transform Pricing methods

2.3.1 Esscher transform

The Esscher transform has been studied in the actuarial literature for a long time

and its most heavily cited reference is Gerber and Shiu (1994). If X is an uncertain

insurable loss, the premium of an insurance written on X is

H[X] =
EP £XeηZ

¤
EP [eηZ ]

, (8)

where Z is the aggregate risk of the exchange market. Note the sign change in

(8) compared with equation (7) as we are now dealing with insurable losses and

negative cash flows. If we apply (8) on positive cash flows xt, we have

FEss,W (xt) =
EP £xte−ηWt

¤
EP [e−ηWt]

= EP £xtψEss,W (xt)
¤

(9)

which is exactly the same as the GE pricing result in (7) with Z now being replaced

by the aggregate wealth of the economy.

As equation (8) involves two random variables, X and Z, Bühlmann (1980)

shows, provided thatX and (Z −X) are independent and that utility is exponential,

equation (8) can be rewritten as

H[X] =
EP £XeηX

¤
EP [eηX ]

, (10)

which Bühlmann calls the Esscher principle due to its resemblance to the original Es-

scher transform. Following the same principle, and provided that xt and (Wt − xt)

are independent, equation (9) can also be rewritten as

FEss,x(xt) = EP
∙
xt

e−ηxt

EP [e−ηxt]

¸
= EP £xtψEss,x(xt)

¤
. (11)
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While (11) has the same functional form as (3), their conceptual difference could not

be more further apart. First, ψGE(xt) in (3) is a conditional expectation ofWt given

xt, whereas the ψEss,x(xt) in (11) is fully defined given η and the distribution of xt,

and assuming that utility is exponential; information on Wt is not needed in (11).

Second, equation (11) is built on the basis that (W − x) and x are independent.

But if (W − x) and x are independent, then ψGE(xt) = 1 for all x and FGE(xt) =

EQ [xt] = EP [xtψGE(xt)] = EP [xt], that is xt would be treated as if it is risk free in

equation (3).

Following Landsman (2004), if xt andWt have a finite variance-covariance struc-

ture, equation (9) can be expressed as

FEss,W (xt) = EP (xt)− ηCovP (xt,Wt) + o (η) .

Hence, the Esscher transform is asymptotically equivalent to a covariance pricing

principle. If wealth and cash flow are joint normally distributed, this asymptotic

relationships holds exactly. However, if the payoff distribution deviates from normal

by having, for example, heavy tail marginals, omission of the higher order terms will

seriously underprice the cash flows (or insurable losses).

2.3.2 Indifference pricing

The indifference forward price F (xt) solves the equation

U(Wt) = EP [U(Wt + xt − F (xt))] .

It is a price at which an investor with wealth Wt and utility function U(·) is indif-

ferent to doing nothing and buying an asset in the forward market (at F (xt)) with

a simultaneous sale in the spot market (at xt). Musiela and Zariphopolou (2004)

derive the indifference price for the case of exponential utility. They show that if

the value of the payoff is independent of the value of the traded assets under the
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physical measure P then the forward price of claims on the non-traded asset can be

written as

FIP (xt) =
1

−η logE
P £e−ηxt¤ . (12)

This expression is the same as the actuarial exponential premium principle.

Defining

J(xt) =
EP[exp(−ηxt)]
exp(EP[−ηxt])

= EP £eη(E[xt]−xt)¤ .
We can then write (12) as

FIP (xt) = EP[xt]−
log J(xt)

η
,

i.e. the forward price is the mean value of xt minus an exponential premium. Hence,

FIP (xt) ≤ EP(xt) and that as η → 0, FIP (xt)→ EP(xt). Furthermore, noting that

K(h) = logEP £ehxt¤ is the cumulant generating function (cgf), we can re-write
equation (12) by using the Taylor series expansion of the cgf

FIP (xt) =
K(−η)
−η =

1

−η

Ã
−ηEP[xt] +

(−η)2

2
V arP(xt) + ...

!
,

which shows again that indifference pricing with exponential utility also resembles

variance loading up to a second order.

2.3.3 Wang transform

Suppose that the uncertain payoff xt has a physical probability density function

f(xt) and a cumulative distribution function (cdf) F(xt). The Wang transform is

applied directly to the cumulative probability distribution F(xt), resulting in a new

cumulative distribution function F∗(xt)

F∗(xt) = Φ
£
Φ−1 [F(xt)] + λ

¤
, (13)

where Φ is a standard normal distribution and λ is the market price of risk (Wang

2002). Wang (2006) shows that for a continuous distribution the asset specific

11



pricing kernel can be written as

ψWang(xt) =
f∗(xt)

f (xt)
= ce−λV , (14)

where V = Φ−1 [F(xt)] and c = e−0.5λ
2
. As Wang transform assumes comonotonicity

between risks, it can be related to Yaari’s (1987) dual theory of risk (Wang 1996).

2.3.4 Standard Deviation Loading

Actuarial literature often uses standard deviation loading (Sdl) to calculate premia

for insurance risks. This idea is related to the concept of market price of risk

in finance. Given a (normally distributed) risky cash flow, xt, standard deviation

loading produces the forward price as

FSdl(xt) = EP[xt]− βσPx. (15)

Assume that t = 1 (i.e. the payoff xt occurs one period from now) and let x0 be the

spot price of xt. Assuming that the forward price can be hedged or replicated using

the spot with no cost of carrying other than the risk free rate of interest rf , then we

can write F (xt) = x0(1+ rf). Moreover, it is possible to express the random return

of xt as Rt = (xt/x0)− 1. Using these definitions, equation (15) becomes

x0(1 + rf) = EP[x0(1 +Rt)]− β
p
V arP[x0(1 +Rt)]

rf = EP[Rt]− βσPR

β =
EP[Rt]− rf

σPR
.

This risk load, β, representing the excess return per unit of standard deviation, is a

familiar expression for the market price of risk in the finance literature. Standard

deviation loading was used in the pricing of weather derivatives (e.g. Roustantet

al. 2004).4 If xt is normally distributed then the Wang transform is the same as

4A more sophisticated version of standard deviation loading has been proposed by Schweizer

(2001), who uses an indifference argument to compute the expected value under the variance
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standard deviation loading.5

3 Normally distributed cash flows

For the special case of normally distributed cash flows, we can express equation (1)

as

FGE(xt) = EP [xt] + covP [xt, φ(xt)]

given EP [φ(Wt)] = 1. From Stein’s lemma for normally distributed xt and Wt, we

can write cov [xt, φ(Wt)] = EP [φ0(Wt)] cov
P(xt,Wt). Hence,

FGE(xt) = EP [xt] +EP [φ0(Wt)] cov
P(xt,Wt). (16)

This fundamental equation will be used to derive the prices corresponding to the

four transform pricing methods.

From the pricing kernel in equation (6), we obtain, under exponential utility,

EP £φ0GE,Exp(Wt)
¤
= −η.

So equation (16) can be rewritten as

FGE,Exp(xt) = EP [xt]− ηcovP(xt,Wt). (17)

We show in the following subsections that when xt (and Wt) is normally dis-

tributed and when utility has an exponential form, the Esscher transform, Wang

optimal martingale measure. This scheme assigns an expected value of insurer’s utility to each

outcome of insurer’s final wealth, while the loading factor is a function of the variance of the

unhedgeable risk.
5Young (1999) shows that this is true in the more general case of location-scale family Ω, a

family of univariate probability distributions parametrised by a location parameter μ and a scale

parameter σ ≥ 0. If F is the cdf of a member of Ω, then G(x) = F (μ + σx) is also a cdf of a

member of Ω.
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transform and standard deviation loading approach are closely related to the GE

approach and produce similar pricing results. The indifference price, on the other

hand, is larger by 1
2
ησ2.

3.1 The Esscher transform

In the special case where xt and Wt − xt are independent, so that the asset specific

pricing kernel has the form of (11) and xt has a Normal (μ, σ2) distribution, the

Esscher transform gives another normal distribution with μ∗ = μ− ησ2 and σ∗ = σ.

From (11), we see that

EP £ψ0Ess,x(xt)¤ = −η
and equation (17) can be written as

FEss,x(xt) = EP[xt]− ησ2. (18)

3.2 The Wang transform

The Wang transform also results in another normal distribution with μ∗ = μ− λσ

and σ∗ = σ. From (14), when xt has a Normal (μ, σ2) distribution, the asset specific

pricing kernel takes the form

ψWang(xt) = c exp
£
−λΦ−1(Φμ,σ2)

¤
= ce−λ(x−μ)/σ,

where Φμ,σ2 is the cumulative density function of a normally distributed variable

with mean μ and variance σ2. Using this result,

EP £ψ0Wang(xt)
¤
= −λ

σ
eλμ/σ−0.5λ

2

e−(λμ/σ−0.5λ
2) = −λ

σ
,

and hence the forward price is given by

FWang(xt) = μ+

∙
−λ
σ

¸
σ2 = μ− λσ.

14



As mentioned in Section 2.3.4, the Wang transform has the same functional

form as the standard deviation loading when the cash flows are normally distrib-

uted. Furthermore, Wang (2003) shows that Wang transform can be derived from

Bühlmann’s (1980) equilibrium pricing model if Wt has a normal distribution and

xt = F−1 [Φ(V )], where {V,Wt} have a bivariate normal distribution with correla-

tion coefficient ρ.

3.3 Indifference price with exponential utility

In the case of indifference price with exponential utility, for a normally distributed

xt ∼ N (μ, σ) we have

FIP (xt) =
1

−η log
³
e−ημ+0.5η

2σ2
´
= μ− 1

2
ησ2. (19)

Under exponential utility and a normally distributed cash flow xt, FIP (xt) in

(19) will be greater than FEss(xt) in (18) if the parameter value η is the same for

both. Specifically

FIP (xt)− FEss(xt) =
1

2
ησ2.

4 Coherent Pricing

There are several properties that are desirable for a pricing measure. These are

related to the idea of coherent measures, discussed in detail in Artzner et al. (1999).6

A coherent measure satisfies the properties of monotonicity, (sub-)additivity, scale

invariance (homogeneity) and translation invariance. We examine these properties

below and consider the degree to which the four pricing methods are consistent with

6Strictly Artzner et al. (1999) mainly concern with risks and measures for risk. Since price is a

direct function of risk, we conjecture that all the conditions required for a coherent risk measure

would carry forward to conditions required for a coherent pricing measure.
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these properties. The prices produced by the GE approach will always satisfy the

conditions for coherent measure.

4.1 Properties of a coherent pricing measure

4.1.1 Risk Loading

Due to risk aversion, prices of risky assets are rarely equal to the expected value of

the underlying assets under the physical measure P. The risk-neutral probability

distribution Q changes the original probability distribution and gives more weight

to unfavourable events for a risk averse investor. One desirable property of a pricing

method is, therefore, risk loading. If x is a risky cash flow, whose covariance with

wealth is positive cov(x,W ) > 0, then7

F (x) = EQ [x] ≤ EP [x] .

This means that EP [φ0(Wt)] in equation (16) is negative. All four pricing methods

considered here satisfy this property.

Further, if we know that if x is equal to a constant c, then

F (x) = c.

That is, when there is no uncertainty in the cash flow, there should not be a risk

load. This is also satisfied by all four pricing methods.

4.1.2 Monotonicity

A coherent risk measure should also be monotonic. That is, provided covariance

with wealth is positive for the appropriate cases, if the risky cash flows

xi < yi

7If covariance with wealth is negative, e.g. x is an insurable loss, then risk loading requires that

EP
£
φ0(Wt)

¤
> 0 and hence F (x) ≥ EP [x] .
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for all possible states of the world i, then their forward prices must satisfy

F (x) < F (y).

Of the pricing principles that we considered, this is always satisfied by the indiffer-

ence pricing method with exponential utility and the Wang transform. Wang (2003)

shows that it can be violated for the Esscher transform unless different η is used for

different asset.8

4.1.3 Translation and Scale Invariance

Translation invariance means that for any constant c

F (x+ c) = F (x) + c.

Scale invariance means that

F (cx) = cF (x).

A stronger form of scale invariance, also justified by no arbitrage, is additivity or

linear pricing, which states that for two sets of cash flows x and y,

F (x+ y) = F (x) + F (y).

That is investors cannot make instantaneous profits by repackaging portfolio.

It is desirable for translation invariance, scale invariance and additivity to hold

at least in the case of liquidly traded contingent claims. As noted in Cont and

Tankov (2004, p.330) “nonlinear pricing may be acceptable for over the counter

(OTC) structured products but for “vanilla” instruments, linear pricing is implicitly

assumed by market participants.”

8See Wamg (2003) example 3.1 on page 63.
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4.2 Coherent Transform Method

As we will show below, the Esscher transform in (9) appears to be the only trans-

form method that passed all the coherency tests. Unfortunately, this version of

Esscher transform relies on an unobservable quantity Wt which is hard to measure

in practice.

4.2.1 Esscher Transform

The Esscher transform in (9) satisfies translation invariance, scale invariance and

additivity as shown below:

FEss,W (x+ y) =
EP £(x+ y)e−ηW

¤
EP [e−ηW ]

=
EP £xe−ηW ¤
EP [e−ηW ]

+
EP £ye−ηW ¤
EP [e−ηW ]

= FEss(x) + FEss(y)

and

FEss,W (cx) =
EP £cxe−ηW ¤
EP [e−ηW ]

= c
EP £xe−ηW ¤
EP [e−ηW ]

= cFEss(x).

4.2.2 Indifference Pricing

The indifference price method with exponential utility does not satisfy scale invari-

ance, while additivity is satisfied only if x and y are independent. It does, however,

satisfy translation invariance. Using (12), we have

FIP (cx) =
1

−η logE
P £e−ηcx¤ 6= cFIP (x).

If Cov [e−ηxe−ηy] = 0, then

FIP (x+ y) =
1

−η logE
P £e−ηxe−ηy¤ = FIP (x) + FIP (y),

and

FIP (x+ c) =
1

−η logE
P £e−ηxec¤ = FIP (x) + c.
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4.2.3 Wang transform

The Wang transform satisfies translation and scale invariance, but does not always

satisfy additivity. For instance, as shown by Wang, Young and Panjer (1997), the

Wang transform is additive for only comonotone risks.9

The Wang transform, with its student-t extension, is popular in the pricing of

catastrophe and mortality linked claims. However, it is not always convenient to

use it for pricing liquidly traded claims, since it may not satisfy additivity.

4.2.4 Standard Deviation Loading

The standard deviation loading satisfies translation and scale invariance, but does

not always satisfy additivity. Also with standard deviation loading,

FSdl(x+ y) = EP(x) +EP(y)− β
p
V arP(x) + V arP(y) + 2covP(x, y).

It is clear that additivity will only be satisfied in the special case with |ρ| = 1, where

covP(x, y) = σPxσ
P
y . In general for |ρ| < 1,¯̄

covP(x, y)
¯̄
≤ σPxσ

P
y . (20)

5 Example: GDP linked bonds

This section presents a cash study where the four transform methods studied above

are used to price the Argentina’s GDP (Gross Domestic Product) warrants. The

results are compared with the market prices of these warrants. The GDP linked

securities are derivative instruments where the cash flows–coupon, principal or

both–are tied to the country’s GDP. As GDP is not traded, these securities cannot

9Two risks x and y are comonotone if (xi − xj)(yi − yj) ≥ 0 for all scenarios i and j. The

condition in equation (20) is much stronger than this. In the Gaussian case, equation (20) implies

ρ = 1, but here it is only required that ρ > 0.
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be priced through replication arguments, and we need an approach to price them in

relation to other instruments whose market prices are known, such as vanilla bonds

of the same sovereign.

5.1 Outline of the problem

Currently, Argentina has GDP linked warrants trading alongside its vanilla external

debt. Therefore, we can use the vanilla bonds to calibrate the pricing parameters

ηEss, ηIP , λWang and βSdl and use them to price the GDP warrants using formu-

las (11), (12), (13) and (15). For this purpose, we use a US dollar denominated

vanilla bond, paying a coupon of 8.28 percent, maturing on June 30, 2033. Be-

sides the market price of vanilla debt, we also need a model of the distribution of

the vanilla and GDP-linked cash flows under the physical measure P. For this we

use the structural model outlined in Ruban, Poon and Vonatsos (2008), which is

based on the dynamics of actual and potential GDP and the real exchange rate.10

Both the vanilla bond and GDP warrant can be interpreted as contingent claims on

Argentina’s sovereign assets and GDP. Since both debt instruments are subject to

the same underlying risk, it is reasonable to assume that investor risk aversion or

the market price of risk for both securities would be the same. The plan is to use

parameter values calibrated to the vanilla bond to price the GDP warrants.11

Both the vanilla bond and the GDP warrant have more than 20 years maturity.

Equations (9), (12), (13) and (15) can give forward prices for the cash flows that

occur at each time period (i.e. 1 year from now, 2 years from now, etc). To arrive

at the spot prices for these instruments, the forward prices F (xt) for cash flows

at different time periods t need to be discounted to the present time and added

10Please refer to Ruban et al. for a detailed description of the calibration of the model to

Argentinean data, as well as the terms of Argentina’s GDP warrants.
11Indeed, until 2005, the vanilla bond and the GDP warrant were traded as a GDP linked bond.

They are decoupled in 2005 and have been traded separately since.
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Figure 1: Vanilla bond cashflow disribution in a representative period

together

P =
TX
t=1

e−rtF (xt), (21)

where P is the spot price of the instruments (i.e. the vanilla bond or the GDP

warrant) and r is the risk free rate. Following Ruban, Poon and Vonatsos (2008),

we assume that the term structure is flat.

The physical cash flow distributions xt of both securities are shown in Figures 1

and 2, for a representative period in the middle of the vanilla bond’s and warrant’s

life. The vanilla bond has three spikes in Figure 1 corresponding to three possible

cash flows: in 20 percent of the cases it will pay nothing (i.e. this will be the case

if the bond has already defaulted before the current time period), in 78 percent of

of the cases it will pay the coupon amount (i.e. this will be the case if there has

been no default up to and including this time period) and in 2 percent of the cases

it will pay the recovery amount (i.e. this happens if the bond defaults in this time

period). There is a wider range of possible cash flows for the GDP warrant as shown

in Figure 2. The payoff for each state is contingent on the terms of the warrant,

the evolution of potential GDP, the real exchange rate and the output gap. The
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Figure 2: GDP warrant cashflow distribution in a representative period

simulated cash flows show that, the GDP warrant pays nothing in approximately

66 percent of the time, where the sovereign has either formally defaulted on the

warrants, or the conditions for the GDP linked payments are not met. However,

when the payment conditions are met, there is also a range of payment patterns

contingent on the simulated values of actual GDP.

5.2 Calibration

To apply Esscher transform in equation (9), we need to have information on ag-

gregate wealth Wt, which is an unobservable variable. Here, we assume that an

orthogonal subspace St within Wt that captures all the risk characteristics of the

cash flows xt. With the assumption that St and (Wt − St) are independent, we may

write

FEss(xt) =
EP £xte−ηSte−η(Wt−St)

¤
EP [e−ηSte−η(Wt−St)]

=
EP £xte−ηSt¤EP £e−η(Wt−St)

¤
EP [e−ηSt]EP [e−η(Wt−St)]

=
EP £xte−ηSt¤
EP [e−ηSt ]

(22)
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where

St = x1t + x2t + · · ·+ xnt

is the sum of all relevant risky cash flows whose contingent claims pricing must pass

the linear pricing rule. Since the GDP linked bond was subsequently split into a

plain vanilla bond and a GDP warrant, St is the sum of the cash flows from both

the vanilla bond and the GDP warrant.

For the representative period cash flow above that occurs in the middle of the

warrant’s life, Table 1 illustrates the parameter values and the resulting forward

prices of this warrant cash flow. Selecting ηEss = 0.21, ηIP = 0.42, λWang = 0.77

and βStd = 0.43 all give the vanilla cash flow a forward price Fvanilla of $3.12. The

forward prices Fwarrant of the warrant cash flow, however, vary substantially. The

warrant prices produced using utility based approaches (i.e. Esscher transform and

indifference price) are both higher and close to each other, while the prices produced

by Wang transform and standard deviation loading are also close to each other but

considerably much lower.

Table 1: Representative period cash flow valuation results

Parameter

value

Vanilla

price

Warrant

price

Indifference pricing, ηIP 0.42 3.12 0.53

Esscher transform, ηEss 0.21 3.12 0.51

Wang transform, λWang 0.77 3.12 0.24

Standard deviation loading, βSdl 0.43 3.12 0.19

5.3 Pricing results

The calibration exercise in Section 5.2 uses the cash flow from one representative

period only. To calibrate to market price of vanilla bond, we need to sum up

cash flows for every period till maturity as in equation (21). Then, the whole

23



0

2
4

6

8

10
12

14

16

18
20

Nov-05 May-06 Nov-06 May-07 Nov-07

W
a
r
r
a
n
t
t

P
r
i
c
e

U
S
$

Market price Esscher transform
Indif ference price Wang transform
Standard deviation loading

Figure 3: Market and model prices of Argentina’s GDP warrants under different

transform pricing methods

process is repeated for each day in the sample period from 30 November 2005 to 14

February 2008. Figure 3 illustrates the model calibrated prices and market observed

prices of Argentina’s GDP warrant over the entire sample period. As before, the

prices given by Esscher transform price and utility indifference price are closer to

the observed market price, and both of them are consistently higher than the prices

given by Wang transform and standard deviation loading. We noted in Section 4.2

that Esscher transform is additive but not indifference pricing. Since Argentina’s

vanilla bond and GDP warrants are liquidly traded, the results suggest that the

Esscher transform in (22) is preferred to all the other transform methods for pricing

the GDP warrants. Figure 4 shows the evolution of parameter values of the four

pricing methods. As noted Section 3.3, the ηIP parameter from the indifference price

approach is approximately twice as high as the ηEss parameter from the Esscher

transform.
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Figure 4: Implied parameter values of different pricing approaches

6 Conclusion

In this paper, we studied four transform methods for pricing claims on uncertain

payoffs that are not hedgeable or replicable. A theoretically robust approach to

asset pricing in this situation is to use the General Equilibrium (GE) approach,

where the parameters of the asset specific pricing kernel can be implied from related

instruments, whose prices are observable. When the utility function is exponential,

the transformmethods that are closest to the GE approach are the Esscher transform

and the indifference pricing approach with exponential utility. With additional

assumption on Normally distributed variables, theWang transform and the standard

deviation loading can be made comparable to the GE result also.

All transform pricing methods are heuristic rules of adjusting the physical dis-

tribution in order to produce a ‘risk adjusted’ price. All four transform methods

are easy to use and do not require information that is not observable. A key issue
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is what happens if the risky cash flows and the state variable(s) are non-Gaussian

and possibly strongly dependent in the extreme. In this case, the high order terms

not captured in the mean and covariance terms become important, and the four

methods produce prices that differ substantially. In our case study of Argentina’s

GDP warrants, with parameters calibrated from Argentina’s vanilla debt, we find

GDP warrant prices can differ by more than two and a half times by using these

four methods.

We also study the characteristics of different pricing methods. In particular, we

find that certain desirable properties necessary for a coherent risk measure may not

be satisfied by all methods. For example, while intuitively appealing, the indiffer-

ence price approach with exponential utility does not satisfy the additivity property,

except in the case where cash flows are independent. The same is also true for the

Wang transform, and standard deviation loading. This makes it difficult to justify

using these methods for pricing liquidly traded instruments, where market partic-

ipants expect linear pricing property, i.e. the sum of components in the package

should produce the same price. This is important if there is no arbitrage in a liquid

market. Given its strong theoretical foundations and appealing properties we rec-

ommend that the modified version of Esscher transform in (22) is used for pricing

liquidly traded assets where linear pricing property is an important consideration.
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